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DNA supercoiling acts as a global and ancestral regulator of bacterial gene expression. In this review, we advocate
that it plays a pivotal role in host-pathogen interactions by transducing environmental signals to the bacterial
chromosome and coordinating its transcriptional response.We present available evidence that DNA supercoiling
is modulated by environmental stress conditions relevant to the infection process according to ancestral mech-
anisms, in zoopathogens as well as phytopathogens. We review the results of transcriptomics studies obtained
in widely distant bacterial species, showing that such structural transitions of the chromosome are associated
to a complex transcriptional response affecting a large fraction of the genome. Mechanisms and computational
models of the transcriptional regulation by DNA supercoiling are then discussed, involving both basal interac-
tions of RNA Polymerase with promoter DNA, and more specific interactions with regulatory proteins. A final
part is specifically focused on the regulation of virulence geneswithin pathogenicity islands of several pathogenic
bacterial species.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
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1. Introduction

DNA supercoiling (SC) has received considerable attention in recent
years as a global and ancestral actor in genetic regulation. This is espe-
cially conspicuous in bacteria [1–3], where the chromosome is main-
tained at an out-of-equilibrium level of negative SC by a finely
controlled balance of topoisomerase activity. And yet, in contrast to
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Table 1
Chromosomal supercoiling response to environmental stress conditions is conserved in
distant bacterial species. Phyla: P: Proteobacteria, F: Firmicutes, A: Actinobacteria. SC var-
iations: Rel (+): relaxation, Hyp (−): hyper-supercoiling.

Shock Phylum Species SC
change

Mechanism Ref

Heat P Escherichia coli Rel
(+)

Gyrase and topoI
activities

[12]

Yersinia
enterocolitica

Gyrase activity
decrease

[13]

Dickeya dadantii [14]
F Bacillus subtilis [15]

Cold P Escherichia coli Hyp
(−)

Gyrase activity
increase / HU

[16]

F Bacillus subtilis [15]

Acidic P Escherichia coli Rel
(+)

[17,18]
Salmonella
typhimurium

Gyrase activity
decrease

[18,19]

Dickeya dadantii [20]

Osmotic P Escherichia coli Hyp
(−)

[ATP]/[ADP] increase [21]
Salmonella
typhimurium

[22]

Dickeya dadantii [23]
F Bacillus subtilis [15]

Staphylococcus
aureus

[24]

A Streptomyces
lividans

[25]

Oxidative P Escherichia coli Rel
(+)

TopA activation by Fis [26]
Dickeya dadantii [23]

Anaerobic P Escherichia coli Rel
(+)

[ATP]/[ADP] decrease [27]
Salmonella
typhimurium

[28]

F Bacillus subtilis [15]
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classical regulation based on transcription factors, quantitative models
of the regulatory mechanisms by SC are essentially lacking. A possible
explanation for this shortcoming is that SC affects transcription at sev-
eral stages of the process, and can also be involved in various and com-
plex interactions with regulatory proteins. As a result, virtually every
investigated promoter exhibits a distinct SC response,making it difficult
to dissect and model the underlying mechanisms. In this review, we
wish to summarise existing evidence and models suggesting a wide-
spread role of SC in bacterial genetic regulation, and more specifically
in bacterial virulence. This topic has already been addressed in previous
extensive reviews focused either on its role in bacterial growth [4] or on
specific promoters that were analysed in detail [5]. Here, we propose a
complementary focus on proposed mechanistic and computational
models of transcriptional regulation by SC aswell as accumulating infor-
mation obtained from transcriptomic data, which together underline
the broad relevance of the investigated phenomenon in bacterial viru-
lence and call for a combined experimental-theoretical research effort.

2. DNA Supercoiling: A Global Regulator of Bacterial Gene Expression

2.1. DNA Supercoiling: A Relay of Environmental Signals to the Bacterial
Chromosome

As observed immediately following the discovery of the double-
helical structure of DNA, virtually all DNA transactions face substantial
topological constraints [6]. In mechanical terms, the latter give rise to
a ubiquitous torsional stress, which in turn results in DNA supercoiling
(SC), i.e., the deformation of the molecule either by rotation around its
helical axis (over- or under-twisting) or by the winding of this helical
axis itself (writhing), as illustrated in Fig. 1 [4,7].

Topoisomerases are the global regulators of SC and more generally,
the solvers of topological problems associated with DNA transactions
[8]. In bacteria, the two main topoisomerases are topoisomerase I
(topo I) and DNA gyrase. The latter maintains the chromosomal DNA
in an underwound state by introducing negative supercoils in an ATP-
dependent manner, while conversely, topo I relaxes the DNA (i.e.
removes negative supercoils) without any ATP requirement. The global
negative SC level of the chromosome is thus primarily determined by
the dynamic equilibrium between these two enzymes (Fig. 1). Addi-
tional actors play a more specific role: the ATP-consuming topoisomer-
ase IV is primarily involved in solving topological problems associated
with DNA replication and cell division [9], and abundant nucleoid-
associated proteins (NAPs) contribute in distributing SC along the bac-
terial chromosome [4,10].

