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Abstract
Our aim was to simultaneously investigate the gut bacteria typical characteristic and 
conduct rumen metabolites profiling of high production dairy cows when compared 
to	 low-	production	 dairy	 cows.	 The	 bacterial	 differences	 in	 rumen	 fluid	 and	 feces	
were	 identified	 by	 16S	 rDNA	 gene	 sequencing.	 The	metabolite	 differences	 were	
identified	by	metabolomics	profiling	with	liquid	chromatography	mass	spectrometry	
(LC-	MS).	The	results	indicated	that	the	high-	production	dairy	cows	presented	a	lower	
rumen	bacterial	 richness	and	species	evenness	when	compared	to	 low-	production	
dairy	cows.	At	the	phylum	level,	the	high-	production	cows	increased	the	abundance	
of	 Proteobacteria	 and	 decreased	 the	 abundance	 of	 Bacteroidetes,	 SR1,	
Verrucomicrobia,	Euryarchaeota,	Planctomycetes,	Synergistetes,	and	Chloroflexi	sig-
nificantly (p	<	0.05).	At	the	genus	level,	the	rumen	fluid	of	the	high-	production	group	
was significantly enriched for Butyrivibrio,	 Lachnospira,	 and	 Dialister (p	<	0.05).	
Meanwhile,	 rumen	 fluid	 of	 high-	production	 group	 was	 depleted	 for	 Prevotella, 
Succiniclasticum, Ruminococcu, Coprococcus,	 YRC22,	 CF231,	 02d06,	Anaeroplasma, 
Selenomonas,	and	Ruminobacter significantly (p	<	0.05).	A	total	of	92	discriminant	me-
tabolites	were	identified	between	high-	production	cows	and	low-	production	cows.	
Compared	to	rumen	fluid	of	low-	production	dairy	cows,	10	differential	metabolites	
were	 found	 up-	regulated	 in	 rumen	 fluid	 of	 high-	production	 dairy	 cows,	 including	
6alpha-	Fluoropregn-	4-	ene-	3,20-	dione,	3-	Octaprenyl-	4-	hydroxybenzoate,	disopyra-
mide,	compound	III(S),	1,2-	Dimyristyl-	sn-	glycerol,	7,10,13,16-	Docosatetraenoic	acid,	
ferrous	 lactate,	 6-	Deoxyerythronolide	 B,	 vitamin	 D2,	 L-	Olivosyl-	oleandolide.	 The	
remaining	 differential	 metabolites	 were	 found	 down-	regulated	 obviously	 in	 high-	
production cows. Metabolic pathway analyses indicated that most increased abun-
dances	 of	 rumen	 fluid	 metabolites	 of	 high-	yield	 cows	 were	 related	 to	 metabolic	
pathways	 involving	 biosynthesis	 of	 unsaturated	 fatty	 acids,	 steroid	 biosynthesis,	
ubiquinone	and	other	terpenoid-	quinone	biosynthesis.	Most	down-	regulated	meta-
bolic	 pathways	were	 relevant	 to	 nucleotide	metabolism,	 energy	metabolism,	 lipid	
metabolism and biosynthesis of some antibiotics.
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1  | INTRODUC TION

Many studies showed that the gut microbiota play an important role 
on	 health,	metabolism	 and	 immunity	 of	 the	 host	 recently	 (Amato	
et	al.,	 2014;	 Ridaura	 et	al.,	 2013;	 Trompette	 et	al.,	 2014).	 The	 bo-
vine rumen harbors a symbiotic microbiota capable of converting 
indigestible	plant	mass	 into	energy	 (Flint,	Bayer,	Rincon,	Lamed,	&	
White,	 2008),	which	 is	 of	 vital	 importance	 for	 production	 of	milk	
and	meat.	 Among	 this	 complex	 microbial	 community,	 95%	 of	 the	
microorganisms	 are	 bacteria	 (Brulc	 et	al.,	 2009).	 Jami,	White,	 and	
Mizrahi	 (2014);	 recently	 identified	 the	 connections	 between	 the	
ratio	of	Firmicutes	to	Bacteroides	and	daily	milk-	fat	yield.	Variation	
in the rumen microbiome of dairy cattle has also been correlated 
with	methane	emission	levels	(Ross,	Moate,	Marett,	Cocks,	&	Hayes,	
2013b),	 and	metagenomic	 profiling	 of	 the	 rumen	microbiome	 can	
actually be used to predict phenotypes relating to enteric methane 
gas	production	(Ross,	Moate,	Marett,	Cocks,	&	Hayes,	2013a).	These	
studies revealed connections between the gut microbial community 
and	certain	physiological	host	parameters,	which	can	be	applied	on	
improving animal production by manipulation of relevant beneficial 
bacterial flora.

Some studies suggested correlations between rumen microbial 
groups	 and	 bovine	 feed	 efficiency	 traits	 (Carberry,	 Kenny,	 Han,	
McCabe,	&	Waters,	2012;	Guan,	Nkrumah,	Basarab,	&	Moore,	2008;	
Hernandez-	Sanabria	 et	al.,	 2012).	 The	 relative	 proportion	 of	 se-
quences	that	were	assigned	to	Prevotella appeared to be positively 
associated	with	high	residual	feed	intake	(RFI)	 in	bulls,	whereas	an	
unidentified group within the order Bacteroidales was positively as-
sociated	with	low	RFI	in	bulls	(McCann	et	al.,	2014).	Lima	et	al.	(2015)	
have	characterized	the	rumen	fluid	microbiomes	of	prepartum	and	
postpartum	high-	producing	Holstein	cows	and	revealed	that	some	
bacteria	 have	 strong	 correlations	with	milk	 production.	Moreover,	
they built a multivariable regression model using bacterial taxa sig-
nificantly associated with average milk yield in the first 150 days 
postpartum	to	predict	the	weekly	milk	production;	this	microbiome-	
predicted milk yield was significantly correlated with the actual 
weekly averages of milk production.

