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Abstract
Background: Animal studies suggest that brain apolipoprotein E (apoE) levels influence amyloid-
β (Aβ) deposition and thus risk for Alzheimer's disease (AD). We have previously demonstrated
that deletion of the ATP-binding cassette A1 transporter (ABCA1) in mice causes dramatic
reductions in brain and cerebrospinal fluid (CSF) apoE levels and lipidation. To examine whether
polymorphisms in ABCA1 affect CSF apoE levels in humans, we measured apoE in CSF taken from
168 subjects who were 43 to 91 years old and were either cognitively normal or who had mild AD.
We then genotyped the subjects for ten previously identified ABCA1 single nucleotide
polymorphisms (SNPs).

Results: In all subjects, the mean CSF apoE level was 9.09 µg/ml with a standard deviation of 2.70
µg/ml. Levels of apoE in CSF samples taken from the same individual two weeks apart were strongly
correlated (r2 = 0.93, p < 0.01). In contrast, CSF apoE levels in different individuals varied widely
(coefficient of variation = 46%). CSF apoE levels did not vary according to AD status, APOE
genotype, gender or race. Average apoE levels increased with age by ~0.5 µg/ml per 10 years (r2 =
0.05, p = 0.003). We found no significant associations between CSF apoE levels and the ten ABCA1
SNPs we genotyped. Moreover, in a separate sample of 1225 AD cases and 1431 controls, we
found no association between the ABCA1 SNP rs2230806 and AD as has been previously reported.

Conclusion: We found that CSF apoE levels vary widely between individuals, but are stable within
individuals over a two-week interval. AD status, APOE genotype, gender and race do not affect CSF
apoE levels, but average CSF apoE levels increase with age. Given the lack of association between
CSF apoE levels and genotypes for the ABCA1 SNPs we examined, either these SNPs do not affect
ABCA1 function or if they do, they do not have strong effects in the CNS. Finally, we find no
evidence for an association between the ABCA1 SNP rs2230806 and AD in a large sample set.
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Background
Alzheimer's disease (AD) is an age-related progressive
neurodegenerative disorder that causes impairments in
memory and thinking. The strongest genetic risk factor for
AD is apolipoprotein E (APOE) genotype [1]. In compari-
son to people who are homozygous for the common ε3
allele, people who carry the ε4 allele are at higher risk for
AD and generally have an earlier age of onset, while peo-
ple who carry the ε2 allele are at lower risk and have a later
age of onset [2-6]. ApoE is a chaperone for amyloid-β (Aβ)
peptide, which deposits in the brain and is thought to ini-
tiate a cascade of events that causes AD [7,8]. Mouse mod-
els have shown that the time of onset and amount of Aβ
deposition depends not only on APOE genotype but also
on apoE levels. Interestingly, higher expression of mouse
apoE increases the amount of Aβ deposition [9,10], while
higher expression of the human ε3 isoform of APOE
knocked into the mouse Apoe locus decreases levels of
amyloid deposition [11]. Additionally, expression of
human apoE in mice delays the onset of Aβ deposition in
an isoform-specific fashion, with ε2 expression decreasing
Aβ deposition the most and ε4 expression decreasing Aβ
deposition the least [12,13].

Despite evidence from animal studies suggesting that
apoE levels affect Aβ deposition, there is no consensus
regarding levels of apoE expression and its effects on Aβ
deposition in human studies. The examination of whether
apoE levels affect AD risk in humans has focused on APOE
promoter polymorphisms. Over 50 studies listed on the
Alzforum website tested for an association between AD
and one or more polymorphisms within the APOE pro-
moter [14]. Meta-analyses on this website support the
notion that APOE promoter variation is associated with
risk for AD. However, it is unclear whether this association
is due to linkage disequilibrium with the coding polymor-
phisms or whether there are independent effects on risk
due to the level of APOE expression. Some studies have
examined the effect of APOE promoter polymorphisms
on APOE expression in vitro [15,16]. More recently, allele
specific gene expression has been used in post-mortem
brain samples to measure the relative expression of APOE
ε3 and ε4 isoforms [17]. However, even these studies do
not directly examine the effect of the promoter polymor-
phisms on levels of apoE protein.