The negative SC level of the chromosome is finely controlled by the
cell in response to environmental conditions, since almost all types of
environmental challenges have been associated with SC variations,
and in particular those most commonly encountered by pathogens
Fig. 1. DNA supercoiling acts as a sensor of environmental stress in the bacterial
chromosome. Environmental cues are transduced by different mechanisms into global,
stress-specific variations of the SC level. At a smaller scale, SC is distributed as twist and
writhe deformations, which directly affect the transcriptional activity.
during infection (Table 1). Depending on the applied stress, the chro-
mosomal DNA experiences either a partial relaxation (+) or an increase
in negative SC (−), which is usually rapid and transient. Importantly, in
spite of strong differences in terms of phylogeny or lifestyle, the re-
sponse to each specific stress is qualitatively similar in all investigated
species, although these exhibit quantitatively different SC levels in stan-
dard growth conditions [3]. This observation suggests that SC is used in
a wide range of bacteria to quickly transduce environmental signals to-
ward the chromosome, with ancestral control mechanisms. Interest-
ingly, environmental stresses have also been correlated with SC
changes in archaeal species [11], suggesting that this notion could be ex-
tended to an even wider range of microorganisms.

What are the underlying mechanisms? The most clearly de-
scribed pathway involves the modulation of gyrase activity by the
energy charge of the cell through the [ATP]/[ADP] ratio [21,27,29].
When the latter is increased, gyrase introduces supercoils in the
chromosomal DNAmore actively and its negative SC level increases.
Environmental stresses usually alter cellular metabolic fluxes and
the energy charge in various ways [30], and this relatively simple,
quick and general mechanism is indeed involved in the chromo-
somal response to a variety of conditions (Table 1). Other invoked
mechanisms include (1) the action of NAPs (e.g. HU, FIS) either by
direct interaction with DNA or as modulators of topoisomerase
activity; (2) the regulation of topoisomerase expression (topA,
gyrA and gyrB genes encoding topoI and gyrase subunits respec-
tively); (3) the modulation of topoisomerase activity through
post-translational modifications [31].

It should be underlined that most bacteria from Table 1 are path-
ogenic or have pathogenic serotypes. Since the infection process can
be assimilated to successive environmental changes to which the
pathogen needs to adapt quickly, SC appears as a general candidate
for the efficient transmission of stage-specific environmental
signals toward the bacterial chromosome and thus also for its
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transcriptional response, which in turn is critical for the subsequent
steps of the infection.

2.2. Global Transcriptional Response to Variations in DNA Supercoiling

The transcriptional response to various stress conditions can be
readily analysed from transcriptomic data, but it is then difficult to dis-
entangle (1) the generic effect of the stress-induced SC variation on
transcription and (2) the transcriptional effect of stress-specific path-
ways. The former contribution can however be analysed separately in
transcriptomes obtainedwith gyrase inhibiting antibiotics. These are ei-
ther aminocoumarins (novobiocin, coumermycin) which block the
ATPase activity of class-II topoisomerases (gyrase and topoisomerase
IV), or quinolones (ciprofloxacin, norfloxacin, nalidixic acid, oxolinic
acid) which block their ligase activity, the latter resulting in many
double-strand breaks and triggering a SOS response of the cell with
pleiotropic effects [32]. When applied at a sublethal dosage, these
drugs induce a sudden global relaxation of the chromosomal DNA, and
the transcriptional response is thenmeasured after a short time (usually
5–30min), assuming that the latter thenmostly reflects the direct effect
of SC, rather than indirect effects influenced by the cell's response. Such
datawere obtained inmany organisms (Table 2). Note that the reported
number of affected genes is strongly variable; this variability might
partly reflect actual differences between organisms, but is strongly af-
fected by the experimental conditions and methods (relaxation level,
transcriptomics technology, statistical analysis). Altogether, these data
consistently demonstrate a very broad response to chromosomal relax-
ation, with a significant effect on more than one quarter of the genes.
This response is complex, with some genes being upregulated and
others downregulated. These affected genes are functionally diverse, in-
cluding genes involved in essential functions (e.g. DNA replication, cell
division), stress responses and metabolic pathways (e.g. stringent re-
sponse, DNA repair pathway), as well as virulence. They are also usually
scattered throughout the chromosome, highlighting that SC-mediated
regulation acts in a globalway, but follows a spatial organisation pattern
involving large-scale responsive domains related to structural proper-
ties of DNA [20,33].