Additionally,	 an	 early	 study	 on	 mice	 observed	 that	 obese	
mice	 (ob/ob)	 exhibited	 a	 different	 ratio	of	 the	phyla	 Firmicutes	 to	
Bacteroidetes	 when	 compared	 with	 lean	 littermates	 (Ley	 et	al.,	
2005).	 This	 difference	 is	 not	 totally	 attributable	 to	 differences	 in	
food	consumption,	as	a	runted	ob/ob	mouse	weighed	less	than	the	
ob/ob	 littermates	 owing	 to	 reduced	 chow	 consumption,	 but	 still	
demonstrated a significantly greater percent body fat and ratio of 
Firmicutes	to	Bacteroidetes.	Moreover,	analogous	differences	have	
been observed in the distal gut microbiota of obese versus lean 
humans as well; the relative abundance of Bacteroidetes increases 

as	obese	individuals	lose	weight	on	either	a	fat-		or	a	carbohydrate-	
restricted	 low	 calorie	 diet.	And	 the	 increase	 in	Bacteroidetes	was	
markedly	relevant	to	weight	loss	but	not	to	total	caloric	intake.	(Ley,	
Turnbaugh,	Klein,	&	Gordon,	2006).	A	later	study	by	the	same	team	
demonstrated	that	the	obesity-	associated	gut	microbiome	have	in-
creased capacity for energy harvest by transplantation of lean and 
obese	cecal	microbiotas	into	germ-	free	wild-	type	mouse	recipients	
(Turnbaugh	et	al.,	2006)

However,	 there	 is	 still	 a	 lack	 of	 information	 investigating	 the	
gut	 bacterial	 profile	 of	 high-	production	 dairy	 cows.	 In	 this	 work,	
we explored the bacterial differences in rumen fluid and feces from 
high-	yield	and	low-	yield	dairy	cows	under	the	same	diet,	region	and	
surroundings.	 Meanwhile,	 we	 investigated	 the	 metabolites	 differ-
ences in rumen fluid between these two groups as well. The aim 
of	the	study	was	to	explore	the	rumen	and	fecal	bacteria,	and	the	
rumen	metabolite	profiles	of	high-	production	dairy	cows.	Bacteria	
which	are	associated	with	high-	production	dairy	cattle	have	the	po-
tential to be cultured and applied as probiotics to improve the per-
formance	of	low-	production	dairy	cattle.

2  | MATERIAL S AND METHODS

2.1 | Experimental animals and sample collection

We	 selected	 22	 Holstein	 dairy	 cows,	 with	 11	 high-	yield	 and	 11	
low-	yield	cows;	11	of	each	were	matched	as	pairs,	and	each	pair	of	
cows	was	reared	under	the	same	diet	regimes,	feeding	environment,	
and	were	 paired	 for	 similar	 age,	 parity	 and	 nearing	 lactation	 days	
(Table	1)	on	 the	aote	dairy	 farm	 in	Qingdao.	Cows	were	 fed	 twice	
(05:00	hr	and	17:00	hr)	and	milked	twice	daily;	all	cows	had	free	ac-
cess to clean water.

Representative	rumen	fluid	samples	were	obtained	from	all	Holstein	
cows	via	the	cow’s	mouth	with	the	oro-	ruminal	sampling	device	within	
two	hours	before	morning	feeding.	Fecal	samples	were	acquired	by	the	
rectum	pick	dung	method.	All	 samples	were	 immediately	placed	 into	
liquid	nitrogen,	and	were	transferred	to	laboratory	for	−80°C	storage.

The ethics committee of Shandong agriculture university ap-
proved	the	study	(SDAU2015-	18).

2.2 | Experimental procedures for 16S rDNA  
sequencing

The	samples	were	slowly	thawed	at	4°C.	Total	DNA	was	extracted	
from	the	rumen	fluid	and	fecal	samples	using	the	Stool	DNA	Isolation	
Kit	(Tiangen,	Beijing,	China).	DNA	samples	were	quantified,	using	a	
Nanodrop	 spectrophotometer	 (Nyxor	 Biotech,	 Paris,	 France),	 and	
then	 transferred	 to	BGI	Genomics	 for	V4	region	of	 the	16S	 rDNA	
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gene	sequencing	with	PE250	Miseq.	The	PCR	primer	used	for	16S	
rDNA	amplicon	libraries	was	515F-	806R.

2.3 | Bioinformatics analysis for 16S rDNA  
sequencing

The raw data were filtered to eliminate the adapter pollution and 
low	quality	to	obtain	clean	reads	(Douglas	et	al.,	2014).	Truncation	
of	 sequence	 reads	 not	 having	 an	 average	 quality	 of	 20	 over	 a	
30	bp	sliding	window	based	on	the	Phred	algorithm,	and	trimmed	
reads	having	 less	 than	75%	of	 their	original	 length,	as	well	as	 its	
paired	 read,	 were	 removed.	 Then	 paired-	end	 reads	 with	 over-
lap	were	merged	 into	 tags	 by	 FLASH	 (Magoc	&	 Salzberg,	 2011)	
(Fast	Length	Adjustment	of	Short	reads,	v1.2.11).	Tags	were	clus-
tered	 to	OTU	 at	 97%	 sequence	 similarity	 by	 scripts	 of	 software	
USEARCH	(v7.0.1090)	(Edgar,	2013).	Chimeras	were	filtered	out	by	
using	UCHIME	(v4.2.40)	(Edgar,	Haas,	Clemente,	Quince,	&	Knight,	
2011).	OTU	representative	sequences	were	taxonomically	classi-
fied	using	 the	Ribosomal	Database	Project	 (RDP)	Classifier	v.2.2	
(Cole	et	al.,	2014)	trained	on	the	Greengenes	database	(V201305)	
(DeSantis	et	al.,	2006)	using	0.5	confidence	values	as	cutoff.	OTUs	
were	filtered	to	remove	unassigned	OTUs.

