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Abstract: Facial micro expressions are brief, spontaneous, and crucial emotions deep inside the
mind, reflecting the actual thoughts for that moment. Humans can cover their emotions on a large
scale, but their actual intentions and emotions can be extracted at a micro-level. Micro expressions
are organic when compared with macro expressions, posing a challenge to both humans, as well as
machines, to identify. In recent years, detection of facial expressions are widely used in commercial
complexes, hotels, restaurants, psychology, security, offices, and education institutes. The aim and
motivation of this paper are to provide an end-to-end architecture that accurately detects the actual
expressions at the micro-scale features. However, the main research is to provide an analysis of the
specific parts that are crucial for detecting the micro expressions from a face. Many states of the
art approaches have been trained on the micro facial expressions and compared with our proposed
Lossless Attention Residual Network (LARNet) approach. However, the main research on this is
to provide analysis on the specific parts that are crucial for detecting the micro expressions from a
face. Many CNN-based approaches extracts the features at local level which digs much deeper into
the face pixels. However, the spatial and temporal information extracted from the face is encoded in
LARNet for a feature fusion extraction on specific crucial locations, such as nose, cheeks, mouth, and
eyes regions. LARNet outperforms the state-of-the-art methods with a slight margin by accurately
detecting facial micro expressions in real-time. Lastly, the proposed LARNet becomes accurate and
better by training with more annotated data.

Keywords: facial micro expressions; LARNet; microscaling level; feature extraction; lossless
attention network

1. Introduction

Facial expressions are one of the most important aspects of human communication,
especially in commercial spaces [1]. These expressions contribute to communicating and
understanding not only the emotional take of a person but also the person’s actual ideas
and thoughts, which he/she may not be willing to share. A crucial feature of facial
expressions or facial emotions that makes this study so valuable that they are almost the
same universally, irrespective of geography. Facial macro expressions are easily identified
by humans and easily displayed. This fact results in questioning the genuineness of
emotions, as those are easy to generate and hence can be used in deception. This is where
micro expressions come into the picture. According to psychologists and researchers, micro
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expressions are facial expressions that show the true emotions of a person. Those facial
expressions can also be termed as emotional leakage. Micro expressions are spontaneous
and reveal a person’s true emotion in that context. This display of true emotions through
micro expressions surfaces for a brief time only, for 1/15th to 1/25th of a second. This
is so quick and spontaneous that it can hardly be noticed with the naked eye. The main
challenge [2] is that micro expressions are complex to identify with the naked eye, yet no
one can hide them. Figure 1 shows a sample of micro expressions of negative feelings.
A micro expression classification would classify the sample as normal, but deep inside,
the real emotion is that of a negative feeling. Hence, an in-depth analysis is needed for
real feedback from customers maintaining a smooth commercial operation with a profit
margin. As there is a tremendous increase in retail space, actual customer feedback on any
product is a deciding factor for a product to be manufactured with the attached features.
Although commercial complexes have deployed facial recognition and implemented facial
expression recognitions, often, facial macro expressions do not indicate true emotions.
Facial micro expressions are organic, i.e., spontaneous and will be upheld only for a very
minute fraction of a second. However, they display the actual emotions and are crucial for
feedback on products or situations. Hence, facial micro expressions are widely promoted
for research and commercial usages. This model is even tested with a lie detector using a
vision-based approach, as micro expressions properties can properly define actual emotion.
Hence, a vision era on detecting real emotions extracted from micro-scale features are in
growing demand in commercial, research, and defense fields.

Many image classification architectures have been developed in the recent past and
proven to provide a satisfactory result on macro expressions. However, they fail to work
when accurately identifying facial micro expressions, as micro expressions are held just for
a micro fraction of a second and need a depth micro-scale feature extraction for training.
This work summarizes the depth in which residual attention networks perform on micro
expressions and how they extract micro-scale features from a dataset.

Figure 1. Sample micro expression from SMIC dataset [3

2. Background and Related Work

Due to its genuineness and diversified use, research on micro expression have gained
momentum in the recent years. The field of computer vision and pattern recognition has
attracted many researchers to work on this topic due to its sparse usage in the commercial
and psychological spaces.

The pattern recognition of the micro expressions has been mainly analyzed based on
major six emotions. Micro Expression testing was first done on the database presented
by Polikovsky [4], York Deception Test [5], and USF-HD [6]. But these datasets being
insufficient were soon overtaken by SMIC [3], CASME II [7], CASME [7], and CAS(ME)2 [8].
The main reason the former did not gain popularity because the datasets were created
by asking the participants to mimic or create emotions which as explained before does
not generate micro expression. These were mainly artificial type of emotions and not the
real ones. Hence, no fruitful results can be concluded using the former datasets. The York
DDT contained very few expressions which were clearly insufficient for the research. The
dataset SAMM, which stands for spontaneous actions and micro movements, consisted of
32 participants from nearly 13 different cultures. These datasets, rather than focusing on
emotion recognition, focused on micro movement identification.
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2.1. Traditional Approaches

The feature extraction technique evolved over the years due to easily available dataset
and ever going research in face forensics field. Among these techniques is the LBP (Local Bi-
nary Pattern) introduced by Ojala et al. [9]. LBP produced a remarkable result on monotonic
illumination variation but limited to spatial data. So, to gain results in low intensity value
Local Binary Patterns on Three orthogonal Planes (LBP-TOP) was introduced. LBP-TOP is
basically the upgraded form of the first introduced LBP which now works on both temporal
and spatial feature extraction simultaneously. Li et al. [10], Yan et al. [7], Pfister et al. [11],
Guo et al. [12], House and Meyer [13], and Adegun and Vadapalli [14] implemented LBP-
TOP features extraction with different facial detection and classification method for micro
expression detection. The main drawback of TOP model was the computational complexity
and hence efforts to improve the performance led to development of LBP-SIP or Linear
Binary Pattern with Six Intersection Points and LBP-MOP (with Mean Orthogonal Planes).
The drawbacks of these methods are the accuracy in extracting micro-scale level features
on facial micro expressions due to limited scale features being extracted and trained.