Since this global transcriptional response is observed in awide range
of species from different phyla (Table 2), SC might be considered as an
ancestral and widespread mode of regulation in bacteria. This notion
can be related to the fundamental and highly conserved character of
topoisomerase enzymes themselves [8], and may even be extended to
eukaryotes, albeit with different rules [7,34]. It does not mean however
that themechanism is identical in all bacteria. The longest-running evo-
lution experiment [35] emphasized that mutations affecting SC
Table 2
Transcriptomic response to variations of DNA supercoiling in bacteria. Phyla: P: Proteobacteria
relaxation, Hyp (−): hypersupercoiling. Transcriptomics technology: M: DNA Microarray, S: R

Phylum Species SC change Method

P Escherichia coli Rel (+) Norfloxacin
Rel (+) Novobiocin / pefloxacin
Rel (+) Genetic engineering
Rel (+) Genetic engineering / norfloxac

Salmonella typhimurium Rel (+) Genetic engineering
Dickeya dadantii Rel (+) Novobiocin

Rel (+)
Haemophilus influenzae Rel (+) Novobiocin / ciprofloxacin

F Streptococcus pneumoniae Rel (+) Novobiocin
Hyp (−) Seconeolitsin

Staphylococcus aureus Rel (+) Novobiocin
Bacillus subtilis Rel (+)

A Streptomyces coelicolor Rel (+) Novobiocin
Mycobacterium tuberculosis Rel (+)

T Mycoplasma pneumoniae Rel (+) Novobiocin
C Synechocystis Rel (+) Novobiocin

Synechococcus elongatus Rel (+)
constitutes a “quick and efficient” way to modify the global expression
pattern and gain substantial fitness, in this case by a mutation reducing
topo I efficiency in less than 2000 generations [36]. It is therefore no sur-
prise that fluctuations in topoisomerase structure and SC level were
pointed in the close relatives E. coli and S. typhimurium [3] which have
different lifestyles, and this is probably also frequent in different strains
of the same species [19]. Changing the chromosomal SC level is thus a
fundamental and generic way by which bacteria adapt to new environ-
mental challenges, according to common ancestral rules. This extends in
particular to genome-reduced bacteria almost devoid of TFs such asMy-
coplasma or Buchnera [37–39],where transcriptional regulation remains
poorly understood.

3. Mechanisms and Models of Transcriptional Regulation by DNA
Supercoiling

The abovementioned transcriptional responses induced by SC varia-
tions differ qualitatively from those induced by classical transcriptional
factors (TFs). The latter recognize, bind and regulate a specific subset of
the genome defined by a well-defined (although often degenerate) tar-
get sequence motif, and their action can be modelled using classical
thermodynamic models of activation or repression [55]. In contrast, as
noted above, SC affects the transcriptome of all investigated species
globally, without any identified promoter sequence determinant. And
yet strikingly, regulatory models comparable to those involving TFs
are essentially lacking. There are two reasons for this: first, experimen-
tally, SC regulates gene activity in a continuous “more or less”manner as
opposed to the stronger “on or off”mode of regulation by TFs [56]; sec-
ond, SC can modulate transcription in a variety of ways, making them
difficult to decipher. In the following, we discuss such mechanisms,
most of which will be illustrated on the promoter of pelE, one of the
major virulence genes of the phytopathogen Dickeya dadantii where
SC-mediated regulation was studied extensively.

3.1. Basal Regulation of the RNA Polymerase-DNA Interaction

The ancestral and globalmode of regulation by SC results, in the first
instance, from it affecting the interaction between DNA and RNA Poly-
merase (RNAP) itself, independently from any additional regulatory
protein. But this basal regulation already involves distinct mechanisms
occurring at successive steps of the complex process of bacterial tran-
scription: closed-complex formation, open-complex formation, pro-
moter clearance, and elongation [57].

The most clearly identified – and possibly strongest - effect of SC on
transcription initiation results from the requirement for RNAP to open
, F: Firmicutes, A: Actinobacteria, T: Tenericutes, C: Cyanobacteria. SC variations: Rel (+):
NA Sequencing

Genes significantly affected (% genome) Technology Ref

613 (15%) M [40]
1957 (48%) M [41]
740 (18%) M [42]

