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Abstract
Our aim was to simultaneously investigate the gut bacteria typical characteristic and 
conduct rumen metabolites profiling of high production dairy cows when compared 
to low-production dairy cows. The bacterial differences in rumen fluid and feces 
were identified by 16S rDNA gene sequencing. The metabolite differences were 
identified by metabolomics profiling with liquid chromatography mass spectrometry 
(LC-MS). The results indicated that the high-production dairy cows presented a lower 
rumen bacterial richness and species evenness when compared to low-production 
dairy cows. At the phylum level, the high-production cows increased the abundance 
of Proteobacteria and decreased the abundance of Bacteroidetes, SR1, 
Verrucomicrobia, Euryarchaeota, Planctomycetes, Synergistetes, and Chloroflexi sig-
nificantly (p < 0.05). At the genus level, the rumen fluid of the high-production group 
was significantly enriched for Butyrivibrio, Lachnospira, and Dialister (p < 0.05). 
Meanwhile, rumen fluid of high-production group was depleted for Prevotella, 
Succiniclasticum, Ruminococcu, Coprococcus, YRC22, CF231, 02d06, Anaeroplasma, 
Selenomonas, and Ruminobacter significantly (p < 0.05). A total of 92 discriminant me-
tabolites were identified between high-production cows and low-production cows. 
Compared to rumen fluid of low-production dairy cows, 10 differential metabolites 
were found up-regulated in rumen fluid of high-production dairy cows, including 
6alpha-Fluoropregn-4-ene-3,20-dione, 3-Octaprenyl-4-hydroxybenzoate, disopyra-
mide, compound III(S), 1,2-Dimyristyl-sn-glycerol, 7,10,13,16-Docosatetraenoic acid, 
ferrous lactate, 6-Deoxyerythronolide B, vitamin D2, L-Olivosyl-oleandolide. The 
remaining differential metabolites were found down-regulated obviously in high-
production cows. Metabolic pathway analyses indicated that most increased abun-
dances of rumen fluid metabolites of high-yield cows were related to metabolic 
pathways involving biosynthesis of unsaturated fatty acids, steroid biosynthesis, 
ubiquinone and other terpenoid-quinone biosynthesis. Most down-regulated meta-
bolic pathways were relevant to nucleotide metabolism, energy metabolism, lipid 
metabolism and biosynthesis of some antibiotics.
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1  | INTRODUC TION

Many studies showed that the gut microbiota play an important role 
on health, metabolism and immunity of the host recently (Amato 
et al., 2014; Ridaura et al., 2013; Trompette et al., 2014). The bo-
vine rumen harbors a symbiotic microbiota capable of converting 
indigestible plant mass into energy (Flint, Bayer, Rincon, Lamed, & 
White, 2008), which is of vital importance for production of milk 
and meat. Among this complex microbial community, 95% of the 
microorganisms are bacteria (Brulc et al., 2009). Jami, White, and 
Mizrahi (2014); recently identified the connections between the 
ratio of Firmicutes to Bacteroides and daily milk-fat yield. Variation 
in the rumen microbiome of dairy cattle has also been correlated 
with methane emission levels (Ross, Moate, Marett, Cocks, & Hayes, 
2013b), and metagenomic profiling of the rumen microbiome can 
actually be used to predict phenotypes relating to enteric methane 
gas production (Ross, Moate, Marett, Cocks, & Hayes, 2013a). These 
studies revealed connections between the gut microbial community 
and certain physiological host parameters, which can be applied on 
improving animal production by manipulation of relevant beneficial 
bacterial flora.

Some studies suggested correlations between rumen microbial 
groups and bovine feed efficiency traits (Carberry, Kenny, Han, 
McCabe, & Waters, 2012; Guan, Nkrumah, Basarab, & Moore, 2008; 
Hernandez-Sanabria et al., 2012). The relative proportion of se-
quences that were assigned to Prevotella appeared to be positively 
associated with high residual feed intake (RFI) in bulls, whereas an 
unidentified group within the order Bacteroidales was positively as-
sociated with low RFI in bulls (McCann et al., 2014). Lima et al. (2015) 
have characterized the rumen fluid microbiomes of prepartum and 
postpartum high-producing Holstein cows and revealed that some 
bacteria have strong correlations with milk production. Moreover, 
they built a multivariable regression model using bacterial taxa sig-
nificantly associated with average milk yield in the first 150 days 
postpartum to predict the weekly milk production; this microbiome-
predicted milk yield was significantly correlated with the actual 
weekly averages of milk production.

