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Visualization of tumor 
heterogeneity and prediction 
of isocitrate dehydrogenase 
mutation status for human gliomas 
using multiparametric physiologic 
and metabolic MRI
Akifumi Hagiwara1,2,3, Hiroyuki Tatekawa1,2,4, Jingwen Yao1,2,5, Catalina Raymond1,2, 
Richard Everson6, Kunal Patel6, Sergey Mareninov7, William H. Yong7, Noriko Salamon2, 
Whitney B. Pope2, Phioanh L. Nghiemphu8,9, Linda M. Liau6, Timothy F. Cloughesy8,9 & 
Benjamin M. Ellingson1,2,5,8,10*

This study aimed to differentiate isocitrate dehydrogenase (IDH) mutation status with the voxel-wise 
clustering method of multiparametric magnetic resonance imaging (MRI) and to discover biological 
underpinnings of the clusters. A total of 69 patients with treatment-naïve diffuse glioma were 
scanned with pH-sensitive amine chemical exchange saturation transfer MRI, diffusion-weighted 
imaging, fluid-attenuated inversion recovery, and contrast-enhanced T1-weighted imaging at 3 T. An 
unsupervised two-level clustering approach was used for feature extraction from acquired images. 
The logarithmic ratio of the labels in each class within tumor regions was applied to a support vector 
machine to differentiate IDH status. The highest performance to predict IDH mutation status was 
found for 10-class clustering, with a mean area under the curve, accuracy, sensitivity, and specificity 
of 0.94, 0.91, 0.90, and 0.91, respectively. Targeted biopsies revealed that the tissues with labels 
7–10 showed high expression levels of hypoxia-inducible factor 1-alpha, glucose transporter 3, and 
hexokinase 2, which are typical of IDH wild-type glioma, whereas those with labels 1 showed low 
expression of these proteins. In conclusion, A machine learning model successfully predicted the IDH 
mutation status of gliomas, and the resulting clusters properly reflected the metabolic status of the 
tumors.

WHO classification of Tumors of the Central Nervous System was revised in 2016 to incorporate the molecular 
status, such as isocitrate dehydrogenase (IDH) gene mutation and chromosomal 1p/19q codeletion, for diagnos-
ing diffuse gliomas1. IDH mutation is one of the most critical molecular markers and has considerable prognostic 
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and predictive value, with the IDH mutant subtype showing a better prognosis and sensitivity to treatment2. 
Further, IDH mutation status has been proven to be superior to WHO grading in predicting the prognosis of 
glioma3. Thus, prompt and noninvasive prediction of IDH status is desired and would be more valuable as IDH 
inhibitors become a neoadjuvant therapy for IDH mutant gliomas4.

Physiologic and metabolic MRI have contributed to better understanding of tumor biology related to IDH 
mutation and prediction of IDH mutation status. Apparent diffusion coefficient (ADC), obtained from diffusion-
weighted imaging (DWI), is an estimate of the random motion of water molecules, and a strong negative cor-
relation between the ADC and tumor cellularity has been shown5. Amine chemical exchange saturation transfer 
echo-planar imaging (CEST-EPI) is an MRI technique sensitive to tissue pH6. The proton exchange between 
amines and bulk water, which is detected by amine CEST, is a base-catalyzed process; thus, the exchange rate 
is dependent on pH7. ADC and amine CEST-EPI have been proven helpful in differentiating the IDH status of 
diffuse gliomas8–10. However, used alone, these metrics showed only moderate prediction ability of IDH mutation 
status, with the area under the curve (AUC) less than 0.9.

Machine learning with and without radiomics analysis has been used to extract numerous features that 
are not discernible to human eyes to fully exploit multiparametric MRI data11,12. A number of studies have 
combined multiparametric MRI and machine learning to predict IDH status, while revealing specific imaging 
features related to IDH status13,14. However, the association of extracted textural features with histology has been 
elusive15. Habitat imaging, which divides multiparametric imaging into distinctly different segments, can provide 
unique insights into associations between multiparametric MRI and biological subpopulations, or habitats, of 
a tumor16. Therefore, the purpose of this study is twofold: (1) to develop a voxel-wise clustering method using 
multiparametric MRI to predict IDH status and (2) to explore the association between the created cluster labels 
and immunohistochemical markers of glucose metabolism.