in / novobiocin 306 (7%) M [43]
499 (10%) M [44]
1461 (32%) M [20]
1212 (27%) S [45]
640 (37%) M [46]
290 (14.2%) M [47]
545 (27%) S [48]
280 (11%) M [49]
1075 (24%) M [50]
121 (1.5%) S [51]
Not provided M [52]
469 (43%) S [37]
Several genes M [53]
Not provided M [54]
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the DNA strands and stabilize a “transcription bubble”, in order to gain
access to the DNA bases in the template strand. In torsionally uncon-
strained DNA, this melting transition represents a substantial free en-
ergy cost of around 10 kBT (6 kcal/mol), which in eukaryotes is
provided through ATP hydrolysis by the basal transcription factor
TFIIH [34]. Crucially, this cost reduces drastically when the double
helix is destabilised by negative torsion at SC levels physiologically rel-
evant in bacteria (Fig. 2A, upper panel), thus providing the physical
basis for the bacterial transcription process that does not require any ex-
ternal energy consumption [57]. Interestingly, the same can become
true of eukaryotic RNA Polymerase II when operating on a comparably
negatively supercoiled template [34], whereas temperature may re-
place SC as the source ofmelting energy in thermophilic archaea relying
on reverse gyrase [58,59]. This strong regulatory effect of SC can be ob-
served in well-controlled in vitro transcription assays (Fig. 2A, lower
panel), where plasmids carrying a model promoter are prepared at
different supercoiling levels, resulting in a drastic variation of expres-
sion strength without any modification of the DNA sequence or regula-
tor concentration. This activation curve is quantitatively reproduced
[45] using thermodynamic models of DNA opening [60–62] relying on
knowledge-based enthalpic and entropic parameters for base-pairing
and stacking interactions of all base sequences.

Howmay this mechanism lead to transcriptional regulation, i.e., the
selective activation of a subset of promoters by global SC variations? The
opening curve is strongly dependent on the promoter base sequence
(mostly though its GC content) in the−10 region and that immediately
downstream referred to as the “discriminator” [4,63–65]. Remarkably,
although the latter region does not harbour any consensus binding sig-
nal for RNAP, mutation studies showed that it plays a predominant role
in the SC-sensitivity of promoters: GC-rich discriminators are typically
more activated by negative SC than AT-rich ones, the canonical example
being those of stable RNAs strongly induced during exponential growth
[4,64,65]. And yet, a systematic model of this regulation mechanism is
still lacking. A possible obstacle is that the thermodynamic description
used above might be insufficient, if the expression level of investigated
promoters is limited not by the rate of promoter opening but of pro-
moter escape. As an example, some promoters might attract RNAP
and easily form an open-complex, but still exhibit low expression levels
Fig. 2.Mechanisms of transcriptional regulation by DNA supercoiling. (A) Opening free energy
fromdifferent species (lower panel, solid line for themodel prediction) [23,45]; (B) Variousmec
regulatory interaction: transcription from a given gene (left) can activate (top) or repress (bot
if the latter is too stable, resulting in abortive rather than processive
transcription [4,66,67]. Since the influence of SC on these subtle kinetic
steps was not dissected in detail, little can be predicted from such a sce-
nario that may explain why promoters respond differently to SC varia-
tions [68], and some even in opposite ways [69–71]. Yet we still note
that many in vitro investigated promoters do follow the behaviour ex-
pected from thermodynamic modelling (Fig. 2A, lower panel), which
might thus account for at least a significant fraction of transcriptomic re-
sponses to SC variations.

A regulatory action of SC was proposed at least at two other tran-
scription steps. RNAP binds promoters by recognising the −10 and
−35 elements, which are separated by a spacer of variable size (15–
20 nt, with an optimum at 17 nt). Because of the helical structure of
DNA, these variations are associated to different relative angular posi-
tions of the recognition sites around the helical axis, possibly placing
them out-of-phase for RNAP binding and closed-complex formation. A
suitable (spacer length-dependent) level of torsional stress could then
modulate this binding rate by untwisting the spacer DNA toward a
favourable orientation [73,74]. This scenario was invoked to explain
the response of several promoters to SC variations, including ribosomal
RNAs which usually exhibit a suboptimal spacer length of 16 nt [73].

SC may also affect transcription at the elongation stage, where posi-
tive torsion hinders the progress of RNAP, as demonstrated from single-
molecule experiments [75]. Such positive SC levels are not observed
in vivo by usual techniques involving plasmids, butmight be transiently
generated locally downstream of transcribed genes (see paragraph 3.3
below). However, most E. coli genes were found to be transcribed at a
comparable speed [76], suggesting that positive supercoils are readily
eliminated by topoisomerases and do not play any regulatory role dur-
ing elongation of these moderately expressed genes, whereas mechan-
ical stalling of RNAP might occur at the most strongly expressed genes
such as those of ribosomal RNAs [77].