VennDiagram	 and	 package	 ‘ade4’	 of	 software	 R	 (v3.0.3)	 were	
used	separately	 in	Venn	diagram	and	OTU	PCA	analysis.	The	 tags	
number	of	each	taxonomic	rank	(phylum,	class,	order,	family,	genus	
and	species)	or	OTU	in	different	samples	were	summarized	in	a	pro-
filing	table.	The	species	with	abundances	less	than	0.5%	were	classi-
fied into ‘others’ in other ranks for all samples.

The	representative	sequences	were	aligned	against	the	Silva	core	
set(Silva_108_core_aligned_seqs),	using	PyNAST	by	 ‘align_seqs.py’.	
The	indices	of	Alpha	diversity	were	calculated	by	Mothur	(v1.31.2),	
and	the	corresponding	rarefaction	curves	were	drawn	by	R	(v3.0.3).	
Wilcoxon	Rank-	Sum	Test	was	used	 for	comparison	of	 two	groups,	
using the alpha diversity indices. Beta diversity analysis was done 
by	 software	QIIME(v1.80)	 (Caporaso	et	al.,	 2010).	 PCoA	 (Principal	

coordinate	 analysis)	 is	 used	 to	 exhibit	 the	 differences	 between	
the samples according to the matrix of beta diversity distance. 
Unweighted	Pair	Group	Method	with	Arithmetic	mean	(UPGMA)	is	
a type of hierarchical clustering method using average linkage and 
was used to interpreting the distance matrix produced by beta di-
versity.	To	measure	the	robustness	of	this	result	to	sequencing	ef-
fort,	we	perform	a	jackknifing	analysis,	wherein	75%	of	the	smallest	
sample	sequences	from	each	sample	are	chosen	at	random,	and	the	

TABLE  1 Fundamental	information	of	cows	in	experiment

High- yield cows Low- yield cows

Cow Milk yield (kg) Parity Lactation days Cow Milk yield (kg) Parity Lactation days

9,052 38 3 182 10,067 18 3 168

10,019 38 2 216 11,063 21 2 224

10,091 46 3 119 10,045 27 3 91

11,030 48 2 93 11,091 28 2 72

11,089 31 1 489 11,093 18 1 505

12,006 37 1 413 12,002 24 1 441

12,017 42 1 405 12,010 27 1 387

12,031 40 1 223 12,040 25 1 257

12,073 40 1 186 12,068 25 1 191

12,083 41 1 214 12,092 28 1 201

13,021 35 1 64 13,042 20.7 1 54

F IGURE  1 PCA	analyses	of	bacteria	in	rumen	fluid	and	fecal	
samples. Note:	Unweighted	UniFrac	was	used	to	create	the	PCA.	
X-	axis,	1st	principal	component;	Y-	axis,	2nd	principal	component.	
The number in brackets represents the contributions of principal 
components	to	differences	among	samples.	A	dot	represents	each	
sample,	and	different	colors	represent	different	groups.	HighS	and	
LowS	represent	rumen	fluid	from	high-	yield	and	low-	yield	cows,	
respectively.	HighF	and	LowF	represent	groups	of	high-	yield	and	
low-	yield	cow	feces,	respectively
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resulting	UPGMA	tree	from	this	subset	of	data	is	compared	with	the	
tree	representing	the	entire	available	data	set	by	QIIME(v1.80).	This	
process	is	repeated	with	100	random	subsets	of	data,	and	the	tree	
nodes which prove more consistent across jackknifed datasets are 
deemed	more	robust.	And	the	figure	is	drawn	by	software	R(v3.0.3).

The abundance differences in microbial communities between 
samples	were	obtained	using	statistical	methods,	and	FDR	(false	dis-
covery	rate)	was	adopted	to	assess	the	significance	of	differences.	
Metastats	 (http://metastats.cbcb.umd.edu/)	 and	 R	 (v3.0.3)	 were	
used to determine which taxonomic groups were significantly differ-
ent between groups of samples. We adjusted the obtained p-	value	
by	 a	 Benjamini–-	Hochberg	 false	 discovery	 rate	 correction	 (func-
tion	‘p.adjust’	in	the	stats	package	of	R	(v3.0.3))	(James,	Niranjan,	&	
Mihai,	2009).

2.4 | Metabolomics profiling with liquid 
chromatography mass spectrometry (LC- MS)

2.4.1 | Metabolites extraction

Metabolites extraction is achieved by organic solvent to precipitate 
protein	(Sarafian	et	al.,	2014).	A	quantity	of	100	μl	liquid	sample	with	
micropipette	 was	 plunged	 into	 96-	well	 plate.	 300	μl isopropanol 
(−20°C)	was	 added	 to	 the	well	 above	 and	 vortex	mixed	 and	 then	
stored	overnight	at	−20°C.	Centrifuged	at	14,000g	for	20	min	at	4°C	
and	collected	supernatants	to	new	tube	until	LC-	MS	analysis.