Previous studies of CSF apoE levels in humans have
reached varying conclusions. Some report that CSF apoE
levels are lower in AD subjects than in control subjects
[18-20], other studies find no association between CSF
apoE levels and AD [21,22], and one study shows that CSF
apoE levels are higher in AD subjects than in control sub-
jects [23]. Multiple studies found that the APOE genotype
was not associated with differing CSF apoE levels [19-22].
In contrast, plasma apoE levels are clearly dependent on

APOE genotype [24,25], which suggests that apoE is
metabolized differently in the CSF and plasma. Gender
and age do not appear to affect CSF apoE levels [22].

Recently, our laboratory and others reported that apoE
levels were greatly reduced in mice lacking functional
ATP-binding cassette A1 transporter (ABCA1) [26-28].
Within the CNS of ABCA1 knock-out mice, CSF apoE was
2% of normal levels and apoE in the cortex was 20% of
normal levels [26]. ABCA1 transfers cholesterol and phos-
pholipids from the cell membrane to apolipoproteins
(including apoE) to form nascent high density lipopro-
teins (HDL). In the rare case that both copies of ABCA1
are non-functional, as occurs in Tangier's disease, apoE
and other lipoproteins do not receive normal amounts of
lipid and are rapidly degraded [29]. Multiple studies have
shown that levels of plasma HDL-C and associated apoli-
poproteins are affected by single nucleotide polymor-
phisms (SNPs) in ABCA1 [30-34]. In particular, studies
have implicated the following SNPs in affecting levels of
plasma HDL-C: rs2230806 (R219K) [33], rs2066718
(V771M) [31,32], rs2066715 (V825I) [31], rs4149313
(I883M) [34], rs2230808 (R1587K) [31]. Since ABCA1
appears to have a similar role in the CNS and in the
periphery, we hypothesized that these ABCA1 SNPs would
also have an effect on CSF apoE levels since apoE is the
major apoprotein component of HDL produced in the
CNS. Additionally, studies by others have reported that
the ABCA1 SNP rs2230806 (R219K) affects risk for AD
[35-38]. This is particularly interesting because ABCA1
falls within a region of chromosome 9 that is linked to
late-onset AD [39-43]. The profound effect of ABCA1 lev-
els on CNS apoE levels in mice, in addition to reports that
an ABCA1 SNP may affect risk for AD, suggested that
ABCA1 may be involved in the genetic control of CNS
apoE levels in humans.

Given the contrasting results and small sample sizes used
in some studies of apoE levels in human CSF, we chose to
begin our study by characterizing CSF apoE levels in a rel-
atively large sample of 168 individuals with respect to AD
status, APOE genotype, gender, race and age. We next
examined whether ten ABCA1 SNPs, including five SNPs
shown to affect plasma HDL-C, affected levels of apoE in
the CSF. Finally, in a large sample of 1225 AD cases and
1431 controls, we attempted to replicate the previously
reported association between the ABCA1 SNP rs2230806
and AD.

Results
ApoE levels and stability in human CSF
ApoE levels were measured in CSF samples from 168 sub-
jects who were 43 to 91 years old (Table 1). We included
all samples available without regard to AD status, APOE
genotype, gender, race or age. ApoE values were sorted
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into 1 µg/ml bins and the number of subjects with apoE
values within each bin from 0 to 16 µg/ml was tallied (Fig.
1A). The mean apoE level was 9.09 µg/ml with a standard
deviation of 2.70 µg/ml. The number of individuals per
bin was in a normal distribution according to a Kol-
mogorov-Smirnov test (p > 0.10).