3.2. Specific Regulation Involving DNA Regulatory Proteins

SC affects transcription via RNAP itself, but also via promoter-
specific regulatory proteins (TFs). In classical thermodynamic regula-
tion models [55], the latter act (as activators or repressors, depending
of the pelE promoter of D. dadantii (upper panel) and expression level of three promoters
hanisms involving SC andNAPs/TFs at the pelE promoter [14,23,72]; (C) Local SC-mediated
tom) its neighbour depending on their relative orientation [45].
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on their action on RNAP activity) at distinct binding sites characterised
by their affinity, the latter being inscribed in the genomic sequence
and usually described by sequence motifs. In this simplistic view, the
cell has limited regulatory freedom, since the only tunable parameter
is the TF concentration. In the classical example of the global regulator
CRP which binds (and usually activates) hundreds of promoters in
E. coli, increasing its concentration (or rather that of its cofactor cAMP)
may activate many of these target promoters, but in this model, the rel-
ative amount of CRP bound at these promoters, and thus also their rela-
tive activities, is out of the control of the cell. This view is increasingly
challenged since additional layers of complexitywere identified, includ-
ing epigenetic modifications of the regulators or promoter DNA and
post-transcriptional regulation. However, we note thatmany regulatory
proteins recognize not only the base sequence, but also the DNA shape,
a mechanism often referred to as indirect readout [78]. In that case, the
activity of classical regulators is intrinsically modulated, not only by
chemical (epigenetic) modifications requiring dedicated enzymes, but
also by the ubiquitous mechanical deformations. A computational esti-
mation of this recognitionmode suggests that, in the case of CRP, the lat-
ter may in fact be the strongest determinant of its loose sequence
selectivity [79]. Crucially, in contrast to the classical “static” sequence-
motif model, this selectivity is now dependent on the mechanical state
of chromosomal DNA, and thus subjected to cellular control through
SC. Considering that the SC distribution itself is non-uniform and locally
affected by NAPs, this additional mechanical dimension is probably a
key contributor in the complexity of the binding selectivity of regulatory
proteins.

This mechanism has not been investigated experimentally in many
systems. One example is the thermoregulation of pelE by the repressor
PecT, which is achieved not by a change in regulator concentration but
rather by an increase of its binding affinity for the promoter resulting
(at least partly) from temperature-induced chromosomal DNA relaxa-
tion (Fig. 2B, top) [14,80]. PecT belongs to the LysR-like family of TFs re-
lying on indirect sequence readout, which is the largest TF family in
enterobacteria [81], and similar mechanisms are used by other families
[81–83]. Altogether, the role of DNAmechanics in TF binding selectivity
is thus likelymuchmore important than generally considered, although
the precise mechanisms remain to be identified and modelled. Because
most dimeric TFs are smaller than RNAP, they are probably less sensitive
to the untwisting of bound DNA than the latter [79], but this sensitivity
might be augmented substantially in the case of several binding sites ar-
ranged in helical phase. For example, H-NSwas found to repress pelE on
relaxed DNA (as most of its targets), but it is not the case on negatively
supercoiled DNA [23]. A proposed explanation is that H-NS traps RNAP
in a small loop at this promoter by bridging its two binding sites, which
in the latter condition is prevented by their unfavourable helical phasing
(Fig. 2B, middle). On the other hand, regulatory proteins also exert twist
deformations themselves; a spectacular example is MerR, which in the
presence of Hg2+ binds and untwists the 19-bp spacer of the mercury
resistance operon of Tn501 (a transposable element isolated from Pseu-
domonas aeruginosa), thus enabling RNAP binding [84].

In our opinion, the interplay between regulatory proteins and local
SC may mostly rely on 3Dmodifications of the promoter conformation,
i.e., writhe rather than twist. On the onehand,writhe could facilitate the
formation of loops required for many regulatory interactions. These
loops are favoured by the distinct mechanical properties of promoter
DNA sequences [85], and were already included in regulatory models
based on the transfer matrix formalism [86]. SC-dependent reduction
of looping free energies can thus strongly modify the binding landscape
of regulatory proteins, as already described [87,88]. Conversely, many
regulatory proteins induce strong bends in DNA [83], e.g., CRP (~90°),
LexA (~35°), as well as the NAPs FIS (~45°) and IHF (~180°). Since
such deformations drastically reduce the energetic cost of DNA loops
[89,90], they are expected to displace the twist-writhe equilibrium
within the bound region in favour of the latter, and may thus induce
local topological changes similar to those induced by SC [91]. In
summary, just like the NAPs are involved in a complex double-sided in-
teraction with SC that shapes the global structure of the chromosome, a
comparable effect probably occurs withmanymore regulatory proteins
at the more local scale of gene promoters, with direct consequences for
local transcription.