QC:	Pooling	of	sample	supernatants	(5	μl	from	every	sample).

2.4.2 | Bioinformatics analysis for LC- MS

For	 metabolomics	 profiling,	 we	 used	 Xevo	 G2-	XS	 QTOF	 (Waters,	
U.K.)	to	detect	metabolites	in	the	samples.	Progenesis	QI	software	

(Waters,	U.K.	 http://www.nonlinear.com/progenesis/qi/)	was	 used	
for the preprocessing and identification steps. Each detected meta-
bolic	feature	was	normalized	to	the	QC	sample	using	LOESS	Signal	
Correction	(LSC).	The	correction	effect	is	evaluated	by	RSD	analysis	
and	PCA	analysis.	The	stability	of	the	analytical	system	is	evaluated	
by	intensity	distribution	of	QC	samples.	Ions	with	no	signal(intensity	
equals	 0)	 in	more	 than	 80%	 samples	 of	 any	 group	 are	 discarded.	
The	 above	 ions	with	 RSD	<30%	 are	 included	 for	 further	 analysis.	
All	filtered	metabolomics	data	were	searched	against	the	KEGG	da-
tabase.	For	statistics	analysis,	we	used	multivariate	analysis	 (PCA/
PLS-	DA)	and	univariate	analysis	(FDR/Fold	change)	to	gain	differen-
tial ions. Cluster analysis was generated using the ‘pheatmap’ pack-
age	in	R	(v3.0.3).	Pathway	analysis	was	performed	through	the	KEGG	
database.

3  | RESULTS

3.1 | Sequencing quality

A	total	of	3,214,190	paired	reads	were	retained	with	an	average	of	
73,049	reads	per	sample.	A	total	of	3,183,371	tags	were	obtained,	
with	72,349	tags	per	sample	on	average	and	an	average	 length	of	
252 bp.

The	rarefaction	curve	based	on	Observed	species	value,	Chao1	
value	and	ACE	values	suggest	all	samples	produced	sufficient	data	
(Supporting	Information,	Figure	S1).

3.2 | OTU classification and statistics

Based	on	the	OTU	abundances,	OTUs	of	each	group	were	listed.	The	
number	of	OTUs	found	in	HighS,	LowS,	HighF,	and	LowF	were	2,329,	
2,592,	2,265,	and	2,574,	 respectively.	A	total	of	1,929	OTUs	were	

F IGURE  2 The taxonomic composition distribution in rumen fluid and fecal samples at the phylum level. Note.	Abscissa	represent	
samples	of	rumen	fluid	or	feces	and	each	serial	number	represent	a	different	cow.	S	represents	rumen	fluid	samples.	F	represents	fecal	
samples. The vertical axis represent relative abundance of each phylum

http://metastats.cbcb.umd.edu/
http://www.nonlinear.com/progenesis/qi/
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shared	between	HighS	and	LowS;	similarly,	1851	OTUs	were	shared	
between	HighF	and	LowF	(Supporting	Information	Figure	S2).

The	OTU	 composition	was	 distinctly	 different	 between	HighS	
and	LowS,	while	there	was	no	significant	difference	between	HighF	
and	LowF	(Figure	1).

For	 the	 rumen	 fluid	 samples,	 a	 total	 of	 20	 phyla	 were	 identi-
fied,	 and	 the	 predominant	 phyla	 the	 species	 of	whose	 abundance	
was	more	than	1%	were	Bacteroidetes,	Proteobacteria,	Firmicutes,	
Spirochaetes,	 and	 Cyanobacteria	 (Figure	2).	 As	 for	 the	 fecal	 sam-
ples,	a	total	of	22	phyla	were	identified,	and	the	predominant	phyla	

Alpha Mean (HighS) SD (HighS) Mean (LowS) SD (LowS) p- vaule

sobs 870.56 281.37 1,326.44 109.46 0.00049

chao 1,019.7 302.19 1,442.51 83.04 0.00049

Ace 1,028.4 306.66 1,456.25 85.62 0.00049

shannon 3.36 0.78 5.21 0.28 0.00016

simpson 0.19 0.08 0.02 0.01 0.00016

Note.	HighS	represents	for	rumen	fluid	of	high-	production	cows.	LowS	represents	for	rumen	fluid	of	
low-	production	cows.	Wilcoxon	Rank-	Sum	Test	is	used	for	two	group	comparation.	If	p value is less 
than	0.05,	there	is	significant	difference	in	alpha	diversity	between	the	two	groups.

TABLE  2 Alpha	diversity	indices	of	
rumen	fluid	between	high-	production	
dairy	cows	and	low-	production	dairy	cows

Alpha Mean (HighF) SD (HighF) Mean (LowF) SD (LowF) p- vaule

sobs 1,056.67 143.78 1,209.78 195.99 0.09391

chao 1,170.56 150.69 1,291.75 186.44 0.16153

ace 1,182.41 156.08 1,309.81 188.94 0.11349

shannon 5.16 0.25 5.25 0.28 0.34011

simpson 0.02 0.01 0.02 0.01 0.48943

Note.	HighF	represents	for	fecal	samples	of	high-	production	cows.	LowF	represents	for	fecal	sam-
ples	of	low-	production	cows.	Wilcoxon	Rank-	Sum	Test	is	used	for	a	two	group	comparison.	If	p value 
is	less	than	0.05,	there	is	significant	difference	in	alpha	diversity	between	the	two	groups.