Additionally, an early study on mice observed that obese 
mice (ob/ob) exhibited a different ratio of the phyla Firmicutes to 
Bacteroidetes when compared with lean littermates (Ley et al., 
2005). This difference is not totally attributable to differences in 
food consumption, as a runted ob/ob mouse weighed less than the 
ob/ob littermates owing to reduced chow consumption, but still 
demonstrated a significantly greater percent body fat and ratio of 
Firmicutes to Bacteroidetes. Moreover, analogous differences have 
been observed in the distal gut microbiota of obese versus lean 
humans as well; the relative abundance of Bacteroidetes increases 

as obese individuals lose weight on either a fat- or a carbohydrate-
restricted low calorie diet. And the increase in Bacteroidetes was 
markedly relevant to weight loss but not to total caloric intake. (Ley, 
Turnbaugh, Klein, & Gordon, 2006). A later study by the same team 
demonstrated that the obesity-associated gut microbiome have in-
creased capacity for energy harvest by transplantation of lean and 
obese cecal microbiotas into germ-free wild-type mouse recipients 
(Turnbaugh et al., 2006)

However, there is still a lack of information investigating the 
gut bacterial profile of high-production dairy cows. In this work, 
we explored the bacterial differences in rumen fluid and feces from 
high-yield and low-yield dairy cows under the same diet, region and 
surroundings. Meanwhile, we investigated the metabolites differ-
ences in rumen fluid between these two groups as well. The aim 
of the study was to explore the rumen and fecal bacteria, and the 
rumen metabolite profiles of high-production dairy cows. Bacteria 
which are associated with high-production dairy cattle have the po-
tential to be cultured and applied as probiotics to improve the per-
formance of low-production dairy cattle.

2  | MATERIAL S AND METHODS

2.1 | Experimental animals and sample collection

We selected 22 Holstein dairy cows, with 11 high-yield and 11 
low-yield cows; 11 of each were matched as pairs, and each pair of 
cows was reared under the same diet regimes, feeding environment, 
and were paired for similar age, parity and nearing lactation days 
(Table 1) on the aote dairy farm in Qingdao. Cows were fed twice 
(05:00 hr and 17:00 hr) and milked twice daily; all cows had free ac-
cess to clean water.

Representative rumen fluid samples were obtained from all Holstein 
cows via the cow’s mouth with the oro-ruminal sampling device within 
two hours before morning feeding. Fecal samples were acquired by the 
rectum pick dung method. All samples were immediately placed into 
liquid nitrogen, and were transferred to laboratory for −80°C storage.

The ethics committee of Shandong agriculture university ap-
proved the study (SDAU2015-18).

2.2 | Experimental procedures for 16S rDNA  
sequencing

The samples were slowly thawed at 4°C. Total DNA was extracted 
from the rumen fluid and fecal samples using the Stool DNA Isolation 
Kit (Tiangen, Beijing, China). DNA samples were quantified, using a 
Nanodrop spectrophotometer (Nyxor Biotech, Paris, France), and 
then transferred to BGI Genomics for V4 region of the 16S rDNA 
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gene sequencing with PE250 Miseq. The PCR primer used for 16S 
rDNA amplicon libraries was 515F-806R.

2.3 | Bioinformatics analysis for 16S rDNA  
sequencing

The raw data were filtered to eliminate the adapter pollution and 
low quality to obtain clean reads (Douglas et al., 2014). Truncation 
of sequence reads not having an average quality of 20 over a 
30 bp sliding window based on the Phred algorithm, and trimmed 
reads having less than 75% of their original length, as well as its 
paired read, were removed. Then paired-end reads with over-
lap were merged into tags by FLASH (Magoc & Salzberg, 2011) 
(Fast Length Adjustment of Short reads, v1.2.11). Tags were clus-
tered to OTU at 97% sequence similarity by scripts of software 
USEARCH (v7.0.1090) (Edgar, 2013). Chimeras were filtered out by 
using UCHIME (v4.2.40) (Edgar, Haas, Clemente, Quince, & Knight, 
2011). OTU representative sequences were taxonomically classi-
fied using the Ribosomal Database Project (RDP) Classifier v.2.2 
(Cole et al., 2014) trained on the Greengenes database (V201305) 
(DeSantis et al., 2006) using 0.5 confidence values as cutoff. OTUs 
were filtered to remove unassigned OTUs.