A final important ingredient is the widespread occurrence of struc-
tural transitions in genomic DNA. The latter can switch from double-
stranded B-DNA to, among others, denaturated, Z-DNA, G-quadruplex
or cruciform states. The rates of these different transitions can be com-
puted by thermodynamic modelling [92], and depend not only on the
DNA sequence, but also on torsional stress that destabilises B-DNA
and can be accommodated more favourably in alternate states. It was
also shown that these transitions occur predominantly at bacterial
gene promoters [60] which they regulate according to various mecha-
nisms, some involving TFs. Denaturated AT-rich regions located 50–
200 bp upstream of the TSS can act as “sinks” for negative SC and im-
pede the proper opening of the promoter by thermodynamic competi-
tion. This was shown to occur for pelE, which in vitro is not expressed
in absence of CRP due to such upstream strand opening; when present,
CRP not only favours the correct binding of RNAP, but also “closes” the
upstream AT-rich tract, possibly by bending DNA (Fig. 2B, bottom)
[23]. Since denaturation bubbles are extremely flexible, they may also
strongly facilitate the formation of loops [89] required by TFs [86]. Addi-
tionally, some regulatory proteins may selectively bind non B-DNA re-
gions, as occurs at the mammalian oncogene cMYC where negative SC
triggering DNAmelting is provided by adjacent transcription [60,93]. Fi-
nally, since rho-independent termination of transcription involves RNA
hairpin structures, SC might also favour structural transitions in the
DNA template itself at the transcription termination site, which could
then modulate the termination rate, as already observed for the B-Z
transition [94]. Since transcriptional read-through was highlighted as
a widespread feature in bacterial genomes in recent years [95], an addi-
tional underestimated layer of regulation might thus also occur at this
later stage of the transcription process.

3.3. Spatial Heterogeneities of DNA Supercoiling: The Transcription-
Supercoiling Coupling

The intimate relationship between SC and transcription is not single-
sided. In the elongation step, the helical structure of DNA imposes a fast
rotation of the bulky RNAP relative to it (around two turns per second),
but this movement is strongly hindered by the viscosity and crowding
of the surrounding medium, resulting in an asymmetric accumulation
of torsional stress from back to front, as recognised more than 30
years ago [96]. This phenomenon thus leads to an intrinsic dynamical
coupling between SC and transcription highly dependent on geneorien-
tations (Fig. 2C). This coupling regained significant interest in recent
years since itwas shown to underpin transcriptional bursting in bacteria
[97], i.e., the nonlinear auto-induction of a promoter that can typically
give rise to phenotypical heterogeneities among isogenic populations of
cells [98]. Several theoretical models were proposed [45,77,99–101],
most of them focusing on biophysical properties of transcription. A
strong obstacle for their application in genomic regulation is the lack
of experimental knowledge of the distribution of SC along a bacterial
chromosome. A promising method involving the intercalating agent
psoralen was developed in eukaryotes [7,102] but did not yet provide
high-resolution data in bacteria [1]. Recently, indirect information was
provided from binding distributions of topoisomerases obtained by
ChIP-Seq at different resolutions [2,103]. These data, together with a
systematic analysis of bacterial transcriptomes, confirmed that the dis-
tribution of SC along the chromosome is highly heterogeneous and
strongly affected by gene orientations [104], leading to a fine-tuned
and ancestral regulation of promoters depending on their genomic con-
text [45]. In summary, the local level of SC experienced by a given pro-
moter can strongly differ from the global (average) level of the
chromosome, and depends on the orientation and activity of adjacent
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genes, providing a strong mechanistic basis for the co-regulation of co-
localised operons [105]. Direct evidence for these effects was obtained
from experiments involving supercoiling-sensitive promoters inserted
on the chromosome in different artificial configurations [70,104]. Com-
parable evidence is more difficult to establish for native promoters, but
was highlighted in at least two examples of divergently organised op-
erons: the ilv promoters of E. coli [106] and the leu-500 promoter of S.
typhimurium [107]. Interestingly, in these two examples, the local na-
ture of SC (generated by the divergent genes) is combined with a com-
plex regulatory mechanism involving DNA binding proteins. In the first
example, the activation of ilvPG is prevented by the denaturation of an
upstream AT-rich tract, except when the NAP IHF closes that region
and favours the opening of the promoter (like CRP at the pelE promoter,
Fig. 2B). The pattern is similar for leu-500, although the repression is
here achieved by H-NS binding at an AT-rich tract, and relieved by the
TF LeuO in presence of locally generated negative SC [5,108]. Since di-
vergent genes involved in the same function and simultaneously
expressed are commonly found in bacteria, including among those in-
volved in pathogenicity (see below), these examples may only be the
first of a large unexplored class.

The high density of bacterial genomes implies that the interaction
betweenneighbouring genes could in fact give rise to a collective behav-
iour along larger distances, forming “topological domains”. Indeed,
when promoterswere displaced over the chromosome, their expression
and supercoiling sensitivity were found to change depending on their
location and neighbouring activity [109–112]. These domains, shaped
by transcription and architectural proteins, remain a poorly defined no-
tion in bacteria. Proposed lengthscales vary from 10 to 20 kb [109], to
50 kb [112] and up to hundreds of kilobases [20]; while the former
mayunderpin an extension of thenotion of operons [105,113], the latter
probably reflect a higher order folding of bacterial chromatin involving
different actors, and this hierarchical organisation remains to be
characterised.