2.2. Deep Learning Approaches

Deep learning-based approaches have gained attention in face forensics recently,
particularly in the detection fields. A high-level representation of micro expressions can
be extracted from Convolution Neural Network (CNN)-based algorithms. Patel et al. [15]
were the first to introduce a CNN model in facial micro expressions detection. Due to
fewer usable datasets, the researchers used pre-trained ImageNet weights with the Visual
Geometry Group (VGG) architecture model. Mayya et al. [16] introduced another method
in their proposed model by combining temporal interpolation with a deep CNN (DCNN)
for recognition. Later, it was fed to support vector machine (SVM) for classification and
for faster performance using a Caffe [17] library, which was used for feature extraction
along with a Graphics Processing Unit (GPU) unit. The advantages of image classification
using transfer learning containing feedforward convolution networks are using very deep
structures [15,18,19] and decoder functionality in auto encoder which is later taken from
the feedforward mechanism. Further, several methods have been proposed for improving
the discriminative ability of deep convolutions, such as VGG [15], Inception [19], and
residual learning [18]. To avoid overfitting and to exploit regularization for convergence,
functions, such as stochastic depth [20], batch normalization [21], and dropout [22], have
been initialized. However, all of the above models could not capture critical micro-scale
movements in micro expressions datasets.

Hence, deep learning-based approaches have gained potential in the face forensics in
the recent past. The first framework in the field of face recognition was introduced by Jones-
Viola [23]. Their framework detected faces in an image using machine learning approach
in real time. After that a large number of CNN-based face detection methods have been
developed including Normalized Pixel Difference (NDP) face [5]. Among them was one
proposed by Ranjan et al. [24] which used a selective search algorithm for face detection.
It was although not able to localize well with the actual face region. The deep learning
mechanisms have gained lot of attraction in various detection fields. Facial recognition and
micro expression field is not less in this. The high-level representation of micro expressions
is extracted from convolution neural networks-based algorithms. Patel et al. [15] were the
first to introduce CNN model in facial micro expressions detection. Due to less usable
datasets, the researchers used pre-trained ImageNet weights with VGG architecture model.
Mayya et al. [16], in their proposed model, introduced another method by combining
temporal interpolation with deep convolutional neural network (DCNN) for recognition.
Later, it was fed to SVM for classification for a faster performance using Caffe [17] library
which was used for feature extraction along with GPU unit. Recent advantages on image
classification using transfer learning containing feedforward convolutions networks are
using very deep structures [15,18,19] and the decoder functionality in auto encoder which is
later taken from the feedforward mechanism. Several methods have further been proposed
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to improve the discriminative ability of deep convolutions, such as VGG [15], Inception [19],
and residual learning [18]. To avoid overfitting, functions, like stochastic depth [20], batch
normalization [21], and dropout [22], have been initialized and to exploit regularization
for convergence. However, all the above models could not capture the critical micro-scale
movements of micro expression datasets.

In recent times, region proposal networks [25-29] has been successfully adopted
in object detection applications. In image classification, an additional region proposal
stage [30] is added before feedforward mechanism. The proposed regions contain useful
information and are hence used for feature learning in the further stages. Unlike object
detection, in which its region proposals rely the ground truth bounding boxes or detailed
segmentation masks [31], unsupervised learning [32] is usually used to generate region
proposals for image classification. But, due to the heavy complexity of bringing-in segmen-
tation masks and boundary boxes, especially for image classification tasks, this model is
completely unnecessary.

Peng et al. [33] proposed a model called dual temporal scale CNN for recognizing
spontaneous micro expressions. This network works in two streams. These streams
are used to process multiple frame rates of a micro expressions dataset. Each stream
contains an independent shallow network to estimate overfitting. Inputs can be optical
flow sequences, so that features can be produced by a shallow network. After learning, a
linear SVM feature classifier is used to classify the output. The model has been proven to
show decent performance compared with the conventional naive SVM and LBP methods,
but it experiences the same problem with lagging in the extraction of critical micro-scale
features in the model because of which its accuracies is not high enough to proceed.

Kim et al. [34] proposed a model consisting of CNN and long short-term memory
(LSTM) to manage spatial and temporal information. Instead of using full movement inten-
sity, each expression stage is learned by the network in the spatial domain. The variation
in expression classes, state, and state continuity results in making features resistant to
variation in illumination. LSTM helps in learning the CNN spatial information and its
temporal characteristics. The LSTM approach can extract temporal information through
distinct frame rate video datasets. The developed model obtained better accuracy than the
old LBP techniques and subsequent variant models. Although, the imbalance in the dataset
samples affected the confusion matrix results. Control gates have been used extensively
in LSTM networks. In the process of feedforward training, updates are made in control
gates for neurons using the helpful information. Further, the control gates have a direct
influence in this process [25,26]. Choi et al. [35] proposed LFM-based CNN-LSTM hybrid
method to recognize facial micro expressions from video frames. Landmark feature maps
(LFM) extracts landmarks from all parts of the face and is then fed to the CNN-LSTM
hybrid architecture to compute and classify the facial micro-expressions. Although the
architecture is computationally strong enough to dig deeper into the frames, the major
drawback is it equally focus on all parts instead of the parts which change with respect to
emotions frame-wise.

Recently, Yu et al. [36] introduced a deep cascaded peak pilot network to learn and de-
termine weak expressions. Apex, i.e., peak expressions were used to supervise onset/offset
non-peak expressions. The addition of backpropagation and a cascaded fine-tuned al-
gorithm improved the overfitting problem and performance simultaneously. However,
the authors tested macro expressions, which resulted in a best performance of approxi-
mately 90%.