VennDiagram and package ‘ade4’ of software R (v3.0.3) were 
used separately in Venn diagram and OTU PCA analysis. The tags 
number of each taxonomic rank (phylum, class, order, family, genus 
and species) or OTU in different samples were summarized in a pro-
filing table. The species with abundances less than 0.5% were classi-
fied into ‘others’ in other ranks for all samples.

The representative sequences were aligned against the Silva core 
set(Silva_108_core_aligned_seqs), using PyNAST by ‘align_seqs.py’. 
The indices of Alpha diversity were calculated by Mothur (v1.31.2), 
and the corresponding rarefaction curves were drawn by R (v3.0.3). 
Wilcoxon Rank-Sum Test was used for comparison of two groups, 
using the alpha diversity indices. Beta diversity analysis was done 
by software QIIME(v1.80) (Caporaso et al., 2010). PCoA (Principal 

coordinate analysis) is used to exhibit the differences between 
the samples according to the matrix of beta diversity distance. 
Unweighted Pair Group Method with Arithmetic mean (UPGMA) is 
a type of hierarchical clustering method using average linkage and 
was used to interpreting the distance matrix produced by beta di-
versity. To measure the robustness of this result to sequencing ef-
fort, we perform a jackknifing analysis, wherein 75% of the smallest 
sample sequences from each sample are chosen at random, and the 

TABLE  1 Fundamental information of cows in experiment

High-yield cows Low-yield cows

Cow Milk yield (kg) Parity Lactation days Cow Milk yield (kg) Parity Lactation days

9,052 38 3 182 10,067 18 3 168

10,019 38 2 216 11,063 21 2 224

10,091 46 3 119 10,045 27 3 91

11,030 48 2 93 11,091 28 2 72

11,089 31 1 489 11,093 18 1 505

12,006 37 1 413 12,002 24 1 441

12,017 42 1 405 12,010 27 1 387

12,031 40 1 223 12,040 25 1 257

12,073 40 1 186 12,068 25 1 191

12,083 41 1 214 12,092 28 1 201

13,021 35 1 64 13,042 20.7 1 54

F IGURE  1 PCA analyses of bacteria in rumen fluid and fecal 
samples. Note: Unweighted UniFrac was used to create the PCA. 
X-axis, 1st principal component; Y-axis, 2nd principal component. 
The number in brackets represents the contributions of principal 
components to differences among samples. A dot represents each 
sample, and different colors represent different groups. HighS and 
LowS represent rumen fluid from high-yield and low-yield cows, 
respectively. HighF and LowF represent groups of high-yield and 
low-yield cow feces, respectively
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resulting UPGMA tree from this subset of data is compared with the 
tree representing the entire available data set by QIIME(v1.80). This 
process is repeated with 100 random subsets of data, and the tree 
nodes which prove more consistent across jackknifed datasets are 
deemed more robust. And the figure is drawn by software R(v3.0.3).

The abundance differences in microbial communities between 
samples were obtained using statistical methods, and FDR (false dis-
covery rate) was adopted to assess the significance of differences. 
Metastats (http://metastats.cbcb.umd.edu/) and R (v3.0.3) were 
used to determine which taxonomic groups were significantly differ-
ent between groups of samples. We adjusted the obtained p-value 
by a Benjamini–-Hochberg false discovery rate correction (func-
tion ‘p.adjust’ in the stats package of R (v3.0.3)) (James, Niranjan, & 
Mihai, 2009).

2.4 | Metabolomics profiling with liquid 
chromatography mass spectrometry (LC-MS)

2.4.1 | Metabolites extraction

Metabolites extraction is achieved by organic solvent to precipitate 
protein (Sarafian et al., 2014). A quantity of 100 μl liquid sample with 
micropipette was plunged into 96-well plate. 300 μl isopropanol 
(−20°C) was added to the well above and vortex mixed and then 
stored overnight at −20°C. Centrifuged at 14,000g for 20 min at 4°C 
and collected supernatants to new tube until LC-MS analysis.

QC: Pooling of sample supernatants (5 μl from every sample).