4. DNA Supercoiling and the Coordination of Virulence Programs

4.1. An Argument for DNA Supercoiling Being an Important Actor in Viru-
lence Genetic Regulation

Most pathogenic bacteria exhibit close genomic proximity to non-
pathogenic strains, with differences located atwell-defined genomic re-
gions (of a few up to hundreds of kilobases in size) called pathogenicity
islands (PAIs), which contain the virulence genes involved in pathogen-
esis. These regions are harboured either on the chromosome or on
plasmids, and are usually acquired by horizontal gene transfer (trans-
formation, conjugation or phage-mediated transduction). As a result,
different strains of a single species can present a remarkable diversity
of pathogenic phenotypes (more than 10 for Escherichia coli), whereas
a given virulence factor can be shared between different species [114].
This mechanism explains the rapid evolution of bacterial pathogens,
Table 3
Virulence genes are regulated by DNA supercoiling in various pathogenic species. Phyla: Proteo
E = extracellular, P = pathogen. Response to chromosomal DNA Relaxation by antibiotics: rep

Phylum Family Species Tissue Life

P Enterobacteriaceae Salmonella enterica gastrointestinal tracts FIP
Enterobacteriaceae Shigella flexneri intestinal epithelium FIP
Enterobacteriaceae E. coli (EHEC) intestinal epithelium FIP
Pectobacteriaceae Dickeya dadantii plant apoplast EP
Pseudomanadaceae Pseudomonas syringae plant apoplast EP
Vibrionaceae Vibrio cholerae small intestine EP
Alcaligenaceae Bordetella pertussis lung epithelial cells. IP
Campylobactericeae Campylobacter jejuni digestive tract IP

F Staphylococcaceae Staphylococcus aureus respiratory tract, skin EP
Streptococcaceae Streptococcus pneumoniae respiratory tract, skin EP

A Mycobacteriaceae Mycobacterium tuberculosis respiratory tract, skin IP
but also raises the question as to how the transferred genes are properly
expressed after their integration into the distinct transcriptional regula-
tory network of the recipient cell. This problem is particularly acute for
the bacterium, since any error in the expression time or strength of vir-
ulence factors immediately leads to the recognition and, ultimately, to
the destruction of the invader by the host defence system [115,116].

At first glance, such drastic regulation of a few specific promoters
seems to deviate from the global and non-specific regulation mode
characteristic of SC. However, it appears equally incompatible with the
sole action of strongly sequence-specific TFs, which would then be
highly unstable during horizontal transfers between species, where
these TFs are often evolutionarily distant [117]. As a matter of fact,
many TFs involved in virulence indeed exhibit a weak sequence-
specificity and are sensitive to the mechanical state of DNA [78],
owing to an original regulatory mechanism affecting PAIs. Like other
horizontally transferred regions, these usually exhibit a lower GC-
content than the chromosomal average, and are therefore normally
repressed by extensive binding of the NAP H-NS. Regulators can then
activate the genes without any specific contact with RNAP, by compet-
ing with H-NS for promoter binding [114,118], which can be strongly
dependent on the topological state of the region.

In most investigated species, the key signals triggering a quick acti-
vation or repression of virulence genes are precisely those environmen-
tal stress conditions that were shown to modulate the chromosome
topology in various species (Table 3), e.g., a sharp acidity variation
when S. enterica is transferred from the stomach to the intestine, or ox-
idative stress when D. dadantii leaves the plant apoplast. It is therefore
no surprise that virulence genes from an increasing number of
zoopathogenic or phytopathogenic species were shown to be directly
regulated by SC, as summarized in Table 3. Does this mechanism play
a role during the infection process, as these data suggest? In our opinion,
based on the complex regulatory mechanisms illustrated above, SC is a
good candidate to play the role of a basal and robust coordinator
of virulence gene expression, by (1) modulating the simultaneous ac-
tion of many (more specific) regulators at virulence promoters,
such complexity being a characteristic feature of the latter, (2) co-
regulating the adjacent genes of a PAI through the evolutionarily
conserved transcription-supercoiling coupling. We present below
some examples supporting this hypothesis, keeping in mind that
existing results mostly concern individual genes, whereas the topologi-
cal organisation of entire PAIs and its effect on their expression remain
poorly understood [129].