To determine the intra-individual stability of CSF apoE
levels sampled over time, lumbar puncture was performed
on five subjects at two different times that were two weeks
apart. CSF apoE levels within the same individual were
strongly correlated (r2 = 0.93, p < 0.01). In contrast, CSF
apoE levels between different individuals showed large
variation (coefficient of variation = 46%) (Fig. 1B). This
demonstrates that CSF apoE levels are relatively stable
within an individual during a short time interval, but vary
widely between individuals. Furthermore, this suggests
that CSF apoE levels may be influenced by stable individ-
ual differences, such as genetic sequence variation.

Effects of AD status, APOE genotype, gender or age on CSF 
apoE levels
There are varying reports in the literature on whether CSF
apoE levels are affected by AD status, APOE genotype, gen-
der or age. In our relatively large sample, we investigated
whether these variables, as well as race, modified CSF
apoE levels. The levels of CSF apoE were not significantly
different between subjects who were cognitively normal
who had a clinical dementia rating (CDR) score of 0 and
those who had very mild (CDR 0.5) or mild-moderate
dementia believed to be due to AD (CDR 1+) (Fig. 2A).
Since a recent study reported that apoE levels may be
affected by APOE genotype [44], we examined whether
APOE genotype affects CSF apoE levels in our sample.
Despite large numbers of patients, we found no signifi-
cant differences in CSF apoE levels in subjects with differ-
ent APOE genotypes (Fig. 2B). Next, we looked for gender
effects on CSF apoE levels and found none (Fig. 2C). We
also found no significant difference in CSF apoE levels
between subjects who identified themselves as Caucasians
and African Americans (Fig. 2D). Additionally, we studied
whether age affects CSF apoE levels (Fig. 2E). Average
apoE levels increased by a small but significant extent,
~0.5 µg per 10 years (r2 = 0.05, p = 0.003). Finally, to test

the possibility that AD status, APOE genotype, gender and
age interact to influence apoE levels in the CSF, we per-
formed a multivariate ANOVA and found no significant
interactions. We conclude that CSF apoE levels are not
greatly affected by AD status, APOE genotype, gender or
race, but do increase with age.

Effects of ABCA1 SNPs on CSF apoE levels and risk for AD
We sought to determine whether SNPs in ABCA1 affect
CSF apoE levels. The subjects for whom we had CSF apoE
data were genotyped for the following ABCA1 SNPs:
rs2230806 (R219K), rs2066718 (V771M), rs2066715
(V825I), rs4149313 (I883M), rs2230808 (R1587K),
rs1883025 (intron), rs2275544 (intron), rs2777799
(intron), rs3904999 (intron) and rs6479283 (intron).
The numbers of subjects for which we obtained conserva-
tively called (high quality) genotypes, as well as the fre-
quencies of the minor and major alleles, are listed in Table
2. We found no association between CSF apoE levels and
any of the ABCA1 SNPs, including the five coding SNPs
that were previously associated with alterations in plasma
HDL-C levels.

We also attempted to reproduce the finding, reported by
some groups but not others, that the ABCA1 rs2230806
SNP is associated with altered risk for AD [35-38,45]. We
combined information on 794 subjects from Washington
University with 1,862 additional subjects from the Uni-
versity of California-San Diego and the United Kingdom
to yield the maximum power. The subjects from Washing-
ton University had previously been analyzed and it was
found that risk for AD in this group did not depend on the
rs2230806 SNP [36]. The 1,862 additional subjects had
not previously been used to examine the rs2230806 SNP.
In this large group of 1225 case and 1431 control subjects,
there was no effect of the rs2230806 SNP on risk for AD
(Table 3). Analysis of sub-groups based on APOE geno-
type and gender also failed to show an effect of the
rs2230806 SNP on risk for AD.

Discussion
A notable finding in this study was that CSF apoE levels
vary widely between individuals, with a range in our sam-
ple from 2 µg/ml to 16 µg/ml, but are stable within indi-

Table 1: Characteristics of subjects who underwent lumbar puncture.