2.4.2 | Bioinformatics analysis for LC-MS

For metabolomics profiling, we used Xevo G2-XS QTOF (Waters, 
U.K.) to detect metabolites in the samples. Progenesis QI software 

(Waters, U.K. http://www.nonlinear.com/progenesis/qi/) was used 
for the preprocessing and identification steps. Each detected meta-
bolic feature was normalized to the QC sample using LOESS Signal 
Correction (LSC). The correction effect is evaluated by RSD analysis 
and PCA analysis. The stability of the analytical system is evaluated 
by intensity distribution of QC samples. Ions with no signal(intensity 
equals 0) in more than 80% samples of any group are discarded. 
The above ions with RSD <30% are included for further analysis. 
All filtered metabolomics data were searched against the KEGG da-
tabase. For statistics analysis, we used multivariate analysis (PCA/
PLS-DA) and univariate analysis (FDR/Fold change) to gain differen-
tial ions. Cluster analysis was generated using the ‘pheatmap’ pack-
age in R (v3.0.3). Pathway analysis was performed through the KEGG 
database.

3  | RESULTS

3.1 | Sequencing quality

A total of 3,214,190 paired reads were retained with an average of 
73,049 reads per sample. A total of 3,183,371 tags were obtained, 
with 72,349 tags per sample on average and an average length of 
252 bp.

The rarefaction curve based on Observed species value, Chao1 
value and ACE values suggest all samples produced sufficient data 
(Supporting Information, Figure S1).

3.2 | OTU classification and statistics

Based on the OTU abundances, OTUs of each group were listed. The 
number of OTUs found in HighS, LowS, HighF, and LowF were 2,329, 
2,592, 2,265, and 2,574, respectively. A total of 1,929 OTUs were 

F IGURE  2 The taxonomic composition distribution in rumen fluid and fecal samples at the phylum level. Note. Abscissa represent 
samples of rumen fluid or feces and each serial number represent a different cow. S represents rumen fluid samples. F represents fecal 
samples. The vertical axis represent relative abundance of each phylum

http://metastats.cbcb.umd.edu/
http://www.nonlinear.com/progenesis/qi/
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shared between HighS and LowS; similarly, 1851 OTUs were shared 
between HighF and LowF (Supporting Information Figure S2).

The OTU composition was distinctly different between HighS 
and LowS, while there was no significant difference between HighF 
and LowF (Figure 1).

For the rumen fluid samples, a total of 20 phyla were identi-
fied, and the predominant phyla the species of whose abundance 
was more than 1% were Bacteroidetes, Proteobacteria, Firmicutes, 
Spirochaetes, and Cyanobacteria (Figure 2). As for the fecal sam-
ples, a total of 22 phyla were identified, and the predominant phyla 

Alpha Mean (HighS) SD (HighS) Mean (LowS) SD (LowS) p-vaule

sobs 870.56 281.37 1,326.44 109.46 0.00049

chao 1,019.7 302.19 1,442.51 83.04 0.00049

Ace 1,028.4 306.66 1,456.25 85.62 0.00049

shannon 3.36 0.78 5.21 0.28 0.00016

simpson 0.19 0.08 0.02 0.01 0.00016

Note. HighS represents for rumen fluid of high-production cows. LowS represents for rumen fluid of 
low-production cows. Wilcoxon Rank-Sum Test is used for two group comparation. If p value is less 
than 0.05, there is significant difference in alpha diversity between the two groups.

TABLE  2 Alpha diversity indices of 
rumen fluid between high-production 
dairy cows and low-production dairy cows

Alpha Mean (HighF) SD (HighF) Mean (LowF) SD (LowF) p-vaule

sobs 1,056.67 143.78 1,209.78 195.99 0.09391

chao 1,170.56 150.69 1,291.75 186.44 0.16153

ace 1,182.41 156.08 1,309.81 188.94 0.11349

shannon 5.16 0.25 5.25 0.28 0.34011

simpson 0.02 0.01 0.02 0.01 0.48943

Note. HighF represents for fecal samples of high-production cows. LowF represents for fecal sam-
ples of low-production cows. Wilcoxon Rank-Sum Test is used for a two group comparison. If p value 
is less than 0.05, there is significant difference in alpha diversity between the two groups.

TABLE  3 Alpha diversity indices of 
fecal samples between high-production 
dairy cows and low-production dairy cows

F IGURE  3 Weighted unifrac PCoA 
analyses of bacteria in rumen fluid and 
fecal samples. Note. Green triangles 
represent rumen fluid of high-sproduction 
cows. Blue dots represent rumen 
fluid of low-production cows. Red 
triangles represent fecal samples of 
high-production cows. Orange squares 
represent fecal samples of low-production 
cows
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were Bacteroidetes, Firmicutes, Spirochaetes, Proteobacteria, 
Euryarchaeota and Tenericutes (Figure 2).