4.2. Widespread Evidence for a Regulatory Role of DNA Supercoiling in
Virulence

Salmonella enterica is one of the most studied pathogens, and this is
also true of the regulation of its virulence system by SC (mostly in C.
Dorman's laboratory). Several key virulence geneswithin its two largest
PAIs (SPI-1 and SPI-2) are supercoiling-sensitive, as well as those of the
bacteria (P), firmicutes (F), actinobacteria (A). Lifestyles: F = facultative, I = intracellular,
ressed (−) or activated (+), with corresponding reference(s).

style Stress encountered Gene involved in virulence Relax response Ref

acid hilD, hilC,ssrAB + [91]
temperature virF + [119]
temperature espADB − [120]
acid,oxidative pelE − [23]
oxidative avrPphB + [121]
acid acfA, acfD − [122,123]
temperature ptx − [124]
temperature, pH momp − [125]
osmolarity spa, eta + [126,49]
oxidative fatD − [127]
oxidative virR, sodC − [128]



Fig. 3. Regulatory networks within several pathogenicity islands. In all species, key
virulence genes are either relaxation-activated (green), relaxation-repressed (red), or
regulated via the transcription-SC coupling (blue). Arrows indicate an activating (arrow)
and bars a repressing effect. For M. tuberculosis, this effect depends on the SC level
(repression on a relaxed template, activation on a supercoiled template). In D. dadantii,
pel genes are self- and mutually-inductive via pectin degradation relieving the
repression of both genes by the TF KdgR.
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central virulence regulators OmpR and LeuO located in the core genome
(Fig. 3A). In this representative example, key virulence functions were
thus integrated into the pre-existing transcription regulatory network,
wherebyOmpR and LeuO, primarily devoted to other functions (the for-
mer is an abundant NAP-like protein), are specifically recruited at viru-
lence promoters in a SC-dependent manner [5,91]. Interestingly, these
regulators mostly target divergently oriented operons, and the same
pattern is observed in Vibrio cholerae (tcpPH) [78] and Shigella flexneri
(icsA, icsB) [117].While gene orientations are indifferent to classical reg-
ulatory models, divergent promoters are the ones most sensitive to the
transcription-supercoiling coupling [45], which is also involved in LeuO
recruitment at its own (divergent) promoter [108]. Gene orientations
within the PAIs are thus likely not accidental, but rather reflect the
evolved infrastructure of a local coordinated and SC-coupled gene
expression.

The virulence of E. coli EHEC (causing severe diarrhoea) depends on
a secretion systemencoded in the LEE operons (Fig. 3B), includingmany
genes sharedwith other E. coli pathogenic strains, e.g. EPEC [114]. These
operons are globally repressed by H-NS, whose binding is antagonised
by the activator Ler encoded in LEE1 [118]. Ler itself belongs to the H-
NS family and this competition may very well be affected by the topo-
logical state of the domain. Although such an effectwas not investigated
in detail, the expression of LEE4 was indeed found to be SC-sensitive
[120], and the same could be true of the other operons.
In the phytopathogen D. dadantii, pectinolytic enzymes are themain
virulence factors, responsible for the soft rot symptoms [115]. These are
encoded by pel genes scattered in several PAIs along the chromosome
[20]. pelE and pelD, the two major members of this family, are paralo-
gous genes that evolved from a unique ancestor but exhibit different ex-
pression patterns [130]. They are regulated by several NAPs (H-NS, FIS,
IHF, Lrp) as well as many TFs (e.g., CRP, KdgR, PecT, PecS) but are also
among the most SC-sensitive genes in the chromosome. We illustrated
above how different regulatory proteins act in a complex combination,
with SC modulating their relative affinities (Fig. 2B). Although no effect
of locally generated SCwas directly shown here, a divergent non-coding
transcript (div) was recently identified upstream of the pelD promoter,
which “feeds” the latter with RNAP with a strong dependence on the
3D conformation of the promoter [130], possibly involving a local trans-
mission of SC (Fig. 3C).

Finally, since topoisomerases are conserved among all bacteria, we
may expect SC to play a role in the virulence of widely distant species.
This was indeed recently demonstrated in the actinobacterium Myco-
bacterium tuberculosis, where the gene of a new NAP (NapA) was iden-
tified in the same operon as major virulence factors/regulators (SodC,
VirR) [128]. Interestingly, NapA autoregulates its (divergently oriented)
promoter in a SC-dependent manner (Fig. 3D): in this case, global SC
variations induced by environmental conditions may act as a switch,
turning the operon on or off with high specificity.

5. Conclusion

The discussed examples show that SC plays a direct role in the regu-
lation of virulence in many species, albeit with a remarkable variety of
mechanisms involving a combination of additional regulatory actors,
and these mostly remain to be characterised. A final and striking exam-
ple is the remarkably small and poorly characterised tenericute Myco-
plasma pneumoniae, which is able to infect the human respiratory
tract despite being almost devoid of TFs; the ancestral regulatory action
of SC is thought to play an even more cardinal role in this case [37]. The
increasing interest in SC in the genetic regulation community already
results in new experimental techniques facilitating the mapping
of supercoil distributions at higher resolution [1,2] as well as the
development of computational models at various scales of detail
[45,77,101,131],which togetherwill help elucidating the pivotal regula-
tory action of SC in bacterial genetic regulation advocated here.
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