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Abstract: Seasonal Influenza H3N2 virus poses a great threat to public health, but its vaccine
efficacy remains suboptimal. One critical step in influenza vaccine production is the viral passage
in embryonated eggs. Recently, the strength of egg passage adaptation was found to be rapidly
increasing with time driven by convergent evolution at a set of functionally important codons in the
hemagglutinin (HA1). In this study, we aim to take advantage of the negative correlation between
egg passage adaptation and vaccine effectiveness (VE) and develop a computational tool for selecting
the best candidate vaccine virus (CVV) for vaccine production. Using a probabilistic approach known
as mutational mapping, we characterized the pattern of sequence evolution driven by egg passage
adaptation and developed a new metric known as the adaptive distance (AD) which measures
the overall strength of egg passage adaptation. We found that AD is negatively correlated with
the influenza H3N2 vaccine effectiveness (VE) and ~75% of the variability in VE can be explained
by AD. Based on these findings, we developed a computational package that can Measure the
Adaptive Distance and predict vaccine Effectiveness (MADE). MADE provides a powerful tool for
the community to calibrate the effect of egg passage adaptation and select more reliable strains with
minimum egg-passaged changes as the seasonal A/H3N2 influenza vaccine.
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1. Introduction

As an RNA virus, influenza evolves rapidly and causes annual epidemics resulting
in 3 to 5 million cases of severe illness, and 290,000 to 650,000 deaths [1]. Due to its
rapid antigenic drift [2,3], the World Health Organization (WHO) organizes consultation
meetings twice a year to recommend the best candidate vaccine viruses (CVVs) for the
world. Despite many years of efforts, vaccine efficacy against influenza viruses, especially
the H3N2 subtype, remains suboptimal [4–6].

There are many factors that can influence influenza vaccine effectiveness (VE) [7,8].
In addition to antigenic drift [2,3], several other factors ranging from glycosylation of the
hemagglutinin [9], egg passage adaptation [10], repeated vaccination [11], imprinting and
cohort effect [12] as well as the waning effect [13] can contribute to the variability of vaccine
efficacies [4]. Among these factors, egg passage adaptation during vaccine production has
been implicated in low vaccine efficacy across many years [14–16], but its link to vaccine
effectiveness has been constrained to individual mutations occurred in different years,
lacking a systematic metric integrating substitutions across many sites. Using a probabilistic
inference procedure known as mutational mapping [17], our recent study found that egg
passage adaptation was driven by substitutions in several key codons in HA1 across
years [18] and the strength of egg passage adaptation has become progressively stronger in
the recent past. When the H3N2 influenza had just crossed species boundary from birds to
humans in 1968, passaging them in an avian environment led to weak positive selection
across many codon positions. As influenza viruses became well-adapted to the human host,
passaging them in embryonated eggs (an avian environment) led to much elevated passage
adaptation at a set of functionally important codons (e.g., codon 186 and 194) [18]. The
intensity of natural selection calculated as the rate of nonsynonymous to synonymous ratio
(i.e., dN/dS) is often infinity due to the extremely high rate of nonsynonymous changes [18].
In order to measure the overall strength of egg passage adaptation, a new metric known
as the adaptive distance (AD) was developed to quantify the intensity of egg passage
adaptation in a given candidate vaccine virus (CVV) [10]. For the first time, the overall level
of egg passage adaptation can be combined into a single metric (AD) integrating multiple
substitutions distributed across many codons. Interestingly, a strong negative correlation
was found between AD and VE for vaccine strains in recent years, and as much as 75% of
the variation in VE can be explained by AD [10]. Thus, increasingly stronger egg passage
adaptation has led to influenza vaccines with more substitutions and poor vaccine efficacy.

In this study, we extended the findings from our previous work [10,18] and have
developed a new computational tool designated as MADE: Measuring Adaptive Distance
and predicting vaccine Effectiveness using allelic barcodes (MADE). Based on allelic status
(i.e., allelic barcodes) at a given set of positively selected codons in the HA1 gene for
egg passage adaptation, MADE can: (a) calibrate the level of egg passage adaptation by
calculating AD for any given candidate vaccine virus (CVV) and predict its potential vaccine
effectiveness; (b) since there are a large number of sequences in the database with unknown
passage history, and egg passage adaptation can confound many evolutionary analyses
including “contaminating” the signal of adaptation in humans [18,19], MADE can infer
whether a given isolate with unknown passage history has been grown in embryonated
eggs using a machine learning approach known as XGBoost [20]. If the inferred passage
history is not embryonated eggs, MADE can predict its passage history (e.g., MDCK or other
growth medium) for the input sequence. In general, we aim to develop a computational
tool that can select reliable strains with minimum egg-passage changes for the seasonal
A/H3N2 influenza vaccine.
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2. Materials and Methods
2.1. Data Curation and Computational Analysis