Results
We reviewed the data of 159 patients with pathologically confirmed diffuse glioma that underwent CEST-EPI 
and DWI or DTI. The data of 90 patients were excluded from the study because the gliomas were treated prior to 
the scans. None of the patients had severe artifacts to be excluded. Thus, a total of 69 patients (47 men, median 
age, 53 years; range 19–80 years) were eligible for this study. Out of 69 diffuse gliomas, 32 were IDH mutant (14 
were 1p/19q codeleted and 18 were 1p/19q non-codeleted) and 37 were IDH wild-type. Of the included patients, 
14 underwent 45 biopsies. The detailed patient characteristics are further outlined in Supplementary Table 1.

The number of K-classes that showed the best performance for predicting IDH mutation status was explored 
by comparing AUC, accuracy, and F1 score among different K-classes using a 100-bootstrap sampling. The 
10-class clustering showed the highest AUC and F1 score, significantly higher than the K-classes 4, 6, 8, and 
12, and non-significantly higher than the K-classes 16 and 20 (Supplementary Fig. 1). The 10-class clustering 
showed the highest accuracy, significantly higher than the K-classes 4, 6, 8, 12, and 20, and non-significantly 
higher than the K-class 16 (Supplementary Fig. 1). The prediction performance for all K-classes is summarized 
in Supplementary Table 2. The mean and 95% confidence interval of the AUC, accuracy, sensitivity, specificity, 
precision, recall, and F1 score of K-clustering = 10 were 0.94 [0.94–0.95], 0.91 [0.90–0.92], 0.90 [0.89–0.91] 0.91 
[0.90–0.92], 0.90 [0.89–0.91], 0.90 [0.89–0.91], and 0.90 [0.89–0.91], respectively. When age was included in 
the SVM analysis, the mean and 95% confidence interval of AUC, accuracy, sensitivity, specificity, precision, 
recall, and F1 score were 0.94 [0.93–0.94], 0.90 [0.89–0.90], 0.89 [0.87–0.90], 0.90 [0.89–0.91], 0.88 [0.87–0.89], 
0.89 [0.87–0.90], and 0.88 [0.87–0.89], respectively. In the following sections, only the results related to K = 10 
will be shown.

The component planes of the four variables from contrast-enhanced T1-weighted images (CE-T1WI), fluid-
attenuated inversion recovery (FLAIR), asymmetric magnetization transfer ratio (MTRasym) at 3.0 ppm, and ADC 
by the self-organizing map (SOM) analysis showed the information of each sequence in each map unit as well as 
the associations between the protoclusters and each image (Fig. 1). The component planes of the four variables 
differed largely from each other, indicating that these variables contain unique information. These protoclusters 
were classified into 10 labels by K-means (K = 10).

The log-ratio values of each label in the K = 10 class were compared between IDH mutant and wild-type 
gliomas (Fig. 2a). The log-ratio value of label 1 was significantly higher in IDH mutant than in wild-type gliomas 
(P < 0.05), and these labels were categorized as M. In contrast, the log-ratio values of labels 7–10 were significantly 
higher in IDH wild-type than in mutant gliomas (P < 0.05, P < 0.001, P < 0.001, and P < 0.01, respectively), and 
these labels were categorized as W. Other labels (2–6) were categorized as N. The radar charts of the individual 
normalized values of the four images for each label in the K = 10 class are shown in Fig. 2b. Labels 7–9 in cat-
egory W showed higher CE-T1WI values than other labels. Label 9 in category W showed a higher MTRasym 
at 3.0 ppm than other labels, except for label 3 in category N. The labels 9 and 10 in category W showed lower 
ADCs than other labels. In contrast, label 1 in category M showed the highest ADC. FLAIR did not show a clear 
trend. Figure 3 shows representative cases of IDH mutant and wild-type gliomas.

The results of histological measurements on biopsy specimens are summarized in Fig. 4. hypoxia-inducible 
factor 1-alpha (HIF1a)-positive cell percentage was significantly higher in category W and N than in category M 
(9.51% ± 5.68% and 7.57% ± 4.53% vs. 3.83% ± 4.71%; mean ± standard deviation; P < 0.01 and < 0.05, respectively). 
glucose transporter 3 (GLUT3)-positive cell percentage was significantly higher in category W than in category 
M (5.54% ± 5.21% vs. 0.37% ± 0.44%; P < 0.01). hexokinase 2 (HK2)-positive cell percentage was significantly 
higher in category W than in categories M and N (12.94% ± 17.85% vs. 0.18% ± 0.28% and 0.10% ± 0.10%; both 
P values < 0.05). monocarboxylate transporter 1 (MCT1)-, lactic dehydrogenase A (LDHA)-, and Ki67-positive 
cell percentages did not differ between categories M, N, and W. No comparison of histological measurements in 
each category between IDH mutant and wild-type gliomas was significant. When compared between IDH mutant 