CDR 0, <65 CDR 0, ≥65 CDR 0.5 CDR 1+

n = 70 55 26 17
Male 29% 28% 54% 47%

Female 71% 72% 46% 53%
Age* 54 ± 6 76 ± 8 75 ± 8 76 ± 6
ε2 freq. 0.11 0.13 0.06 0.03
ε3 freq. 0.64 0.73 0.56 0.74
ε4 freq. 0.25 0.14 0.38 0.24

*Age is mean ± standard deviation
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viduals during an interval of 2 weeks. This suggests the
presence of stable factors within individuals, which may
be genetic or environmental, that regulate CSF apoE lev-
els. Recently, it was reported that levels of Aβ vary accord-
ing the time of day and it is possible that apoE could vary
in a similar fashion [46]. However, since all of our sam-
ples were obtained at the same time of day (8:00 am), any
diurnal variation of apoE levels in this study should be
minimal.

We examined whether AD status, APOE genotype, gender,
race or age affected CSF apoE levels, but only age was sig-
nificantly correlated. It is interesting that levels of apoE are
not elevated in carriers of the ε2 allele. ApoE3 and apoE4
both bind with high affinity to LDLR resulting in receptor-
mediated endocytosis and degradation of apoE. ApoE2
does bind to LDLR, but much less effectively than apoE3
and apoE4 [47]. In mice, the decreased affinity of apoE2
for LDLR leads to elevated levels of CSF apoE in mice in
which the human APOE ε2 gene is knocked-in to the
mouse Apoe gene locus [48]. The lack of a difference in
apoE levels according to genotype in human CSF samples
suggests that LDLR may not have as large of an effect on
human CSF apoE levels. It will be important to assess this
issue in future studies in APOE ε2 homozygous individu-
als as there may be a much smaller effect in individuals
with one copy of the APOE ε2 gene.

We hypothesized that genetic variation in certain genes
may contribute to CSF apoE levels and examined whether
SNPs in ABCA1, especially SNPs that have been reported

to affect plasma HDL-C levels, affect CSF apoE levels. We
did not find a significant association between CSF apoE
levels and any of the ten ABCA1 SNPs we examined,
including the five coding SNPs thought to be associated
with altered HDL-C levels. Perhaps this is because the
metabolism of apoE is different in the plasma and CSF.
Alternatively, these changes in ABCA1 may not affect HDL
in the CNS as much as occurs as with HDL in the plasma.
This may be due to apoAI being the main apoprotein in
plasma HDL whereas apoE is the most abundant apopro-
tein produced in the CNS in CSF HDL. The effects of the
SNPs may also be too small to significantly affect CSF
apoE levels. However, it remains possible that rare
sequence variations that strongly influence ABCA1 func-
tion could contribute to variation in CSF apoE levels.
Recent studies demonstrate that several rare polymor-
phisms in ABCA1 collectively affect overall levels of
plasma HDL-C in the population [30,31]. Since ABCA1-
mediated lipid transport is critical in the formation of
both HDL-C in plasma and apoE-containing lipoproteins
in CSF, it is possible that the same rare ABCA1 polymor-
phisms that have large effects on plasma HDL-C levels
would also affect CSF apoE levels.

Additionally, we failed to replicate the finding of other
groups that the ABCA1 rs2230806 SNP is associated with
altered risk for AD [35-38]. We suggest three possible rea-
sons for the differing results: 1) the ABCA1 rs2230806
SNP does affect risk for AD, but the effect is small so that
the association cannot be reproduced regularly in samples
of ~2500 subjects; or 2) the population we examined was

