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Nuclear, Chloroplast, and Mitochondrial Genome Sequences of
the Prospective Microalgal Biofuel Strain Picochlorum
soloecismus
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ABSTRACT Picochlorum soloecismus is a halotolerant, fast-growing, and moderate-
lipid-producing microalga that is being evaluated as a renewable feedstock for bio-
fuel production. Herein, we report on an improved high-quality draft assembly and
annotation for the nuclear, chloroplast, and mitochondrial genomes of P. soloecismus
DOE 101.

icochlorum soloecismus (Trebouxiophyceae, Chlorophyta) was isolated during the

bioprospecting efforts of the National Alliance for Advanced Biofuels and Bioprod-
ucts (NAABB) consortium (1), after it outcompeted Nannochloropsis salina CCMP1776
in mixed cultures subjected to heat stress at Los Alamos National Laboratory in New
Mexico. In general, Picochlorum strains have high growth rates, are halotolerant,
can grow at temperatures ranging from 18 to 35°C, and may accumulate moderate
amounts of lipids and carbohydrates (2-6). Phylogenetically, P. soloecismus is most
closely related to the type species Picochlorum oculatum and Nanochlorum eucaryotum
(99% 18S rRNA similarity). The fully sequenced genome from Picochlorum sp. strain
SENEW3 showed compactness (genome size, 13.5 Mbp; 7,367 genes) and gene clus-
tering (7, 8). The aforementioned characteristics make it a promising candidate for
biotechnological use. Physiological characterization of P. soloecismus has so far dem-
onstrated its capacity to grow under simulated outdoor pond conditions (to repli-
cate the climate of Key West, FL) for up to 30 days (9). Others have also reported that
P. soloecismus is amenable to genetic engineering (1).

P. soloecismus DOE 101 genomic DNA was extracted and purified using the Qiagen
(Hilden, Germany) midi plant DNA kit. Rapidly growing cells from 200 ml of culture
(optical density at 750 nm, 2.0) were lysed by heating to 95°C for 5 min in the lysis
buffer. The supernatant containing the DNA was purified according to the manufac-
turer’s directions for the kit. DNA was sequenced to 470X and 27X average genome
coverage using lllumina (10) and 454 pyrosequencing (11), respectively. The 454 reads
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assembled transcripts from a nitrogen deprivation time-course study (S. N. Twary,
unpublished data). Annotation generated 7,844 gene models.
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The final genome assembly contains 56 contigs, with a maximum contig size of

496 kbp, an assembly size of 15.2 Mbp, and an average GC content of 46%. The
mitochondrial and chloroplast genomes are fully assembled into 38.7-kbp and 72.7-kbp
circular chromosomes, respectively. This genome will be a valuable resource for phy-
logenetic and comparative studies and is an essential reference for future genetic
engineering efforts toward the development of members of the genus Picochlorum for
use as a biofuel and renewable chemical production platform.

Accession number(s). This genome sequence is publicly available at The Green-

house knowledgebase at Los Alamos National Laboratory (https://greenhouse.lanl.gov/
greenhouse). The version described in this paper is the first version and is deposited
at DDBJ/ENA/GenBank under the accession number PJAJO0O000000. The isolated and
circular complete mitochondrial and chloroplast genome sequences are deposited
under GenBank accession numbers MG552670 and MG552671, respectively.
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