Soft attention networks [37,38] developed in recent times [39,40] and soft attention
modules are employing residual attention networks to develop a feedforward neural
network. This approach has been adopted by the authors for this work. Recently proposed
spatial transformer modules by Jaderberg et al. [40] achieved contemporary results on
almost all visual recognition tasks. An affine transformation is produced by a residual
network that captures useful information available in the encoder section. Then, the input
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image patch is processed with the affine transformation to determine the attended region.
Further, it is fed to the residual network for feature extraction.

This process is performed in an end-to-end residual attention framework that performs
spatial transformations. This work has been inspired by Wang et al. [41] regarding the
design of soft attention networks with encoders and decoders as the pipeline for extracting
top feature maps from both global and local information. Long et al. [42] performed skip
connections, which were used within the top and bottom features and reached state-of-
the-art image segmentation results. Although this approach works satisfactorily, image
classification does not require high weight structures that consume high computation
power. Hence, much into local information as image segmentation, this work focuses on
global and local information as far as micro-scale features from the face are included. The
dataset consists of several videos, and each video is only a few seconds long, i.e., when a
specific expression is seen, a video is recorded. This temporal information is considered for
model training. Hence, the dataset is well refined, as micro expressions cannot be easily
identified by cropping a video to the particular segment which contains the expression.

3. Technical Approach

Facial micro expressions detection using Lossless Attention Residual Network (LAR-
Net) is an end-to-end deep learning framework for classifying underlying facial microemo-
tions. These expressions might not be captured by a human owing to their instantaneous
change. Hence, the proposed model is fed with consecutive frames of the video, whereby
each frame shows a very minute fraction of change. This change is the key to extracting
information from the frames. LARNet extracts this crucial information, which is available
for a fraction of a second, and trains it accordingly under a specific class label. This is even
applicable to detecting unconscious emotions.

LARNet is constructed as a stack of multiple attention modules similar to the residual
attention networks mentioned in Reference [41], whereby each branch is classified into
two sub-branches, named as mask and trunk branches. Feature extraction processing is
performed in the trunk branch and this block is adapted by comparison with other state of
the art feature extraction processing methods. In this work, the authors have implemented
two residual blocks, ResNet-56 and ResNet-92, concatenated with a custom-designed
residual block built on ResNet, known as EmoResNet. The two residual networks were
used as already built, and the authors froze their last layers and concatenated them with
the upcoming layers, in this case, the next blocks. The outputs of each residual block are
fed as inputs to the other, and the latter is fed to EmoResNet. Input x is given to the trunk
branch which produces an output T(x). The mask branch computes a generation of masks
on each image using a bottom-up and top-down approach, which mimics the feedforward
and feedback attention process. Control gates of neurons in the trunk branch are the result
of the outputs of the mask branch, i.e., mask outputs are bridges with control gates similar
to a highway network [41]. Attention network outputs are represented as:

Hi,c(x) = Mi,c(x) * Ti,c(x)r (1)

where i varies according to the overall spatial positions, and the index of the channel is
defined as c € {1,2,--- ,C}. H represents the output of the attention module, M displays
the mask size in the mask branch, and T is the trunk output branch.

The backbone of the mask branch serves as the feature selector during the feedforward
mechanism and as a gradient update filter during the backpropagation process. The
gradient for input feature selection in the mask branch is defined as
OM(x,0)T(x,¢) _ M(xle)aT(x,@/ @

o¢ 9¢

where 6 and ¢ are the mask and trunk branch parameters, respectively. The trunk branch
parameter mainly consists of a convolution filter. The advantages of having a mask branch
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in the attention network are that the wrong gradients are prevented from the dataset
and trunk parameters are updated if noisy labels are present in the dataset [41]. The
mask branch uses up-sampling and down-sampling computation to prevent any wrong
gradients. The top-bottom approach can then identify wrong gradients and update the
trunk branch accordingly. The authors have created a soft weight mask by implementing a
three-network residual branch that is identical to the layer of spatial transformer. As the
network clusters the features from the face, the drawbacks faced with existing state-of-the-
art models, such as cluster background, complex scenes, zoomed appearance, etc., would
require considerable attention, thereby making the network more complex. The main
drawback of existing attention models that they can modify features only once using the
backpropagation channel. The network does not have a scope for further modification if it
fails either in some part or entire image. This results in false features and inaccurate results.

Hence, the authors have introduced three residual blocks that alleviate the single
check feature extraction. Each trunk branch in the attention model uses its mask branch for
feature learning.

3.1. Attention Residual Learning

This section describes the feature learning methodology of attention modules. There
is an apparent performance drop in naive attention networks. This apparent drop takes
place owing due to the degradation of matrix values of features in the hidden layers caused
by a repeated dot product of the mask range from zero to one. There is a conception that
masks branch breaks identical mapping of a residual unit of the trunk branch in naive
attention modules.

These problems can be eradicated if the output from the attention network can be
modified as follows.

Hic(x) = (14 Mic(x)) * Fie(x). ©)

Here, M(x) varies from [0, 1], such that M(x) and H(x) approximating 0 and features
F(x), respectively. This is a representation of residual learning.

The original concept of residual learning proposed through ResNet was formulated
as H;.(x) = x + F;;(x), designating F; .(x) as the residual function. This proposal slightly
tweaks the function in mapping the features generated by the ConvNets, inspired by
Wang et al. [41]. This implicates the mask branch being identical in terms of feature
mapping and selectors to increase good features and removes the noise from extracted
features with the trunk branch. Unlike a single run feature modification, stacking attention
network backs up in tweaking its weights in an incremental manner. This network extracts
good properties from extracted valid features, bypasses the soft mask branch, and then
weakens the mask branch’s feature extractor. This gives the network the ability to go
deeper into the features, thereby consistently increasing accuracy. A similar type of work
implemented by Wang et al. [41] surpassed the performance of other residual networks by
452 times.