Distribution of apoE levels in human CSFFigure 1
Distribution of apoE levels in human CSF. A, ApoE levels were sorted into bins of 1 µg/ml and the number of subjects with 
apoE values within each bin was tallied. The data represents 168 subjects without division by CDR status, APOE genotype, gen-
der, race or age. B, ApoE levels were measured in CSF samples taken two weeks apart from five different patients.
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ApoE levels in human CSF do not vary according to presence or absence of Alzheimer's disease, level of cognitive impairment, APOE genotype, gender or race, but do increase with ageFigure 2
ApoE levels in human CSF do not vary according to presence or absence of Alzheimer's disease, level of cognitive impairment, 
APOE genotype, gender or race, but do increase with age. A, Subjects were grouped by age and AD status. Subjects with a clin-
ical dementia rating (CDR) score of 0 (cognitively normal) that were less than age 65 were placed into the first group (CDR 0, 
<65; n = 59). Subjects that were 65 and older with a CDR score of 0, 0.5, or 1–2 were placed into the second (CDR 0, n = 50), 
third (CDR 0.5, n = 21) and fourth (CDR 1+, n = 14) groups, respectively. There was no difference in CSF apoE levels by one-
way ANOVA. B, Subjects were grouped by APOE genotype into four groups: E2/E3 (n = 23), E3/E3 (n = 72), E3/E4 (n = 52), and 
E4/E4 (n = 9). There was no difference in CSF apoE levels by one-way ANOVA. C, Subjects were divided into two groups, 
female (n = 109) and male (n = 57). There was no difference in CSF apoE levels by a two-tailed Student's T-test. D, Subjects 
were grouped by self-identified racial group: African American (n = 17) and Caucasian (n = 149). There was no difference in 
CSF apoE levels by a two-tailed Student's T-test. E, CSF apoE levels were graphed as a function of subject age (n = 168). The 
slope of the regression line was 0.05, with a 95% confidence interval of 0.02 to 0.08.
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genetically different from the populations in the other
studies assessed; or 3) the ABCA1 rs2230806 SNP does
not affect risk for AD. Since the populations that we and
others examined are similar and consisted primarily of
Caucasians with Northern European heritage, we believe
that it is most likely that the ABCA1 rs2230806 SNP con-
tributes either a very small amount or not at all to overall
risk for AD.

It seems likely that many different genes modulate levels
of apoE in the CSF. Studies suggest that LDLR and LRP
influence levels of CSF apoE in mice [48,49]. Given the
animal data, it is possible that variations in LDLR or LRP
could affect CSF apoE levels in humans, but this has not
yet been examined. Further investigation of the genetic
control of apoE levels in the CNS could uncover new
information on apoE metabolism. This research would
not only be relevant to AD, but also to a number of other
neurological diseases that may be modulated by apoE
such as stroke [50,51], multiple sclerosis [52] and trau-
matic brain injury [53]. Ultimately, an understanding of
the regulation of CSF apoE levels could lead to novel
apoE-based treatments for AD and other neurological dis-
orders.

Conclusion
We found that CSF apoE levels vary widely between indi-
viduals, but are stable within individuals over a two-week
interval. Secondly, AD status, APOE genotype, gender and
race do not affect CSF apoE levels, but CSF apoE levels do
increase with age. Additionally, ABCA1 SNPs that have
been reported to affect plasma HDL-C levels do not affect
CSF apoE levels in our sample. Finally, any association
that exists between the ABCA1 SNP rs2230806 and AD is
very weak.

Methods
Subjects
Subjects in the Washington University sample were com-
munity-living participants in the Alzheimer's Disease
Research Center (ADRC) registry. All research subjects
underwent a clinical evaluation to determine their Clini-
cal Dementia Rating (CDR), as well as a 2-hour psycho-
metric test battery. A medical history was taken to exclude
participants that might have confounding medical disor-
ders. Details of the assessment have been described previ-
ously [54-56]. Additional case control DNA samples were
from the University of California-San Diego and the
United Kingdom.