At the genus level, a total of 100 and 96 genera were detected in the 
HighS and LowS groups, respectively. Genera with abundances greater 
than 1% in the HighS group included Prevotella, Lachnobacterium, 
Succiniclasticum, Treponema, Ruminococcus, and Butyrivibrio. For 

the LowS group, the corresponding genera consisted of Prevotella, 
Succiniclasticum, Ruminococcus, Treponema, YRC22, Fibrobacter, CF231, 
and Coprococcus (Supporting Information Figure S3).

A total of 95 and 114 genera were detected in the HighF and LowF 
groups, respectively. Genera with abundances greater than 1% in the 
HighF and the LowF were almost identical, including 5-7N15, CF231, 
Treponema, Oscillospira, Prevotella, Coprococcus, Methanobrevibacter, 
and Paludibacter. There were four more genera in the HighF com-
pared to LowF and they were Phascolarctobacterium, Anaerostipes 
Ruminobacter, and Ruminococcus (Supporting Information Figure S3).

3.3 | Diversity analysis within and among samples

Alpha diversity (Patrick et al., 2009) was applied for analyzing the 
complexity of species diversity of a sample through several indi-
ces, including the Chao1, ACE, Shannon and Simpson indices. The 
sample complexity was proportional with the first four values, and 
negatively correlated with the Simpson value. The observed species, 
Chao1 and ACE values can reflect the species community richness, 
and the rarefaction curve based on the three values can also be used 
to evaluate whether the produced data was sufficient to cover all 
species within the community. The Shannon and Simpson values 
reflected the species diversity of the community, affected by both 
species richness and species evenness, that was the two values also 
consider the abundance of each species.

There were significant differences in both species richness and 
species evenness between HighS and LowS. LowS samples had a 
higher richness and species evenness than HighS samples (Table 2). 
But there were no significant differences in richness or evenness be-
tween HighF and LowF (Table 3).

Beta diversity analysis was used to evaluate sample differences 
in species complexity. PCoA (Principal coordinate analysis) was used 
to exhibit the differences between the samples according to the 
matrix of beta diversity distances. PCoA analysis and the clustering 
results showed that bacterial communities in the rumen fluid were 
separated from those in the feces (Figures 3 and 4). There were 
marked differences between HighS and LowS but almost no differ-
ences between HighF and LowF samples (Figures 3 and 4).

3.4 | Significant differences analysis between 
groups of samples

Significant bacterial differences were identified at the level of phy-
lum, class, order, family, genus and species between HighS and 
LowS, HighF and LowF.

At the phylum level, 0.04% and 0.10% of the respective phyla 
were unclassified in the HighS and LowS groups, and these differ-
ences were not significant (p > 0.05). Compared to low-yield rumen 
fluid group, the high-yield group was significantly enriched for the 
phylum Proteobacteria (p < 0.05). Abundances were significantly 
lower for phyla Bacteroidetes, SR1, Verrucomicrobia, Euryarchaeota, 
Planctomycetes, Synergistetes, and Chloroflexi (p < 0.05) (Table 4). 
Among the fecal samples, the respective unclassified ratios for 

F IGURE  4 Weighted_unifrac cluster tree of rumen fluid and 
fecal samples. Note. The same color represents the samples in 
the same group. Short distance between samples represents high 
similarity. HighS and LowS represent rumen fluid from high-yield 
and low-yield cows, respectively. HighF and LowF represent groups 
of high-yield and low-yield cow feces, respectively
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HighF and LowF were 0.32% and 0.30%. There were no significant 
differences in the relative abundances of each phylum between 
HighF and LowF (p > 0.05) either.

At the genus level, the relative abundances of unclassified gen-
era in HighS and LowS were 44.8% and 30.7% (p > 0.05), respec-
tively. Then we analyzed the genera whose proportion was greater 

than or equal to 0.1% in the rumen fluid and feces. Compared to 
LowS, the high-yield group had significantly fewer Prevotella in 
Bacteroidetes, Succiniclasticum in Firmicutes, Ruminococcus in 
Firmicutes, Coprococcus in Firmicutes, YRC22 in Bacteroidetes, 
CF231 in Bacteroidetes, 02d06 in Firmicutes, Anaeroplasma in 
Tenericutes, Selenomonas in Firmicutes and Ruminobacter in 

TABLE  4 The significant bacterial differences in rumen fluid at the level of phylum