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1078  | https://doi.org/10.1038/s41598-022-05077-2

www.nature.com/scientificreports/

and wild-type gliomas based on their pathological diagnoses, without considering MRI labels, HIF1a-positive cell 
percentage, GLUT3-positive cell percentage, and HK2-positive cell percentage were significantly higher in IDH 
wild-type than in IDH mutant gliomas (9.51% ± 7.11% vs. 3.84% ± 3.38%, P < 0.01 for HIF1a; 3.28% ± 4.61% vs. 
1.17% ± 3.32%, P < 0.05 for GLUT3; and 7.23% ± 14.54% vs. 0.14% ± 0.25%, P < 0.05 for HK2). MCT1-, LDHA-, 
and Ki67-positive cell percentages did not differ between IDH mutant and wild-type gliomas. Figure 5 shows rep-
resentative cases of IDH mutant and wild-type gliomas with MRI, biopsy targets, and histological measurements.

Discussion
In this study, we developed a voxel-wise clustering method to predict and visualize IDH mutation status using 
multiparametric MRI, including CE-T1WI, FLAIR, MTRasym at 3.0 ppm, and ADC, using an unsupervised two-
level clustering approach. The performance was evaluated using SVM with LOOCV. This clustering method 
enabled visualization of the association of different imaging modalities in each cluster. Ten-class clustering 
showed the highest performance to predict IDH status, with AUC, accuracy, sensitivity, and specificity of 0.94, 
0.91, 0.90, and 0.91, respectively. The accuracy of our study was higher than 0.78–0.90 as reported in previous 
studies that used only internal validation, such as n-fold cross validation and LOOCV, and included grade II–IV 
gliomas17–21. However, direct comparison of performance is not appropriate because machine learning analysis 
without a separate test set is insufficient to derive true performance. In addition to conventional MRI sequences, 
about half of the machine learning studies reported in two recent meta-analyses for predicting IDH status used 
advanced MRI sequences, such as DWI, diffusion tensor imaging (DTI), dynamic susceptibility contrast MRI, 
and functional MRI, and two studies used 18F-fluoroethyl-l-tyrosine positron emission tomography14,22. To our 
knowledge, the current study is the first to use CEST as a part of a machine-learning algorithm to predict IDH 
mutation status. The high performance of our algorithm, along with the visualization of tumor characteristics, 
merits further investigation using external validation datasets. The results of our study may not necessarily hold 
after external validation. Notably, the inclusion of age as an input in this study did not improve the performance. 
Age might have served as a redundant feature.

The key strength of this study is the visualization of topological associations between imaging parameters to 
predict IDH mutation status. This may help prioritize modalities in multiparametric images. CE-T1WI showed 
higher values in labels 7–9, categorized as W, than in other labels. Thus, contrast enhancement contributed to 
the prediction of IDH wild-type status. In contrast, FLAIR did not show such a clear trend. MTRasym at 3.0 ppm 
showed the highest value in label 3, which was categorized as N and thus nonspecific. However, MTRasym at 
3.0 ppm showed the second-highest value in label 9, categorized as W. This is consistent with a previous study 
that showed higher MTRasym at 3.0 ppm in IDH wild-type than IDH mutant gliomas8. The higher MTRasym at 
3.0 ppm can be attributed to increased expression of glycolysis-related genes in IDH wild-type glioma, which 
leads to increased production of lactate and resulting acidity23. Label 9 and 10, categorized as W, showed lower 
ADC than other labels, whereas label 1, categorized as M, showed the highest ADC among all labels. This is con-
sistent with previous studies that showed lower ADC in IDH wild-type than IDH mutant glioma10,24. Even though 

Figure 1.   Component planes with a SOM for CE-T1WI, FLAIR, MTRasym at 3.0 ppm, and ADC colorized from 
blue to red according to each value, with red indicating a higher weight. The inter-class borderlines obtained 
by K-means clustering with K = 10 are shown on the SOM component planes as black lines between the nodes. 
Detailed profiles can be seen on the K-means clustering map from labels 1 to 10 shown at the far right.
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ADC differences in gliomas have been attributed to tumor cellularity, necrosis, cyst, and interstitial water25,26, the 
lower ADCs in label 9 and 10 and higher ADC in label 1 are probably mainly due to the differences in cellularity.