3.2. Mask Branch Block

Moving forward with the idea of an attention mechanism as proposed by Larochelle
et al. [43], the authors have instigated fast feedforward and top-down feedback steps for
extracting good features and valid weights to attain a near-zero error rate. As mentioned
in the previous section, the mask branch plays an important role in the feature extraction
process. The feedforward block accumulates global information from the image and the
top-down feedback block combines this global information with the feature maps. The
max-pooling function is used in the input block in all small residual modules to increase
the receptive field swiftly. When the images reach the lowest resolution while feature
extraction is similar to an encoder network, the global information is drastically expanded
symmetrically by the top-down feedback block to direct the input features at each pixel
block level. The sigmoid activation function is then attached at the branch end, and it
normalizes the output to the range of [0, 1] coming from two consecutive 1 x 1 Conv layers.
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Skip connections are added between fast feedforward or top-down and bottom-up layers
to capture information through features from different scales. Top-down and bottom-up
networks in the residual attention module gear the entire network to learn features better
for micro-scale level feature learning through branch blocks.

3.3. Spatial and Channel Attention

Three types of activation functions are used in this architecture: mixed, channel,
and spatial attention. These comprise the module because the mask branch updates
abruptly with the features of trunk branch. To normalize this, the above-mentioned
activation functions are used before the mask branch outputs. Let m( f) represent a mixed
attention function, ¢(f) as the channel attention function, and s(f) as the spatial attention
function. m(f) uses the sigmoid activation function in each channel with a spatial position.
The spatial information is removed as c(f) performs L2 normalization in all channels.
Normalization is performed by s(f) on feature maps in each channel, and then passes it the
sigmoid activation function to obtain spatial information from the soft mask blocks [41].

Table 1 shows the experimental results of all three attention activation functions used
on the CASME2 micro expressions dataset. Due to the unavailability of a large-scale
dataset of facial micro expressions, a limited scale dataset has been used for experimental
trials. Many previous works implemented the latter two activation functions in their
proposed residual attention networks, which resulted in stroking complex constraints on
weights in the soft mask branch. This can be eradicated, as implemented in this work, by
adaptively changing the attention modules with the extracted features, which provide the
best performance. Equations (4)—(6) are experimenting with activation functions present
in the soft mask branch. Equation (5) represents the channel attention that exploits the
inter-channel relationship of the features. It mainly focuses on detecting useful information
from the data and squeezes the spatial dimension of the input feature maps. Equation (6)
represents the spatial attention that uses the inter-spatial relationships of the features. It
mainly focuses on the location of useful information from the data. Equation (4) is a mixed
attention function, which mimics both Equations (5) and (6), and is a hybrid mechanism of
the channel and spatial functions for reducing the error rate. Useful information is detected
and extracted with low error rates using this hybrid mechanism. Hence, the mixed function
outperforms all others and is performed sideways with the convolution functions.

1

m(f)(xic) = THexp(cr)’ (4)
c(f)(xi0) = W 5)
S(f) (i) L 6)

T 1+ exp(—(x; . — mean¢)/std.)

Here, c ranges over all channels, and i varies according to all spatial positions. The
mean and standard deviation for the feature map from the cth channel are denoted by
mean, and std., respectively. x; denotes the feature vector and the ith spatial position.

Table 1. Experimental results on CASME2 micro expressions dataset implemented on proposed
Lossless Attention Residual Network (LARNet) consisting of Attention ResNet-92, Attention ResNet-
56 and custom build Attention ResNetEmotion blocks.

Activation Function Attention Function Error Rate
m(f) Mixed Attention 3.13
c(f) Channel Attention 5.6

s(f) Spatial Attention 4.56
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In stage 1, convolution processing of the given input data is intensively computed
with the ImageNet pre-trained weights. This stage initially computes the information
and stores it in a feature vector. As facial micro expressions require intense extraction of
features, and not all feature vectors are useful for detecting minute micro expressions, the
feature vectors are further fed to stage 2, in which soft mask and trunk branches are present
with a mixed attention activation function. This stage is useful for locating and extracting
information from the feature vectors. The curated feature vector is finally computed with
convolution filters in stage 3.

4. Experiments and Results
4.1. Network Construction

The proposed three-module network was used for the performance evaluation of
the proposed LARNet on a series of benchmark datasets, including CASME II [7,8], USF-
HD [44], and SMIC [3].

The model is constructed by stacking all three attention modules as shown in Figure 2a,
starting with ResNet-92, ResNet-56, and followed by the customized Attention EmoResNet.
The former two blocks take the input shape 224 x 224 x 3, with the number of image
channels being 64 with a dropout = 0 and regularization = 0.01; for the two modules in
their first layer. Both modules are fed and computed with the L2 regularization penalty.

The L2 regularization penalty is computed as:

loss = L2 x reduce_sum(square(x)).

Figure 2b represents the inside architectural view of the mask and trunk branches.
The mask branch has up sampling and down sampling connections from the inputs, and
the trunk branch resides with the convolutional functionality. Convolutional filters in the
soft mask branch compute downsampling and upsampling layers with the max-pooling
layer between each of them. The data are further processed to extract deeper information
through up-down sampling. The trunk branch contains a single layer of the convolutional
layer. The output of the two branches’ are concatenated and further sent to stage 3, that is,
EmoResNet. The main use of the soft mask branch is to reduce the error rate and benefit
from multi-scale information. The trunk branch performs local convolutions.