Table 2: The number of subjects with high quality genotypes and the frequency of the minor and major ABCA1 SNP alleles.

n = minor allele freq. major allele freq.

rs2230806 123 0.309 0.691
rs2066718 124 0.040 0.960
rs2066715 144 0.073 0.927
rs4149313 124 0.185 0.815
rs2230808 124 0.315 0.685
rs1883025 102 0.358 0.642
rs2275544 122 0.131 0.869
rs2777799 123 0.126 0.874
rs3904999 123 0.203 0.797
rs6479283 119 0.223 0.777

Table 3: The distribution of the rs2230806 polymorphism in subjects with Alzheimer's disease and control subjects.

# # AA # AG # GG freq. A freq. G AD vs. Control

Total AD 1225 81 476 668 0.260 0.740 p = 0.76
n = 2656 Control 1431 105 548 778 0.265 0.735
E3/E3 AD 437 31 170 236 0.265 0.735 p = 0.93

n = 1316 Control 879 63 351 465 0.271 0.729
E4/E3 AD 555 32 227 296 0.262 0.738 p = 0.10
n = 832 Control 277 18 92 167 0.231 0.769
E4/E4 AD 125 8 40 77 0.224 0.776 p = 0.86
n = 150 Control 25 1 9 15 0.220 0.780

Females AD 267 26 105 136 0.294 0.706 p = 0.99
n = 505 Control 238 23 94 121 0.294 0.706

p values are caculated by Chi Square tests with 2 degrees of freedom
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CSF was obtained via lumbar puncture (L.P.) from 168
subjects at Washington University in the General Clinical
Research Center after obtaining informed consent. The
study protocol was approved by the Human Studies Com-
mittee at Washington University. All L.P.s were performed
at 8 am after an overnight fast with a 22 gauge atraumatic
needle. 25–30 ml of CSF was obtained from each subject
and was free of blood contamination. After collection,
CSF samples were briefly centrifuged at 1,000 × g to pellet
any cell debris, frozen, and stored in polypropylene tubes
at -80°C in 0.5 ml aliquots until analysis.

ApoE ELISA
ApoE ELISAs were performed on CSF apoE as previously
described [48]. Briefly, plates were coated overnight with
WUE4, a monoclonal antibody to human apoE [57]. The
plates were washed, blocked with 1% dry milk and
washed again. ApoE standards were purified from human
β-VLDL (BioDesign, Sako, ME). Standards and samples
were diluted and loaded onto the plate, then incubated
overnight. The plate was washed and incubated with a
polyclonal goat anti-apoE antibody (Calbiochem, San
Diego CA). The plate was washed again and incubated
with anti-goat-HRP (Vector Laboratories, Burlingame,
CA). The plate was washed once more, then developed
with TMB (Sigma, St. Louis, MO).

Genotyping
The following SNPS in ABCA1 were genotyped in the
Washington University sample of 168 subjects:
rs2230806 (R219K), rs2066718 (V771M), rs2066715
(V825I), rs4149313 (I883M), rs2230808 (R1587K),
rs1883025 (intron), rs2275544 (intron), rs2777799
(intron), rs3904999 (intron) and rs6479283 (intron).
Genotyping was performed using a modified single nucle-
otide extension reaction with allele detection by mass
spectrometry (Sequenom MassArray system; Sequenom,
San Diego, CA, USA). PCR primers, termination mixes
and multiplexing capabilities were determined with
Sequenom Spectro Designer software v2.00.17. Genotyp-
ing of rs2230806 in the large group of 2,656 subjects was
performed using allele specific real-time PCR [58]. For all
SNPs, genotypes were tested and found to be in Hardy-
Weinberg equilibrium.

Statistical analyses
Frequency distributions, correlation analysis, ANOVAs, T-
tests and Kolmogorov Smirnov tests of normality were
performed using GraphPad Prism, Version 4.00 (Graph-
Pad, San Diego, CA). Multivariate ANOVAs were per-
formed using SAS Version 9.0 for Windows XP (SAS
Institute Inc., Cary, NC).
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