TABLE  3 Alpha	diversity	indices	of	
fecal	samples	between	high-	production	
dairy	cows	and	low-	production	dairy	cows

F IGURE  3 Weighted	unifrac	PCoA	
analyses of bacteria in rumen fluid and 
fecal samples. Note.	Green	triangles	
represent	rumen	fluid	of	high-	sproduction	
cows. Blue dots represent rumen 
fluid	of	low-	production	cows.	Red	
triangles represent fecal samples of 
high-	production	cows.	Orange	squares	
represent	fecal	samples	of	low-	production	
cows
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were	 Bacteroidetes,	 Firmicutes,	 Spirochaetes,	 Proteobacteria,	
Euryarchaeota	and	Tenericutes	(Figure	2).

At	the	genus	level,	a	total	of	100	and	96	genera	were	detected	in	the	
HighS	and	LowS	groups,	respectively.	Genera	with	abundances	greater	
than	 1%	 in	 the	 HighS	 group	 included	 Prevotella, Lachnobacterium, 
Succiniclasticum, Treponema, Ruminococcus,	 and	 Butyrivibrio.	 For	

the	 LowS	 group,	 the	 corresponding	 genera	 consisted	 of	 Prevotella, 
Succiniclasticum, Ruminococcus, Treponema, YRC22, Fibrobacter, CF231,	
and Coprococcus	(Supporting	Information	Figure	S3).

A	total	of	95	and	114	genera	were	detected	in	the	HighF	and	LowF	
groups,	respectively.	Genera	with	abundances	greater	than	1%	in	the	
HighF	and	the	LowF	were	almost	identical,	including	5-	7N15,	CF231,	
Treponema, Oscillospira, Prevotella, Coprococcus, Methanobrevibacter,	
and Paludibacter.	There	were	 four	more	genera	 in	 the	HighF	com-
pared	 to	 LowF	 and	 they	were	Phascolarctobacterium, Anaerostipes 
Ruminobacter,	and	Ruminococcus	(Supporting	Information	Figure	S3).

3.3 | Diversity analysis within and among samples

Alpha	diversity	 (Patrick	et	al.,	 2009)	was	applied	 for	 analyzing	 the	
complexity of species diversity of a sample through several indi-
ces,	 including	 the	Chao1,	ACE,	Shannon	and	Simpson	 indices.	The	
sample	complexity	was	proportional	with	the	first	four	values,	and	
negatively	correlated	with	the	Simpson	value.	The	observed	species,	
Chao1	and	ACE	values	can	reflect	the	species	community	richness,	
and the rarefaction curve based on the three values can also be used 
to evaluate whether the produced data was sufficient to cover all 
species within the community. The Shannon and Simpson values 
reflected	the	species	diversity	of	the	community,	affected	by	both	
species	richness	and	species	evenness,	that	was	the	two	values	also	
consider the abundance of each species.

There were significant differences in both species richness and 
species	 evenness	 between	HighS	 and	 LowS.	 LowS	 samples	 had	 a	
higher	richness	and	species	evenness	than	HighS	samples	(Table	2).	
But there were no significant differences in richness or evenness be-
tween	HighF	and	LowF	(Table	3).

Beta diversity analysis was used to evaluate sample differences 
in	species	complexity.	PCoA	(Principal	coordinate	analysis)	was	used	
to exhibit the differences between the samples according to the 
matrix	of	beta	diversity	distances.	PCoA	analysis	and	the	clustering	
results showed that bacterial communities in the rumen fluid were 
separated	 from	 those	 in	 the	 feces	 (Figures	3	 and	 4).	 There	 were	
marked	differences	between	HighS	and	LowS	but	almost	no	differ-
ences	between	HighF	and	LowF	samples	(Figures	3	and	4).

3.4 | Significant differences analysis between 
groups of samples

Significant bacterial differences were identified at the level of phy-
lum,	 class,	 order,	 family,	 genus	 and	 species	 between	 HighS	 and	
LowS,	HighF	and	LowF.

At	 the	phylum	 level,	0.04%	and	0.10%	of	 the	 respective	phyla	
were	unclassified	 in	the	HighS	and	LowS	groups,	and	these	differ-
ences were not significant (p > 0.05).	Compared	to	low-	yield	rumen	
fluid	group,	the	high-	yield	group	was	significantly	enriched	for	the	
phylum Proteobacteria (p < 0.05).	 Abundances	 were	 significantly	
lower	for	phyla	Bacteroidetes,	SR1,	Verrucomicrobia,	Euryarchaeota,	
Planctomycetes,	 Synergistetes,	 and	Chloroflexi	 (p < 0.05)	 (Table	4).	
Among	 the	 fecal	 samples,	 the	 respective	 unclassified	 ratios	 for	

F IGURE  4 Weighted_unifrac cluster tree of rumen fluid and 
fecal samples. Note. The same color represents the samples in 
the same group. Short distance between samples represents high 
similarity.	HighS	and	LowS	represent	rumen	fluid	from	high-	yield	
and	low-	yield	cows,	respectively.	HighF	and	LowF	represent	groups	
of	high-	yield	and	low-	yield	cow	feces,	respectively
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HighF	and	LowF	were	0.32%	and	0.30%.	There	were	no	significant	
differences in the relative abundances of each phylum between 
HighF	and	LowF	(p > 0.05)	either.