4.1.1. Attention ResNet-92

In the ResNet-92 attention module, the cropped image size of 224 x 224 is fed to a
2D-Conv channel parametrized in a 7 x 7 kernel size, 64 image channels, a stride of size
2 x 2 with padding of 1. The output matrix was of size 112 x 112; a total of 5000 datasets
are given as training datasets. Each time, the total number of input images are fed to the
network with respect to the batch size, which is 64, with the initial image channel as 3
with an input image size of 224 x 224. This is further fed for computation with a 2D-Conv
channel parametrized with 7 x 7 kernel size, 64 image channels, stride of size 2 x 2 with
padding = ‘1". Resulting in an output matrix size of 112 x 112 with output channels as 64,
batch normalization was applied to re-scale and re-center along with a ReLu activation
function, and a 2-D max-pooling, parameterized with a pool size of 3 x 3, stride =2 x 2
and padding = ‘1’, emitting the first layer output in a 56 x 56 matrix size. This was then
passed to the second layer containing a residual block, with four times as many output
channels as the initial image channels, that is, 4 X 64 (previous output channels size) = 256.
Regarding the output size, the residual block = 56 x 56, this is passed as input to the
attention block with encoder depth = 3, resulting in a bottleneck of size 7 x 7 as a final
second-layer output. This is further given to the third layer consisting of one residual block
and two bottleneck attention blocks. The third-layer residual block comprises eight times
the initial image channels, that is, 512, with stride = 2 x 2, resulting in an output size of
28 x 28. This is passed to two attention blocks, each with an encoder depth of 2, resulting
in a bottleneck of size 7 x 7, thus resulting in total output size from the third layer of 7 x 7.
The fourth layer consists of one residual block and three attention blocks. The residual
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block has 16 times the initial image channels, namely 1024, with stride size 2 x 2, resulting
in a 14 x 14 output. This is fed to the attention block. There are three attention blocks, each
with an encoder depth of 1, resulting in a bottleneck of size 7 x 7, thus resulting in a final
output size of 7 x 7. The final residual block layer implies three residual blocks, each with
32 times as many output channels as the initial image channel, that is, 2048, with the first
block with stride size = 2 x 2, resulting in an output size of 7 x 7. The final layer of this
module holds a pool size, comprehending the first and second indices of the present result,
by consuming average 2-D pooling with the mentioned pool size and stride = 1 x 1, and
then the flattened function and dropout activation, fleeting it to the output node dense
with 7 output nodes (for 7 classes), kernel regularizer, and softmax activation function.

/ Stage 1: Attention ResNet-92 \ / Stage 2: Attention ResNet-56 \
56 x56 28 x28 14 x 14

56x56 28x28 14x14

J . . 28x28 7x7 2048

C
H Convolution Network

Soft Branch SN
U

. Residual unit J

N Encoder-Decoder network f Stage 3: Attention ResNet Emotion \
I Attention unit

Avg Pool

4x4

Fully Connected Layers

Flatten Dense Softmax

Element-wise Multiplication
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4.1.2. Attention ResNet-56

Using the ResNet-56 architecture as a backbone, as mentioned above, that takes
input image size is 224 x 224, with initially 64 image channels, a dropout = 0, and an L2
regularization penalty. Starting with the first layer, Conv 2D with 64 image channels, a
7 x 7 kernel size with stride = 2 x 2 and padding = 1, results in an output size of 112 x 112.
This is then given to the batch normalization function aligned with the ReLu activation
function. Further, it is passed on to maximum 2-D pooling with a pool size of 3 x 3, stride
of 2 x 2, and padding = 1, resulting in an output size of 56 x 56. The second layer opening
with the residual blocks has one residual block and an attention block. The residual block
has a total of four times the output channels of 4 the initial image channels, that is, 256,
resulting in the total output size decreasing to 56 x 56. This is fed to the attention block
with an encoder depth of 3, reaching a bottleneck of size 7 x 7. The third layer starts with
the residual block with eight times the number of output channels as the initial image
channels, summing to 512, with a stride = 2 and resultant matrix size of the residual block
of 28 x 28. The attention block, in contrast, has an encoder depth of 2, reaching a bottleneck
of size 7 x 7.

The third layer starts with a residual block comprising output channels 16 times the
initial image channels, summing up to 1024 with a stride of size 2, resulting in a 14 x 14
output matrix. Thus, fed to an attention block with an encoder depth of 1, it results in the
output size of the attention blocks to bottleneck 7 x 7. The final residual blocks comprise
three residual blocks, each with 32 times the initial image channel as output channels, that
is, 2048, and the first layer with stride size 2, resulting in a 7 x 7 matrix size. The final output
layer of this module contains a pool size that encompasses the first and second indices of
the presented result, by consuming the averaging 2-D pooling with the mentioned pool
size and stride = 1 x 1 and then flattened function and dropout activation, fleeting it to
the output node dense with 7 output nodes (for 7 classes), kernel regularizer, and softmax
activation function. The network configuration of the ResNet-92 and ResNet-56 attention
modules is presented in Table 2.

Table 2. Network configuration of Attention-56 and Attention-92 modules.

Layer Output Size Attention-56 Attention-92
Conv 1 112 x 112 7 X 7,64, stride 2
Max pooling 56 x 56 3 x 3, stride 2
1x1 64
Residual unit 56 x 56 3x3 64 | x1
1x1 256
Attention module 56 x 56 Attention x1 Attention x1
1x1 128
Residual unit 28 x 28 3x3 128 x1
1x1 512
Attention module 28 x 28 Attention x1 Attention x2
1x1 256
Residual unit 14 x 14 3x3 256 | x1

1x1 1024
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Table 2. Cont.