Histological measurements revealed higher expression of HIF1a, GLUT3, and HK2 in labels in category W 
than in category M, which corresponded with the comparison between IDH wild-type and mutant gliomas based 
on pathological diagnoses. These results are in line with previous biochemical studies showing higher expres-
sion of HIF1a, GLUT3, and HK2 in IDH wild-type than mutant gliomas27,28. These proteins play critical roles in 
initiating and maintaining the high glycolytic rates of rapidly proliferating glioma cells and are associated with 
the malignant features of IDH wild-type gliomas29. Moreover, in the current study, no significant difference in 
histological measurement was found in all categories between IDH mutant and wild-type gliomas. This indicates 
that our clustering method properly categorized tumor parts into those with features of IDH mutant, wild-type, 
or neither, and this categorization was congruent with the metabolic features associated with glycolysis.

This study had some limitations. First, we used LOOCV instead of an external validation dataset to evaluate 
the performance of our algorithm. Notably, a recent study used only 3 K-means labels for ADC and normalized 
cerebral blood volume maps to avoid overparameterization in predicting survival of patients with glioblastoma30. 
There is a possibility that our 10 labels algorithm has resulted in overparameterization. External validation is 
required to ensure the generalizability of our method31. Second, the acquisition parameters and scanners were not 
identical for all participants in this study. However, these variabilities were mitigated by normalization of signal 
intensity/quantitative value normalization. Moreover, the diversity in acquisition parameters and scanners may 
have contributed to the generalizability of our method, although this should be confirmed with an independent 
external dataset. Third, limited by the size of the overall population, the classification performance to differenti-
ate either IDH mutant 1p/19q codeleted (14/69) and non-codeleted (18/69) tumors from other subtypes was 
not reliable (differentiation of IDH mutant 1p/19q non-codeleted, F1-score 0.49; differentiation of IDH mutant 
1p/19q non-codeleted, F1- score 0.48; other detailed data not shown); hence, we combined these two groups as 
IDH mutant gliomas. However, gliomas with different 1p/19q codeletion statuses seem to have specific imag-
ing features, such as a lower MTRasym at 3.0 ppm and ADC in 1p/19q codeleted gliomas than in non-codeleted 
gliomas32,33. Therefore, future research is warranted to predict 1p/19q codeletion status using our algorithm 
with a larger cohort. In conclusion, an unsupervised two-level clustering approach enabled prediction of the 

Figure 2.   (a) Box-whisker plots and (b) radar charts of labels by 10-class clustering. (a) The box shows the 
interquartile range between the 25th and 75th percentiles for log-ratio values; the lines within the boxes 
represent medians, and the whiskers represent measurements 1.5 times the interquartile range. The circles 
represent outliers beyond 1.5 times the interquartile range. * P < 0.05, ** P < 0.01, *** P < 0.001. (b) Radar charts 
of four variables (CE-T1WI, FLAIR, MTRasym at 3.0 ppm, and ADC) in each label categorized into three groups.
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IDH mutation status of diffuse gliomas by using multiparametric MRI data. Moreover, the resulting clustered 
features enabled the depiction of voxel-wise image associations and their relationship with immunohistochemi-
cal metabolic markers.

Materials and methods
Patient selection.  This study was conducted with institutional review board approval (IRB# 14-001261; 
10-000655). Written informed consent was acquired from all participants prior to study-related procedures. All 
de-identified patient information was stored on a secure research database. We reviewed the data of patients with 
pathologically confirmed diffuse glioma that underwent CEST-EPI and DWI or DTI between April 2015 and 
October 2019. The exclusion criteria were prior treatment and severe artifacts. IDH mutation status, including 
both IDH1 and IDH2 mutations, was confirmed by genomic sequencing analysis using IHC, polymerase chain 
reaction, or both as previously described34. 1p/19q codeletion status was assessed using fluorescence in  situ 
hybridization.