At	the	genus	level,	the	relative	abundances	of	unclassified	gen-
era	 in	HighS	 and	 LowS	were	 44.8%	 and	 30.7%	 (p > 0.05),	 respec-
tively.	Then	we	analyzed	the	genera	whose	proportion	was	greater	

than	 or	 equal	 to	 0.1%	 in	 the	 rumen	 fluid	 and	 feces.	Compared	 to	
LowS,	 the	 high-	yield	 group	 had	 significantly	 fewer	 Prevotella in 
Bacteroidetes,	 Succiniclasticum	 in	 Firmicutes,	 Ruminococcus in 
Firmicutes,	 Coprococcus	 in	 Firmicutes,	 YRC22	 in	 Bacteroidetes,	
CF231	 in	 Bacteroidetes,	 02d06	 in	 Firmicutes,	 Anaeroplasma in 
Tenericutes,	 Selenomonas	 in	 Firmicutes	 and	 Ruminobacter in 

TABLE  4 The significant bacterial differences in rumen fluid at the level of phylum

Phylum Mean (HighS) Std.err (HighS) Mean (LowS) Std.err (LowS) p- vlaue FDR

Bacteroidetes 43.72 3.01 58.00 1.25 0.003 0.010

Proteobacteria 33.21 4.73 11.40 1.27 0.001 0.010

SR1 0.26 0.09 0.76 0.11 0.002 0.010

Verrucomicrobia 0.18 0.07 0.60 0.14 0.012 0.031

Euryarchaeota 0.10 0.02 0.22 0.03 0.008 0.024

Planctomycetes 0.04 0.01 0.11 0.01 0.003 0.010

Synergistetes 0.02 0.01 0.05 0.00 0.002 0.010

Chloroflexi 0.01 0.00 0.04 0.01 0.002 0.010

Note.	HighS	represents	for	rumen	fluid	of	high-	production	cows.	LowS	represents	for	rumen	fluid	of	low-	production	cows.	Metastats	is	used	for	a	two	
group comparison study. If p	value	is	less	than	0.05,	there	is	significant	difference	in	alpha	diversity	between	the	two	groups.

F IGURE  5  (a)	The	difference	of	
Prevotella	in	rumen	fluid	between	high-	
production	cows	and	low-	production	
cows.	(b)	The	taxonomic	distribution	of	
genera differing significantly in abundance 
among rumen fluid samples. Note.	HighS	
represents	for	rumen	fluid	of	high-	
production	cows.	LowS	represents	for	
rumen	fluid	of	low-	production	cows
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Proteobacteria (p < 0.05).	 The	 HighS	 group	 was	 significantly	 en-
riched for Butyrivibrio	 in	 Firmicutes,	Lachnospira	 in	 Firmicutes	 and	
Dialister	in	Firmicutes	(p < 0.05,	Figure	5a,b).

There were no significant differences in enrichment for unclassi-
fied genera (p > 0.05)	between	the	HighF	and	LowF	groups,	(64.68%	
and	64.51%,	respectively).	Compared	to	LowF,	the	high-	yield	group	
was significantly enriched for genera 5-7N15,	Dorea,	Sutterella,	and	
Anaeroplasma (p < 0.05)	among	the	classified	genera	(Figure	6).

3.5 | Metabolic profiling

The	PLS-	DA	model	showed	a	clear	separation	of	samples	between	
high-	yield	and	low-	yield	dairy	cows	(Figure	7).	The	most	discriminant	
metabolites were selected by filtering for fold changes of >1.2 or 
<0.8,	simultaneous	with	q-	value	of	<0.05	and	vip	of	>1.0.

A	 total	 of	 92	 discriminant	 metabolites	 were	 identified	 be-
tween	 high-	production	 and	 low-	production	 cows.	 Compared	

with	 low-	production	 dairy	 cows,	 totally	 10	 differential	 me-
tabolites	 were	 found	 to	 be	 up-	regulated	 in	 high-	production	
dairy	 cows,	 including	 6alpha-	Fluoropregn-	4-	ene-	3,20-	dione,	
3-	Octaprenyl-	4-	hydroxybenzoate,	 disopyramide,	 compound	 III(S),	
1,2-	Dimyristyl-	sn-	glycerol,	 7,10,13,16-	Docosatetraenoic	 acid,	 fer-
rous	 lactate,	 6-	Deoxyerythronolide	 B,	 vitamin	 D2,	 and	 L-	Olivosyl-	
oleandolide	(Figure	8a,b).	And	most	abundant	changes	were	related	to	
metabolic	pathways,	involving	biosynthesis	of	unsaturated	fatty	acids,	
steroids,	ubiquinone	and	other	terpenoid-	quinones,	and	biosynthesis	
of	12-	,	14-	,	and	16-	membered	macrolides	(Table	5).	A	total	of	82	differ-
ent	metabolites	were	found	to	be	down-	regulated	in	high-	yield	cows	
compared	to	low-	yield	cows.	Detailed	information	of	these	metabolites	
and their corresponding metabolic pathways are presented in Table 6.

4  | DISCUSSION

In	agreement	with	other	previous	studies,	the	three	dominant	phyla	
observed	in	all	rumen	fluid	samples	were	Bacteroidetes,	Firmicutes,	
and	Proteobacteria.	Contrasted	with	the	higher	 ratio	of	Firmicutes	
to	 Bacteroidetes	 in	 feces,	 the	 abundance	 of	 Firmicutes	 in	 rumen	
fluid	 was	 far	 less	 than	 that	 of	 Bacteroidetes,	 which	 was	 consist-
ent	with	other	studies	(Jami,	Israel,	Kotser,	&	Mizrahi,	2013).	It	was	
known that the fiber content in the rumen was far higher than that 
in	the	hindgut;	thus,	we	inferred	the	extra	Bacteroidetes	present	in	
rumen	fluid	may	be	enriched	for	cellulolytic	bacteria.	Analogous	dif-
ferences	were	observed	in	a	recent	study	on	goat	(Do	et	al.,	2018).	
The study indicated that increasing the members of Bacteroidetes 
to	keep	low	ratio	of	Firmicutes	versus	Bacteroidetes	in	goat	rumen	
resulted	 an	 increased	 lignocellulose	 digestion.	 More	 interestingly,	
the	 high-	production	 cows	 showed	 a	 significant	 increase	 in	 phy-
lum	Proteobacteria	compared	 to	 low-	production	cows.	 In	 fact,	 the	