Layer Output Size Attention-56 Attention-92
Attention module 14 x 14 Attention x1 Attention x3
1x1 512
Residual unit 7x7 3x3 512 | x3
1x1 2048
Average pooling 1x1 7 x 7,stride 1
FC, Softmax 1000
Params x 10° 31.9 51.3
FLOPS x 10° 6.2 10.4
Trunk depth 56 92

4.1.3. Attention EmoResNet

The third module in the LARNet is a customized residual attention model with ResNet
acting as the backbone. The input shape taken in this module is 32 x 32, with 32 initial
image channels. The first layer is comprised of a 2D Conv filter with size 32 x 32, kernel size
5 x 5, and padding = 1 applied to the batch normalization function, and ReLu activation
function and 2D max-pooling with a pool size of 2 x 2, resulting in a 16 x 16 output matrix.
The second layer consists of a residual and an attention block. The residual block has
32 input channels and 128 output channels, and the attention block has an encoder depth of
2. The third layer comprises single residual and attention blocks, with 128 input channels
and 256 output channels with stride size of 2 in the residual block, resulting in an output
size of 8 x 8 output size followed by the attention block with an encoder depth of 1. The
fourth layer includes 256 input channels with 512 output channels and a stride size of
2, resulting in 4 x 4 output size followed by an attention block with an encoder depth
of 1. The following are the final residual blocks comprised of three layers with the first
one consisting of 512 input and 1024 output channels, and the remaining two consist of
1024 input and output channels each. This is followed by 2-D average pooling with pool
size = 4 x 4 and stride = 1 x 1, resulting in an output size of 1 x 1. Finally, this is followed
by the flatten function and output node with a dense function with 7 nodes and the softmax
activation function.

4.2. Results and Analysis
4.2.1. Implementation

The CASME II dataset [7,8] is a benchmark in facial micro expressions, record-
ings with a high temporal resolution of 200 fps, and relatively higher face resolution
of 280 x 340 pixels. The dataset was collected at various time intervals, depending on
the situation that suited the emotion. A separate set for cropped faces was provided. It
was mainly used for testing because of its high resolution and properly labeled dataset,
CASME 11, provides confidence in the analysis of the model. Overall, 5000 images were
trained on micro expressions using seven classes: ‘disgust’, ‘fear’, ‘happiness’, ‘others’,
‘repression’, ‘sadness’, and ‘surprise’. The most commonly used state-of-the-art ResNet
network [18] was as a baseline method. The image was padded by four pixels on each side
filled with 1 value on the 224 x 224 image patches. Data augmentation was computed,
such as horizontal and vertical flip with a per-pixel RGB mean value, which was subtracted
further. This work complies with the feedforward weight initialization mechanism for
training the residual attention units using Nesterov SGD with a batch size of 64. A weight
decay of 0.0001 with a momentum of 0.9 was initially set alongside an initial learning rate
of 0.01. The overall network consisted of three stages with an equal number of residual
attention models stacked at every stage. The weighted layers count in the trunk branch
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was given as 31m 4 9 (‘m’ represents the number of attention modules belonging to all
individual stages). The training was terminated after 12,000 iterations.

4.2.2. Residual Attention Learning

This experiment concludes the effectiveness of residual attention learning mechanisms
on facial micro expressions. The size of the trained model was 224 MB with 21 M learnable
parameters. As the notion of residual attention, learning is new in the field of facial
emotions, more specifically, targeting micro-scale expressions, previous methods, such
as naive residual networks or naive attention modules, are not suitable for detecting
micro-scale facial expressions. The number of attention modules in every stage varies by
m={1,2,3}.

For a better understanding and analysis of residual attention modules, the authors
calculated the mean absolute response of each attention stage present in the three modules.
As shown in Figure 3, the performance and error rate decreased for each stage and attention
network. The naive attention modules, in contrast, suffered obvious degradation with
an increased number of attention modules. By contrast, LARNet performed with three
residual networks with an increase in attention blocks, keeping the error rate performance
decreasing manner as the stage keeps increasing. The attention modules, and 4 blocks in
each module, are designed to suppress noise while keeping maximum information, aiming
to avoid any information loss, whether useful or useless, by applying a dot product. How-
ever, it is known that the extracted information degrades severely by a dot product. Signal
attenuation can be relieved by the residual attention learning using identical mapping
that increase feature contrast in the attention blocks. These benefits are gained in terms of
reduction in noise with no significant loss in information from the images that makes the
optimization process a lot better while enhancing the represented features” discrimination.

mean absolute response of output features in each stage

109 & =8 = Attention ResNet-56
e -#- Attention ResNet-92
‘“*‘:" > Attention ResNet Emotion
L o8 el
5 S
=3 “'u L —
il " -
T 06 e T -
5 ") T~
= .
= -
v -
£ 04 o
= T
& .
02
1 2 3
Stage (m}

Figure 3. The mean absolute response rate from each stage on output features.

Figures 4-6 display the visualization of the hidden layer at each attention stage. This
defines the actual computation of how information is extracted from the input images at
each stage.

The results shown in Figure 3, contribute significantly to the encoder-decoders and
local convolutions present in the attention modules. Attention ResNet-56 is used to con-
struct Attention-Encoder-Decoder-56 and Attention-Local-Conv-56, and it is applied for
the remaining two sequence networks. The presence of a soft attention optimization pro-
cess in the attention modules benefits the multi-scale information by decreasing the error
rate by proceeding with the other two residual attention modules. Figures 4-7 represent
residual learning in terms of the visualization of hidden layers of each stage. As each stage
increments, micro-scale features are extracted in depth. At stage 3, the feature reaches the
saturation point, at which point no feature can be extracted as shown in Figure 6, (in which
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most of the slots are empty and blank). A closer look at the feature extraction is shown in
Figure 7 with possible locations of feature extraction visualized using heat maps.

Figure 4. Attention ResNet-92 (Stage-1) hidden layer visualization of residual learning.

ERENEETEE

Figure 5. Attention ResNet-56 (Stage-2) hidden layer visualization of residual learning.