MR acquisition.  All patients were scanned with CEST-EPI (single echo) or CEST spin-and-gradient-echo 
EPI (CEST-SAGE-EPI), DWI or DTI, and anatomical imaging on 3-T scanners (Prisma, Skyra, or Trio, Sie-
mens Healthcare, Erlangen, Germany). Anatomical imaging was performed according to the standardized brain 
tumor imaging protocol35. CEST imaging, DWI, and DTI were performed before contrast administration. The 
CEST-SAGE-EPI sequence consisted of a saturation pulse train of three 100-ms Gaussian pulses with the peak 
amplitude B1 of 6 μT and a SAGE-EPI readout consisting of 2 gradient echoes with echo times (TEs) of 14.0 and 
34.1 ms, one asymmetric spin-echo with a TE of 58.0 ms, and one spin-echo with a TE of 92.4 ms. The other 

Figure 3.   Representative cases of IDH mutant and wild-type gliomas with 10-class clustering. The CE-T1WI 
and FLAIR images, MTRasym at 3.0 ppm, and ADC maps are shown for each patient. Each color within the 
tumor ROIs corresponds to each label in the 10-color bar and each category in the 3-color bar. The ratios of each 
label and category are shown in pie charts. In these examples, labels in category M (label 1) occupied about half 
of the tumor ROIs in IDH mutant gliomas, while labels in category W (label 7–10) occupied less than a quarter 
of the tumor ROIs. In IDH wild-type gliomas, labels in category W occupied the majority of the tumor ROIs.
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Figure 4.   Box-whisker plots of histological measurements, namely, HIF1a-, GLUT3-, HK2-, MCT1-, LDHA-, 
and Ki67-positive cell percentages. The box shows the interquartile range between the 25th and 75th percentiles 
for positive cell percentage; the lines within boxes represent medians, and the whiskers represent measurements 
1.5 times the interquartile range. The circles represent outliers beyond 1.5 times the interquartile range.

Figure 5.   MR images and corresponding hematoxylin and eosin (H&E) and immunohistochemistry staining 
for MRI-guided biopsy targets (circles). (a) IDH mutant glioma for which an area with labels categorized as M, 
indicating the IDH mutant feature, was biopsied. Expressions of HIF1a, GLUT3, and HK2 are low in the slides 
from a 5-mm radius sample taken from the MRI-guided biopsy target. (b) IDH wild-type glioma for which 
an area with labels categorized as W, indicating IDH wild-type feature, was biopsied. Expressions of HIF1a, 
GLUT3, and HK2 are high.
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acquisition parameters were as follows: repetition time (TR) > 10,000 ms; field of view = 217 × 240 mm; matrix 
size = 116 × 128; number of slices = 25; slice thickness = 4.0 mm with no interslice gap; partial Fourier encod-
ing = 6/8, generalized autocalibrating partially parallel acquisition = 3; and bandwidth = 1628 Hz/pixel. A total 
of 29 z-spectral points were acquired at offset frequencies from − 3.5 ppm to − 2.5 ppm, − 0.3 ppm to + 0.3 ppm, 
and + 2.5 ppm to + 3.5 ppm, all with respect to the water proton resonance frequency. An additional reference 
(S0) scan was obtained with four averages using identical parameters without saturation pulses. The other 
details of the sequence are described elsewhere36. Some of the participants were scanned with a single-echo pH-
weighted CEST-EPI sequence6 with a TE of 27 ms. The total acquisition time of CEST-SAGE-EPI was 7 min 30 s, 
benchmarked on a 3-T Prisma MR scanner (Software Version VE11C).

DWI using a single-shot echo-planar sequence or DTI along 64 motion-probing gradients was per-
formed with the following parameters: b = 1000  s/mm2 and 0  s/mm2, TR/TE = 10,000/108  ms for DWI 
and 4100–6000/71–84 ms for DTI; field of view = 240 × 240 mm for DWI and 256 × 256 for DTI; matrix 
size = 128 × 128; slice thickness = 3 mm for DWI and 2 mm for DTI with no interslice gap; number of slices = 52 
for DWI and 72 for DTI; and acquisition time of approximately 3 min for DWI and 5–7 min for DTI. ADC maps 
were calculated from the DWI and DTI data.