F IGURE  6 Distribution of taxonomic compositions for 
significantly different genera in fecal samples. Note.	HighF	
represents	for	fecal	samples	of	high-	production	cows.	LowF	
represents	for	fecal	samples	of	low-	production	cows
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F IGURE  7 PLS-	DA	score	plot	of	rumen	metabolites	between	groups.	Note.	The	abscissa	represents	the	first	principal	component	PC1,	
the	ordinate	represents	the	second	principal	component	PC2,	and	the	model	parameter	R2	is	above	the	graph.	Each	point	in	the	plot	
corresponds	to	an	observation.	The	groups	are	shown	in	different	colors.	Group	1	represents	high-	production	cows.	Group	2	represents	
low-	production	cows
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abundance	 of	 Proteobacteria	 in	 the	 high-	production	 group	 was	
even	greater	than	that	of	Firmicutes,	demonstrating	a	reversed	re-
sult	with	the	low-	production	group	and	with	most	previous	studies	
(Jami	et	al.,	2014;	Jewell,	McCormick,	Odt,	Weimer,	&	Suen,	2015).	
However,	when	we	 further	analyzed	at	 the	genus	 level,	 any	genus	
within Proteobacteria that could account for the marked differences 
between	the	two	groups	was	detected,	which	could	be	explained	by	
the	high	unclassified	ratio	 (31%–45%).	Much	more	work	still	needs	
to	 be	 done	 to	 investigate	 the	 genus-	level	 difference	 in	 phylum	
Proteobacteria	between	the	high	and	low-	production	dairy	cows.

Among	 the	 identified	 genera,	 Prevotella represented the high-
est percentage in spite of the milk production. The abundance of 
Prevotella	in	the	high-	yield	group	(37.85%)	was	lower	than	that	in	the	
low-	yield	 group	 significantly	 (47.29%).	 Prevotella was found nega-
tively	associated	with	RFI	 in	dairy	cows	 (Jami	et	al.,	2014),	 and	 the	
same study also suggested there was a strong negative correlation 

(Pearson	R	=	−0.69,	p	=	 5	×	10−3)	between	Prevotella	and	milk-	fat	yield.	
Moreover,	a	study	on	Korean	Adolescents	showed	that	Prevotella was 
associated	with	triglycerides	(TG)	and	total	cholesterol	positively,	and	
ultimately	induced	obesity	(Hu	et	al.,	2015).	In	our	study,	we	did	not	
measure the milk fat ratio of the cows. But the low production cows 
were fatter than the high production cows generally.

The	 HighS	 group	 was	 significantly	 enriched	 for	 the	 genera	
Butyrivibrio,	 Lachnospira and Dialister	 when	 compared	 with	 low-	
yield group. The genera Butyrivibrio and Lachnospira both belong 
to	 the	Family	Lachnospiraceae.	 In	 the	 rumen,	 some	special	 strains	
of Butyrivibrio fibrisolvens	degrade	cellulose	completely	and	quickly.	
Lachnospira sp. are mostly involved with pectin degradation (Cotta & 
Forster,	2006).	Lima	et	al.	(2015)	revealed	a	positive	correlation	with	
Butyrivibrio	 abundance	 and	milk	 yield.	 Jami	 et	al.	 (2014)	 showed	 a	
positive correlation between Dialister and milk yield. Ruminococcus, 
Coprococcus and Succiniclasticum were suggested to have negative 

F IGURE  8  (a)	Heat	map	analysis	of	significant	differences	in	abundance	of	metabolites	in	negative	ion	mode.	(b)	Heat	map	analysis	of	
significant differences in abundance of metabolites in positive ion mode

TABLE  5 Discriminant	metabolites	with	up-	regulated	in	the	rumen	fluid	of	high-	production	dairy	cows	and	their	corresponding	metabolic	
pathways

Metabolic pathway Metabolite VIP fold_change q value

Biosynthesis	of	12-	,	14-		and	16-	membered	
macrolides

L-	Olivosyl-	oleandolide; 1.804 0.692 0.031

6-	Deoxyerythronolide	B; 2.783 0.397 0.019

Biosynthesis of unsaturated fatty acids 7,10,13,16-	Docosatetraenoic	acid 2.966 0.374 0.032

Steroid biosynthesis Vitamin D2 2.095 0.582 0.036

Ubiquinone	and	other	terpenoid-	quinone	
biosynthesis

3-	Octaprenyl-	4-	hydroxybenzoate 1.532 0.543 0.034

Biosynthesis of antibiotics L-	Olivosyl-	oleandolide; 1.804 0.692 0.031

6-	Deoxyerythronolide	B; 2.783 0.397 0.019
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connections	with	milk	production	(Jami	et	al.,	2014),	which	was	con-
sistent with our results. Very few studies referred to the other signif-
icant	bacteria	such	as	YRC22,	CF231	and	02d06,	all	with	completely	
unknown and unexplored functions in rumen physiology.