Figure 6. Attention ResNet Emotion (Stage-3) hidden layer visualization of residual learning.
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Figure 7. A close look at feature learning from a sample.

4.2.3. Performance Metrics

Figure 8 shows the training accuracy and loss performed on USF-HD, SMIC, and
partly on CASME II. Most CASME II datasets are used as testing/prediction datasets.
With over 5000 images of 7 classes, the training is performed on an Nvidia GTX 1080x Ti
GPU, keeping the batch size to 64 to avoid memory allocation errors and is terminated at
12,000 steps. The training period time was more than 1 day for reaching a training accuracy
of 97.41% with a loss of 0.0741, and the corresponding validation accuracy was noted at
98.61% with a loss of 0.309. The image dataset can be captured with a camera of at least
1080p and 200 fps as hardware configuration. Having less than 720p may change the results
and may even provide false predictions as the micro expressions have to be captured on a
very high-quality picture, so the model can dig deeper-based on the captured pixels. The
authors evaluated the results of the data collected in three resolutions, that is, 1080p, 720p,
and 480p, and below. As micro expressions are spontaneous and require a high-resolution,
zoomed picture of the subject, 1080p and higher resolutions were subjected to above 87%
for all emotions stated. Data captured at 720p exhibited a variation between 70% and
80%. False positives and false negatives were observed for data captured with a 720p
resolution. Data captured with 480p and below showed low prediction levels and were
deemed not suitable for evaluation. The video captured with 200 fps at 1080p resolution,
that is, 1920 x 1080 pixel resolution was converted into 200 frames captured per second.
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Figure 8. Computational performance on training dataset.

F1 score was plotted to evaluate the performance metrics on the training patch and
testing patch [45,46]. Each feature and its weight are updated at each epoch. The F1 score
is thus used for calculating the success rate of precision and recall. The precision and recall
are the ratio of actual matches and correct predictions compared with total ground truths,
respectively. Although, both of them are not sufficient for measuring the performance of
the network. Therefore, the evaluation of the network is done with the F1 score, which is
calculated using precision and recall as dependent parameters. F1 score is given by the
parameters true positives (TP) as correct predictions, false negatives (FN) as false non-
detections, and false positives (FP) as false correct predictions [45,46]. The mathematical
computations for the above-mentioned parameters are as follows:

- TP
Precision = TP EP’ .
TP
R -t
ecall TP EN’ ®
F1 score = 2 x Precision X Recall o

Precision + Recall’

The image classification model using the residual attention module, which was trained
on over 5000 images of 7 classes, is not computationally complex. Hence, the model can be
deployed on medium-scale edge devices for standalone testing. The inference speed tested
on the GPU system is approximately 10 ms and on the CPU is approximately 60 s. The
hardware configuration for testing the model was a full HD camera with 1920 x 1080 pixel
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resolution with 200 fps speed, placed remarkably close to the subject’s face. The results
are tested in a GPU with 12 GB RAM, NVIDIA GTX 1080 Ti GPU. The model loading took
approximately 180 s because it has a complex architecture and is heavy. However, after
loading the model, the prediction time for each image is approximately 10 ms. The resultant
captured data are a video of 200 fps, and these frames are then used for the prediction.
Data captured with 720p lacked proper attention on the pixel values on the face, hence, a
resolution of 1080p is recommended for prediction. The accuracy percentages of the data
captured with different camera resolutions are listed in Table 3. The results vary even if the
data were captured without a face detection model. The authors have used 128 landmarks
to detect the face [47] and cropped the face when the data were captured with zoom out
settings. However, it is better for the face to be very close to the camera lens because micro
expressions are visible on a micro-level in nature and the closer the face is to the camera
lens, the more accurate are the results. Figure 9 represents the LARNet model prediction of
real-time data captured with a 1080p resolution camera. The frame in Figure 9 is the 76th
frame and the total frames extracted for this result were approximately 600, and the video
duration was 3 s.

Table 3. Results of real-time data of different camera resolutions for testing evaluation.

Camera Resolution Accuracy Differentiation
1080p >87%
720p 71-83%
<480p <60%

prediction = SURPRISE

Figure 9. LARNet test results on real-time data.

F1 score is plotted as listed in Table 4, which outlines LARNet performance of all
7 classes of CASME II dataset. The ‘Happiness’ and ‘Surprise’ classes outperformed the
other classes. The other classes contain all mixed reactions, hence, accuracy is assured,
as the other classes had a constant dataset, which leads to pledges high accuracy levels.
Figure 10 visualizes the confusion matrix on the testing patch.
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Table 4. F1 score of LARNet performance on call 7 classes.

Expression Class Precision Recall F1 Score
Happiness 0.97 0.95 0.95
Repression 0.92 0.90 0.90

Fear 0.85 0.89 0.86
Disgust 0.90 0.89 0.89
Surprise 0.97 0.95 0.95
Sadness 0.93 0.92 0.92

Others 0.80 0.75 0.77

Confusion matrix
o 1 2 3 4. 5 6

8O0

600

400

True label

200

Predicted label

Figure 10. Confusion matrix on testing patch.