Postprocessing of MRI data.  CEST-EPI and CEST-SAGE-EPI data were used to calculate the MTRasym at 
amine proton resonance frequency (3.0 ppm) as a measure related to acidity6. All CEST-SAGE-EPI and CEST-
EPI data were corrected for motion by using rigid transformation (mcflirt; Functional Magnetic Resonance 
Imaging of the Brain Software Library, Oxford, UK; http://​www.​fmrib.​ox.​ac.​uk/​fsl/) and corrected for B0 inho-
mogeneities by using a z-spectra-based k-means clustering and Lorentzian fitting algorithm37. Then, an integral 
with a width of 0.4 ppm was calculated around both the − 3.0 and + 3.0 ppm spectral points (− 3.2 to − 2.8 ppm 
and + 2.8 to + 3.2 ppm, respectively). They were coupled with the corresponding S0 image to quantify the asym-
metry in the magnetization transfer ratio (MTRasym) at 3.0 ppm, a measure related to pH6, as defined by the fol-
lowing equation: MTRasym(3.0 ppm) = S(− 3.0 ppm)/S0 − S(+ 3.0 ppm)/S0, where S(ω) is the signal of bulk water 
obtained after the saturation pulse with offset frequency ω, and S0 is the signal obtained without application 
of the saturation pulse. For CEST-SAGE-EPI data, the first and second gradient echoes were averaged for the 
MTRasym at 3.0 ppm to augment the available signal-to-noise. Creation of MTRasym at 3.0-ppm maps was per-
formed with MatLab (release 2018a, MathWorks) using in-house programs. All MR images were registered to 
the corresponding three-dimensional CE-T1WI and interpolated to a 1-mm isovoxel for each patient by using 
a six-degree-of-freedom rigid transformation and a mutual information cost function with FSL software (flirt; 
Functional Magnetic Resonance Imaging of the Brain Software Library). Three mutually exclusive regions of 
interest (ROIs) were defined using a semi-automated thresholding method38 with the Analysis of Functional 
NeuroImages software (NIMH Scientific and Statistical Computing Core; Bethesda, MD, USA; https://​afni.​
nimh.​nih.​gov). They included (a) a contrast-enhancing tumor and (b) central necrosis defined by T1-weighted 
digital subtraction maps; and (c) the T2 hyperintense regions on T2-weighted FLAIR images (non-enhancing 
tumor), excluding areas of contrast enhancement and necrosis. These mutually exclusive ROIs were combined to 
be used as a tumor ROI. In this study, four images, including CE-T1WI and FLAIR images, MTRasym at 3.0 ppm 
maps, and ADC maps, were used for machine learning. The signal intensity/quantitative value was z-score nor-
malized.

Unsupervised two‑level clustering approach.  The overview of the processing pipeline is illustrated in 
Fig. 6. Features for unsupervised clustering were extracted from voxels on the four parameters of normalized 
original images every 64 (4 × 4 × 4) voxels within the binary whole-brain mask image obtained with FSL’s brain 
extraction tool (bet; Functional Magnetic Resonance Imaging of the Brain Software Library). The extracted fea-
tures from four different images of all subjects were stacked and used as input vectors (dimension: 4 × 112075) 
for voxel-based clustering. A two-level clustering approach was applied using a batch-learning SOM and the 
K-means algorithm for unsupervised clustering39,40. A large number of input vectors was clustered into pro-
toclusters (weighted vectors). Next, the protoclusters were classified into the expected number of clusters by a 
K-means algorithm using the weighted vectors of each protocluster. Vesanto and Alhoniemi41 suggested that 
the number of protoclusters N was determined as N = k2

max, where kmax was the maximum number of clusters 
for two-level clustering. Vijayakumar et al.42. and Inano et al.39,43. used SOM for segmentation of brain tumor 
and grading of gliomas, respectively, on MRI with pre-defined 400 (20 × 20) protoclusters. According to these 
previous reports and formula, 400 (20 × 20) protoclusters seem to be acceptable for the current study. We have 
little prior knowledge about the appropriate number of K, and it may differ according to what problem to solve 
using the clustered images. On the basis of previous studies39,44, we chose the K-class numbers with K = 4, 6, 8, 
10, 12, 16, 20. After unsupervised clustering by SOM followed by the K-means, 400 (20 × 20) protoclusters with 
K-class label information were generated. The label information of the nearest protocluster was assigned to each 
voxel on the four intensity-normalized original images within the tumor ROIs. To evaluate the ratios of labels 
for each K-class within tumor ROIs, the common logarithmic value of the ratio was calculated by the formula: 
log10 (p + 10−2), where p is the ratio of each label (%). Then, the ratios of each K-class label for all participants 
were applied as input features (dimension: K-class × 69 [subjects]) to the subsequent support vector machine 
(SVM) classification. We implemented this two-level clustering algorithm using MATLAB software (R2018a; 
MathWorks, Natick, MA, USA).