Phylum Mean (HighS) Std.err (HighS) Mean (LowS) Std.err (LowS) p-vlaue FDR

Bacteroidetes 43.72 3.01 58.00 1.25 0.003 0.010

Proteobacteria 33.21 4.73 11.40 1.27 0.001 0.010

SR1 0.26 0.09 0.76 0.11 0.002 0.010

Verrucomicrobia 0.18 0.07 0.60 0.14 0.012 0.031

Euryarchaeota 0.10 0.02 0.22 0.03 0.008 0.024

Planctomycetes 0.04 0.01 0.11 0.01 0.003 0.010

Synergistetes 0.02 0.01 0.05 0.00 0.002 0.010

Chloroflexi 0.01 0.00 0.04 0.01 0.002 0.010

Note. HighS represents for rumen fluid of high-production cows. LowS represents for rumen fluid of low-production cows. Metastats is used for a two 
group comparison study. If p value is less than 0.05, there is significant difference in alpha diversity between the two groups.

F IGURE  5  (a) The difference of 
Prevotella in rumen fluid between high-
production cows and low-production 
cows. (b) The taxonomic distribution of 
genera differing significantly in abundance 
among rumen fluid samples. Note. HighS 
represents for rumen fluid of high-
production cows. LowS represents for 
rumen fluid of low-production cows
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Proteobacteria (p < 0.05). The HighS group was significantly en-
riched for Butyrivibrio in Firmicutes, Lachnospira in Firmicutes and 
Dialister in Firmicutes (p < 0.05, Figure 5a,b).

There were no significant differences in enrichment for unclassi-
fied genera (p > 0.05) between the HighF and LowF groups, (64.68% 
and 64.51%, respectively). Compared to LowF, the high-yield group 
was significantly enriched for genera 5-7N15, Dorea, Sutterella, and 
Anaeroplasma (p < 0.05) among the classified genera (Figure 6).

3.5 | Metabolic profiling

The PLS-DA model showed a clear separation of samples between 
high-yield and low-yield dairy cows (Figure 7). The most discriminant 
metabolites were selected by filtering for fold changes of >1.2 or 
<0.8, simultaneous with q-value of <0.05 and vip of >1.0.

A total of 92 discriminant metabolites were identified be-
tween high-production and low-production cows. Compared 

with low-production dairy cows, totally 10 differential me-
tabolites were found to be up-regulated in high-production 
dairy cows, including 6alpha-Fluoropregn-4-ene-3,20-dione, 
3-Octaprenyl-4-hydroxybenzoate, disopyramide, compound III(S), 
1,2-Dimyristyl-sn-glycerol, 7,10,13,16-Docosatetraenoic acid, fer-
rous lactate, 6-Deoxyerythronolide B, vitamin D2, and L-Olivosyl-
oleandolide (Figure 8a,b). And most abundant changes were related to 
metabolic pathways, involving biosynthesis of unsaturated fatty acids, 
steroids, ubiquinone and other terpenoid-quinones, and biosynthesis 
of 12-, 14-, and 16-membered macrolides (Table 5). A total of 82 differ-
ent metabolites were found to be down-regulated in high-yield cows 
compared to low-yield cows. Detailed information of these metabolites 
and their corresponding metabolic pathways are presented in Table 6.

4  | DISCUSSION

In agreement with other previous studies, the three dominant phyla 
observed in all rumen fluid samples were Bacteroidetes, Firmicutes, 
and Proteobacteria. Contrasted with the higher ratio of Firmicutes 
to Bacteroidetes in feces, the abundance of Firmicutes in rumen 
fluid was far less than that of Bacteroidetes, which was consist-
ent with other studies (Jami, Israel, Kotser, & Mizrahi, 2013). It was 
known that the fiber content in the rumen was far higher than that 
in the hindgut; thus, we inferred the extra Bacteroidetes present in 
rumen fluid may be enriched for cellulolytic bacteria. Analogous dif-
ferences were observed in a recent study on goat (Do et al., 2018). 
The study indicated that increasing the members of Bacteroidetes 
to keep low ratio of Firmicutes versus Bacteroidetes in goat rumen 
resulted an increased lignocellulose digestion. More interestingly, 
the high-production cows showed a significant increase in phy-
lum Proteobacteria compared to low-production cows. In fact, the 