Compared	 to	 low-	production	dairy	cows,	pathway	analyses	 in-
dicated	 that	 most	 abundant	 up-	regulation	 changes	 in	 high-	yield	
cows were related to metabolic pathways involving biosynthesis 
of	 unsaturated	 fatty	 acids,	 steroid	 biosynthesis,	 ubiquinone	 and	
other	 terpenoid-	quinone	 biosynthesis.	 Boerman	 and	 Lock	 (2014)	

Metabolic pathway Metabolite VIP fold_change q value

Purine metabolism Hypoxanthine 2.845 2.343 0.012

Guanosine; 2.867 2.974 0.018

Riboflavin metabolism Riboflavin 1.884 1.482 0.021

Indole diterpene alkaloid 
biosynthesis

Terpendole E; 1.922 1.498 0.031

Glucosinolate	
biosynthesis

9-	Methylthiononanaldoxime; 2.687 2.983 0.019

Brassinosteroid 
biosynthesis

22alpha-	Hydroxy-	campest-	
4-	en-	3-	one

3.840 14.100 0.017

Terpenoid backbone 
biosynthesis

Isopentenyl phosphate; 3.386 6.262 0.017

All-	trans-	Hexaprenyl	
diphosphate;

2.653 2.184 0.014

Neuroactive	ligand-	
receptor interaction

N-	Arachidonyl	dopamine 2.831 2.515 0.017

Biosynthesis of type II 
polyketide products

15-	Demethoxy-	epsilon-	rhod
omycin;

2.682 2.429 0.044

Epsilon-	Rhodomycin	T; 2.658 3.818 0.025

Aclacinomycin	T 2.073 1.633 0.046

Carotenoid biosynthesis 4,4’-	Diapolycopenedial; 2.980 3.655 0.017

Biosynthesis of alkaloids 
derived from terpenoid 
and polyketide

Jervine; 3.338 6.084 0.012

Thiobinupharidine; 2.890 3.084 0.016

Pyrimidine metabolism Cytosine; 3.018 3.160 0.019

Arachidonic	acid	
metabolism

Prostaglandin E2 3.037 4.148 0.025

Porphyrin and 
chlorophyll metabolism

Protoporphyrin 2.098 1.879 0.048

Fatty	acid	degradation L-	Palmitoylcarnitine; 3.103 4.497 0.007

Steroid degradation Androsta-	1,4-	diene-	3,17-	
dione;

4.446 5.758 0.013

Puromycin biosynthesis N-	Acetylpuromycin; 2.512 2.196 0.016

Steroid hormone 
biosynthesis

Urocortisol 3.370 4.597 0.016

Naphthalene	
degradation

cis-	1,2-	Dihydroxy-	1,2-	
dihydro-	8-	
carboxynaphthalene;

2.155 1.631 0.036

Biosynthesis of 
antibiotics

Antibiotic	JI-	20B 3.551 9.685 0.029

Epsilon-	Rhodomycin	T; 2.658 3.818 0.025

N-	Acetylpuromycin; 2.512 2.196 0.016

Nebramycin	factor	4; 2.598 2.060 0.031

Aclacinomycin	T 2.073 1.633 0.046

Steroid biosynthesis 5-	Dehydroavenasterol; 3.654 11.265 0.023

Ubiquinone	and	other	
terpenoid-	quinone	
biosynthesis

All-	trans-	Hexaprenyl	
diphosphate;

2.653 2.184 0.014

TABLE  6 Discriminant metabolites 
with	down-	regulated	in	the	rumen	fluid	of	
high production dairy cows and their 
corresponding metabolic pathways
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suggested	unsaturated	fatty	acids	 (UFA)	treatments	supplemented	
at	2%	of	diet	DM	as	either	soybean	FA	distillate	or	soybean	oil	 in-
creased	 milk	 yield,	 but	 did	 not	 effectively	 reduce	 milk	 fat	 yield.	
Ubiquinone	had	been	suggested	to	play	an	important	role	in	the	mi-
tochondrial	generation	of	hydrogen	peroxide	 (Boveris,	Cadenas,	&	
Stoppani,	1976).	However,	the	metabolic	pathways	of	reduced	abun-
dance	metabolites	in	high-	production	dairy	cows	were	mainly	rele-
vant	to	nucleotide	metabolism,	energy	metabolism,	lipid	metabolism	
and biosynthesis of some antibiotics.

The microbiome interacted with the host immune system to reg-
ulate	metabolism	 by	 various	mechanisms:	 direct	 physical	 contact,	
production	of	metabolites,	and	shedding	of	structural	components	
(Zmora	at	al.,	2017).	These	affected	metabolic	homeostasis	by	local	
mucosal immune modulation and by remote alteration of metabolic 
organs,	 such	as	adipose	 tissue,	muscle,	 and	 the	 liver.	 It	was	a	pity	
that we did not detect immune indicators in this study. So we are 
planning to explore the differences in the blood immunity indices 
between	high-	production	and	low-	production	dairy	cows	in	the	fol-
lowing study.

5  | CONCLUSION

In	this	study,	significant	bacterial	differences	were	presented	between	
high-	yield	 and	 low-	yield	 dairy	 cows,	 which	 were	 mainly	 reflected	
by	 the	 relative	abundances	of	 some	special	bacteria.	Furthermore,	
there existed significant metabolic differences including biosynthe-
sis	of	unsaturated	fatty	acids,	steroid	biosynthesis,	energy	metabo-
lism,	fatty	acid	metabolism,	amino	acid	metabolism,	biosynthesis	of	
some	antibiotics,	etc.	between	the	two	groups.	However,	much	more	
work still needs to be done to identify the detailed differences in 
bacterial	abundances	between	high-	yield	and	low-	yield	dairy	cows.	
Accordingly,	 we	 can	 isolate	 specific	 beneficial	 dominant	 strains	 in	
high	production	cows	sequentially	 to	provide	material	 for	 carrying	
out microorganism mediated nutritional regulation.
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