Classification using SVM.  By applying the ratios of each K-class label as extracted features, a linear SVM 
was chosen as a classifier to differentiate IDH mutation status, and the hyperparameters of the linear SVM with 
a two-step grid search technique were optimized, as previously described39. A leave-one-out cross-validation 
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(LOOCV) strategy was carried out to assess the classification performance, allowing us to use most of the data 
for training. The decision function derived from the training datasets was used to classify or calculate a decision 
value for the test participant. After the LOOCV, the AUC of receiver operating characteristic (ROC) curves, 
accuracy, sensitivity, specificity, precision, recall, and F1 score were calculated. Additionally, the patients’ age was 
included in the SVM analysis to investigate if it improved prediction performance. We used MATLAB software 
(R2018a; MathWorks, Natick, MA, USA) to implement a linear kernel SVM and LOOCV strategy.

Biopsy acquisition and immunohistochemistry (IHC).  For a group of the participants included in 
this study, two to four MRI targets as spheres of 5-mm diameter were defined for each patient prior to sur-
gery, and were used as biopsy targets. These targets were selected based on the MTRasym at 3.0 ppm with high/
low values. Biopsy targets were transferred to intraoperative navigation software (Brainlab, Munich, Germany). 
Standard of care tumor resection was carried out while acquiring tissues corresponding to biopsy targets under 
intraoperative neuronavigation guidance. The MRI labels used for IDH prediction were categorized as M, N, 
and W if the logarithmic ratio of the label was significantly higher in the IDH mutant than in the wild-type 
gliomas, if the logarithmic ratio of the label was not significantly different between IDH mutant and wild-type 
gliomas, and if the logarithmic ratio of the label was significantly lower in IDH mutant than wild-type gliomas, 
respectively. The target ROI was assigned to the category that occupied the majority of the ROI. IHC analysis 
was performed using antibodies for HIF1a, GLUT3, HK2, MCT1, LDHA, and Ki67. The details of IHC analysis 
are described in Supplementary Method 1.

Statistical analysis.  To determine if the classification performances were significantly different among the 
different K-classes (K = 4, 6, 8, 10, 12, 16, 20), we performed SVM classification in each K-class 100 times by 
using a bootstrap technique and then analyzed the differences by a one-way analysis of variance followed by 
Tukey’s multiple-comparison tests. To compare the log-ratio values of each label in the K-class with the best 
classification performance between IDH mutant and wild-type gliomas, a Mann–Whitney U test with the Ben-
jamini–Hochberg method for multiple-comparison corrections was used. Histological measurements of IDH 

Figure 6.   Graphical overview of the processing pipeline.
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mutant and wild-type gliomas were compared between categories M, N, and W, using the Kruskal–Wallis test 
and Dunn’s test for the multiple-comparison corrections. Further, histological measurements were compared 
between IDH mutant and wild-type gliomas in each category by using the Mann–Whitney U test with the 
Benjamini–Hochberg method for multiple comparisons to determine whether each category showed similar 
metabolic features for both IDH mutant and wild-type gliomas. We also compared histological measurements 
between IDH mutant and wild-type gliomas based on their pathological diagnoses, without considering MRI 
labels, using the Mann–Whitney U test. Statistical significance was defined as P < 0.05. All statistical analyses 
were performed on MATLAB software (R2018a; MathWorks, Natick, MA, USA).

Ethical issue.  This retrospective study was approved by the “Medical IRB #2” at the University of Califor-
nia Los Angeles in accordance with the Helsinki Declaration of 1964. All patients provided informed written 
consent to have advanced imaging and medical information included in our IRB-approved research database 
according to IRB#14-001261 or IRB#10-000655 approved by Medical IRB #2 at the University of California Los 
Angeles. Out of the 69 patients, 14 were prospectively included in study IRB#14-001261, which involved surgi-
cal validation of CEST imaging method. The other 55 patients received CEST scan as part of the brain tumor 
standard-of-care MRI protocol in our institute. The usage of their imaging data was approved by the retrospec-
tive study protocol IRB#10-000655.

Data availability
Datasets analyzed during this study are available from the corresponding author on request. The actual raw 
imaging data from our patients are completely restricted due to legal and ethical restrictions on sharing these 
data because of potentially identifying or sensitive patient information, imposed by federal law and the ethics 
committee of the University of California, Los Angeles.
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