0

In Figure 11, the LARNet prediction results of the CASME II dataset are plotted. This
figure presumes cropped images of the face. Figure 12 presumes the uncropped face images.
The Cropped face images have resulted in ~95% accuracy, whereas uncropped face images
resulted in ~92% accuracy.
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Figure 11. LARNet prediction on CASME II dataset (cropped faces).
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Figure 12. LARNet prediction on CASME II dataset (uncropped faces).
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4.2.4. Comparison and Analysis with State-of-the-Art (SOTA) Models

Table 5 the proposed LARNet with other SOTA methods. Reddy et al. [48] involved
extracting spatiotemporal information from faces and computing it with a 3D CNN net-
work. MicroExpSTCNN involves extracting information from all available pixels, whereas
MicroExpFuseNet involves extracting information from eyes and mouth regions. Al-
though [48] has shown high accuracy levels using the CASME II and SMIC datasets, in
real-time prediction, there are possibilities of false positives and false negatives due to
computing with 3D CNN filters. Zhao et al. [49] proposed a local binary pattern—three
orthogonal planes (LBP-TOP) method, wherein their model extracts features into the SVM
classifier. Although their results are better than the hand-crafted methods, they fail to
maintain high accuracy levels in real-time. Huang et al. [50] proposed local quantized
patterns obtained from spatiotemporal information. This method learns dynamic patterns
but did not show good results. Takalkar et al. [51] proposed data augmentation techniques
for generating synthetic images and used those images for training with the CNN network.
They gained to maintain important motion features to classify optical flow features of
facial micro expressions. The main drawback of this method is that it may lose important
temporal information by generating synthetic data. Li et al. [52] proposed a 3D flow for
a CNN model for video-based micro expression recognition. It exhibits the same draw-
backs as that of Reference [48]. The proposed LARNet surpasses all SOTA methods and
performs slightly better than the 3D model in Reddy et al. [48]. Table 5 shows an overall
accuracy comparison of LARNet with SOTA methods. A 2D landmark feature map (LFM)
and CLEM [35] extracts the facial landmarks frame-wise and are fed to the CNN-LSTM
hybrid architecture. This method focusses on all areas of the faces and hence the results are
degraded instead of identifying the main focus parts in the video. Hence, the results are not
fully accurate and works well by recognizing very few emotions. Lateral Accretive Hybrid
Network (LEARNet) [53] uses a domain specific region with depth maps and compute with
convolutional and ResNet layers. This is similar to our work, but our proposed LARNet
has shown to be more accurate than LEARNet.

Table 5. LARNet compared with state-of-the-art methods trained on CAS(ME)2 dataset.

Method Results and Comparison with SOTA
Conventional CNN Classification [51] 78.02%
STCLQP [50] 64.02%
LBP-TOP [49] 42.72%
3D-FCNN [52] 55.49%
MicroExpSTCNN [48] 87.8%
Intermediate MicroExpFuseNet [48] 83.2%
Late MicroExpFuseNet [48] 79.3%
LFM-based (68 x 68 LEM) [35] 73.98%
CLFM-based (21 x 21 LFM) [35] 71.54%
LEARNet [53] 76.33%

Proposed LARNet 91%

5. Conclusions

The proposed LARNet exhibits high accuracy levels for 6-specific classes, namely
‘happiness’, ‘fear’, ‘sadness’, ‘repression’, ‘disgust’, and ‘surprise’. These are the most
important emotions much needed for any commercial usage and research analysis. The
LARNet needed three stages to extract the fraction of a second which contained the crucial
information on micro expressions that are needed for micro-scale feature extraction. Stage
1 mainly extracted macro-scale features. Stage 2 dug deeper inside the image frames
but could not extract crucial parts, which can be a deciding factor. Hence, stage 3 was a
customized network, which was included so that it could directly start from a micro-level
feature extraction point, which reduces the training and eases feature learning by almost
three times. Hence, the first two stages were taken from existing ResNet attention modules,
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which resulted in the extraction of features until the micro-scale starting point, followed by
Stage 3 has taken forward, which just focused on micro-scale features. Hence, the network
was designed according to “in divide and rule” to ease computation and accelerate learning
by reducing the feature load on a single stage, rather by dividing it into three stages. This
is how feature learning and training were built in a novel way.

The technical conclusion of the proposed LARNet architecture is it detects facial micro-
expressions with certain hardware setup limitations. Although the results obtained in the
real-time are very high and accurate, the face captured must be very high quality, and
the distance between the camera and a user should not be more than 10 m. In real-time
data capturing, results obtained with keeping camera more than 10 m away are mostly
inaccurate. The same applies to computing side-angle faces. The face should be straight in
order to obtain accurate results.

Detecting facial micro expressions is essential, especially in commercial malls. The
proposed solution would be more feasible if the implementation is used for scene under-
standing when the user is looking at any product. Scene understanding in all commercial
complexes are used for betterment of all users in the society to understand their needs and
improve the products according to their feelings towards them. For achieving this, the
user’s face must be captured in straight alignment in order to obtain accurate results for
better analytics.

However, limitations of LARNet were encountered, which are discussed in the
next section.

6. Limitations and Future Scope

The main limitation of this model is that the input image must be taken with at least
a 200 fps camera and the high-resolution quality images must be provided. Images and
videos are taken from normal standard cameras will fail to attain accurate results as the
crucial micro-scale features are the deciding factor, and images or videos with noise often
fails to get extracted at the micro-scale level. Another major limitation is that the model is
trained for just six specific classes and that the seventh class is the ‘other’ category. There
are more than 20 emotions. Hence, the unavailability of proper large datasets led to having
to train with just 6 specific and 1 general class. As the model is built with multiple attention
and residual modules, it is computationally complex; hence, medium-scale edge devices
are suitable for running it remotely.

Future research is planned on visual-based lie detectors using micro expressions. As
telling a lie results in an abrupt and minute fraction of facial emotion, a dataset can be
collected, and research can progress in this area. To be able to deploy this model remotely,
as necessary for commercial uses, the model can be cut down computationally to make it
compatible with small-scale edge devices.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
FN False Negative

FP False Positive

GPU Graphics Processing Unit

LBP Local Binary Pattern

LBP-MOP  Local Binary Pattern with Mean Orthogonal Planes
LBP-SIP Linear Binary Pattern with Six Intersection Points
LBP-TOP  Local Binary Patterns on Three orthogonal Planes

LSTM Long Short-Term Memory
NDP Normalized Pixel Difference
SVM Support Vector Machine

TP True Positive

VGG Visual Geometry Group
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