F IGURE  6 Distribution of taxonomic compositions for 
significantly different genera in fecal samples. Note. HighF 
represents for fecal samples of high-production cows. LowF 
represents for fecal samples of low-production cows
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F IGURE  7 PLS-DA score plot of rumen metabolites between groups. Note. The abscissa represents the first principal component PC1, 
the ordinate represents the second principal component PC2, and the model parameter R2 is above the graph. Each point in the plot 
corresponds to an observation. The groups are shown in different colors. Group 1 represents high-production cows. Group 2 represents 
low-production cows
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abundance of Proteobacteria in the high-production group was 
even greater than that of Firmicutes, demonstrating a reversed re-
sult with the low-production group and with most previous studies 
(Jami et al., 2014; Jewell, McCormick, Odt, Weimer, & Suen, 2015). 
However, when we further analyzed at the genus level, any genus 
within Proteobacteria that could account for the marked differences 
between the two groups was detected, which could be explained by 
the high unclassified ratio (31%–45%). Much more work still needs 
to be done to investigate the genus-level difference in phylum 
Proteobacteria between the high and low-production dairy cows.

Among the identified genera, Prevotella represented the high-
est percentage in spite of the milk production. The abundance of 
Prevotella in the high-yield group (37.85%) was lower than that in the 
low-yield group significantly (47.29%). Prevotella was found nega-
tively associated with RFI in dairy cows (Jami et al., 2014), and the 
same study also suggested there was a strong negative correlation 

(Pearson R = −0.69, p =  5 × 10−3) between Prevotella and milk-fat yield. 
Moreover, a study on Korean Adolescents showed that Prevotella was 
associated with triglycerides (TG) and total cholesterol positively, and 
ultimately induced obesity (Hu et al., 2015). In our study, we did not 
measure the milk fat ratio of the cows. But the low production cows 
were fatter than the high production cows generally.

The HighS group was significantly enriched for the genera 
Butyrivibrio, Lachnospira and Dialister when compared with low-
yield group. The genera Butyrivibrio and Lachnospira both belong 
to the Family Lachnospiraceae. In the rumen, some special strains 
of Butyrivibrio fibrisolvens degrade cellulose completely and quickly. 
Lachnospira sp. are mostly involved with pectin degradation (Cotta & 
Forster, 2006). Lima et al. (2015) revealed a positive correlation with 
Butyrivibrio abundance and milk yield. Jami et al. (2014) showed a 
positive correlation between Dialister and milk yield. Ruminococcus, 
Coprococcus and Succiniclasticum were suggested to have negative 

F IGURE  8  (a) Heat map analysis of significant differences in abundance of metabolites in negative ion mode. (b) Heat map analysis of 
significant differences in abundance of metabolites in positive ion mode

TABLE  5 Discriminant metabolites with up-regulated in the rumen fluid of high-production dairy cows and their corresponding metabolic 
pathways

Metabolic pathway Metabolite VIP fold_change q value

Biosynthesis of 12-, 14- and 16-membered 
macrolides

L-Olivosyl-oleandolide; 1.804 0.692 0.031

6-Deoxyerythronolide B; 2.783 0.397 0.019

Biosynthesis of unsaturated fatty acids 7,10,13,16-Docosatetraenoic acid 2.966 0.374 0.032

Steroid biosynthesis Vitamin D2 2.095 0.582 0.036

Ubiquinone and other terpenoid-quinone 
biosynthesis

3-Octaprenyl-4-hydroxybenzoate 1.532 0.543 0.034

Biosynthesis of antibiotics L-Olivosyl-oleandolide; 1.804 0.692 0.031

6-Deoxyerythronolide B; 2.783 0.397 0.019
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connections with milk production (Jami et al., 2014), which was con-
sistent with our results. Very few studies referred to the other signif-
icant bacteria such as YRC22, CF231 and 02d06, all with completely 
unknown and unexplored functions in rumen physiology.

Compared to low-production dairy cows, pathway analyses in-
dicated that most abundant up-regulation changes in high-yield 
cows were related to metabolic pathways involving biosynthesis 
of unsaturated fatty acids, steroid biosynthesis, ubiquinone and 
other terpenoid-quinone biosynthesis. Boerman and Lock (2014) 

Metabolic pathway Metabolite VIP fold_change q value

Purine metabolism Hypoxanthine 2.845 2.343 0.012

Guanosine; 2.867 2.974 0.018

Riboflavin metabolism Riboflavin 1.884 1.482 0.021

Indole diterpene alkaloid 
biosynthesis

Terpendole E; 1.922 1.498 0.031

Glucosinolate 
biosynthesis

9-Methylthiononanaldoxime; 2.687 2.983 0.019

Brassinosteroid 
biosynthesis

22alpha-Hydroxy-campest-
4-en-3-one

3.840 14.100 0.017

Terpenoid backbone 
biosynthesis

Isopentenyl phosphate; 3.386 6.262 0.017

All-trans-Hexaprenyl 
diphosphate;

2.653 2.184 0.014

Neuroactive ligand-
receptor interaction

N-Arachidonyl dopamine 2.831 2.515 0.017

Biosynthesis of type II 
polyketide products

15-Demethoxy-epsilon-rhod
omycin;

2.682 2.429 0.044

Epsilon-Rhodomycin T; 2.658 3.818 0.025

Aclacinomycin T 2.073 1.633 0.046

Carotenoid biosynthesis 4,4’-Diapolycopenedial; 2.980 3.655 0.017

Biosynthesis of alkaloids 
derived from terpenoid 
and polyketide

Jervine; 3.338 6.084 0.012

Thiobinupharidine; 2.890 3.084 0.016

Pyrimidine metabolism Cytosine; 3.018 3.160 0.019

Arachidonic acid 
metabolism

Prostaglandin E2 3.037 4.148 0.025

Porphyrin and 
chlorophyll metabolism

Protoporphyrin 2.098 1.879 0.048

Fatty acid degradation L-Palmitoylcarnitine; 3.103 4.497 0.007

Steroid degradation Androsta-1,4-diene-3,17-
dione;

4.446 5.758 0.013

Puromycin biosynthesis N-Acetylpuromycin; 2.512 2.196 0.016

Steroid hormone 
biosynthesis

Urocortisol 3.370 4.597 0.016

Naphthalene 
degradation

cis-1,2-Dihydroxy-1,2-
dihydro-8-
carboxynaphthalene;

2.155 1.631 0.036

Biosynthesis of 
antibiotics

Antibiotic JI-20B 3.551 9.685 0.029

Epsilon-Rhodomycin T; 2.658 3.818 0.025

N-Acetylpuromycin; 2.512 2.196 0.016

Nebramycin factor 4; 2.598 2.060 0.031

Aclacinomycin T 2.073 1.633 0.046

Steroid biosynthesis 5-Dehydroavenasterol; 3.654 11.265 0.023

Ubiquinone and other 
terpenoid-quinone 
biosynthesis

All-trans-Hexaprenyl 
diphosphate;

2.653 2.184 0.014

TABLE  6 Discriminant metabolites 
with down-regulated in the rumen fluid of 
high production dairy cows and their 
corresponding metabolic pathways
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suggested unsaturated fatty acids (UFA) treatments supplemented 
at 2% of diet DM as either soybean FA distillate or soybean oil in-
creased milk yield, but did not effectively reduce milk fat yield. 
Ubiquinone had been suggested to play an important role in the mi-
tochondrial generation of hydrogen peroxide (Boveris, Cadenas, & 
Stoppani, 1976). However, the metabolic pathways of reduced abun-
dance metabolites in high-production dairy cows were mainly rele-
vant to nucleotide metabolism, energy metabolism, lipid metabolism 
and biosynthesis of some antibiotics.

The microbiome interacted with the host immune system to reg-
ulate metabolism by various mechanisms: direct physical contact, 
production of metabolites, and shedding of structural components 
(Zmora at al., 2017). These affected metabolic homeostasis by local 
mucosal immune modulation and by remote alteration of metabolic 
organs, such as adipose tissue, muscle, and the liver. It was a pity 
that we did not detect immune indicators in this study. So we are 
planning to explore the differences in the blood immunity indices 
between high-production and low-production dairy cows in the fol-
lowing study.

5  | CONCLUSION

In this study, significant bacterial differences were presented between 
high-yield and low-yield dairy cows, which were mainly reflected 
by the relative abundances of some special bacteria. Furthermore, 
there existed significant metabolic differences including biosynthe-
sis of unsaturated fatty acids, steroid biosynthesis, energy metabo-
lism, fatty acid metabolism, amino acid metabolism, biosynthesis of 
some antibiotics, etc. between the two groups. However, much more 
work still needs to be done to identify the detailed differences in 
bacterial abundances between high-yield and low-yield dairy cows. 
Accordingly, we can isolate specific beneficial dominant strains in 
high production cows sequentially to provide material for carrying 
out microorganism mediated nutritional regulation.
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