The steps retrieving the public data and performing the computational analysis are
similar to our recently published work [10] and are explained in greater detail in the Supple-
mentary Materials. From the Global Initiative on Sharing All Influenza Data (GISAID) [21],
we retrieved 76,489 influenza A/H3N2 HA1 sequences and their associated passage his-
tories (Table S1). After quality control and further annotating passage histories of all
sequences (Table S2), 69,362 sequences were retained for subsequent analysis and the num-
bering of different codon positions is based on the HA1 sequence with 329 amino acids.
The subsequent analysis follows the below steps: (a) sequence alignment and phylogenetic
reconstruction [22] (Figure S1); (b) using a probabilistic approach known as mutational
mapping to sample possible evolutionary histories of the sequences [17]. The mutational
mapping method is constructed based on theories from the continuous time Markov chain
and has been used widely in inferring the history of mutations [17]. (c) Given the sampled
evolutionary histories of the input sequences, two statistical tests (i.e., the enrichment and
convergent test) were used to identify codons driving the egg passage adaptation [10]
(Figure 1A). In the enrichment test, we asked the question whether substitutions happened
in a given codon are more enriched in egg terminal branches, while in the convergent test,
we asked the question whether substitutions happened in a given codon along the egg
terminal branches are more likely to be convergent substitutions (Supplementary Mate-
rials). Using theories from the continuous time Markov chain, we can explicitly test for
the significance of these patterns across all codons and identify codons responsible for egg
passage adaptation. (d) Calculating the enrichment score (ES) for all the alleles (amino
acids) at the codons responsible for egg passage adaptation (Figure 1B). The ES is calculated
as the ratio of frequencies for a given allele in egg-passaged strains versus all the strains
(see Results (Section 3)). Alleles with high ES score are those alleles occur specifically in
egg-passaged strains. For each sequence, we can extract a high-dimensional vector of ES
scores at the codons responsible for egg passage adaptation. This high-dimensional vector
serves as an allelic barcode for a given input sequence. (e) Given the high dimensional ES
scores for all the sequences, we can perform principal component analysis across all strains.
The adaptive distance (AD) is defined as the distance between the input strain (e.g., CVV)
and the centroid of the major cluster for most of the non-egg sequences (Figure 1). Adaptive
distance integrates patterns of adaptive evolution across multiple codons and captures the
intensity of overall level of egg passage adaptation (see Results (Section 3)). (f) Performing
the linear regression between AD and VE for the historical vaccine strains, and predicting
the potential VE of the input CVV based on its AD value. Since the predicted VE is not
a direct measurement of VE in humans, but rather is predicted based on the level of egg
passage adaptation captured by AD, we denoted it as VEad.

2.2. Classify Input Strains with Unknown Passage History

Since MADE can effectively measure the strength of egg passage adaptation in a given
sequence, it also provides an additional feature distinguishing egg strains and non-egg-
passaged strains. In order to achieve this goal, we first transformed the sequence dataset
into the one-hot encoded dataset, based on which Random Forest and XGBoost methods
were applied to predict the passage histories (see Supplementary Materials, Figures S4 and
S5, Tables S3 and S4 for details). The performance of the algorithm was evaluated using the
precision score (F1-score, defined as 2 × (Precision × Recall)/(Precision + Recall)), which
measures the accuracy of a test based on precision and recall. Here, precision is the ratio of
true positives to all predicted positives (i.e., TP/(TP + FP)), while recall is the ratio of true
positives to all actual positives (i.e., TP/(TP + FN)).
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Figure 1. Statistical approaches for characterizing egg passage adaptation. (A) Numbers of nonsyn-
onymous and synonymous changes at HA1 codons responsible for egg passage adaptation. The
codons showing statistical significance from the enrichment and convergent tests (q-value < 0.05) are
labelled in yellow and purple, respectively. Codons located in functional domains such as receptor
binding sites (RBS), antigenic epitope A, B and D will be labeled in red, blue, violet and orange
color respectively. (B) Enrichment scores across codons responsible for the egg passage adaptation.
Alleles with enrichment scores higher than 20 are labeled. (C) Principal component analysis of the
17-dimensional space of ES scores for all the sequences. Discrete subgroups of sequences carrying
different passage-related alleles distribute in clusters away from the major cluster. Pie charts display
major adaptive alleles in different groups. For example, 194P and 186V are the dominant adaptive
alleles observed in cluster 2 and 3, respectively. Adaptive distance (AD) is defined as the distance
between the target strain (e.g., CVV) and the centroid of the major cluster for most of the non-egg
sequences (i.e., group 1). (D) Correlation between the adaptive distance (AD) and vaccine efficacy
(VE) between influenza seasons from 2010 to 2015. The predicted VEad is drawn as the dashed line.
(E) Proportion of different alleles with enrichment score >10 in the cluster 2 of the PCA map (panel
(C)). (F) Proportion of different alleles with enrichment score >10 in the cluster 3 of the PCA map
(panel (C)).
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3. Results

From the GISAID database, we extracted 69,362 HA1 sequences from the H3N2
influenza spanning 1968 to 2018 (Methods (Section 2), Table S1). Among all the sequences,
898 sequences were passaged in embryonated eggs and majority of the sequences were
grown in mammalian cells (e.g., MDCK cells, Table S2). Using a maximum likelihood
approach [22], we inferred the phylogenetic relationships and the mutational parameters
(e.g., substitution matrix) of all the sequences (Figure S1). Conditioning on maximum
likelihood parameters, we performed mutational mapping, a probabilistic approach to infer
the history of mutations along each branch for all the codon positions [17,23]. In order to
identify codons responsible for egg passage adaptation, we implemented two statistical
tests based on patterns of sequence evolution [10]. In the enrichment test, a statistical
procedure is implemented to examine whether changes along terminal branches were more
enriched in egg-passaged sequences (i.e., egg terminal branches) than expected by chance.
The second test (i.e., the convergent test) identifies codons with repeatedly the same change
(i.e., convergent substitutions) along egg terminal branches (Methods (Section 2) and
Supplementary Materials). Applying these two statistical tests, we identified 17 positively
selected codon positions in the HA1 gene at a false discovery rate of 5% (Figure 1A). These
codons strongly enriched for antigenic epitopes B and D as well as the receptor-binding
sites (RBS) (Figure 1A). For example, 8 out of 17 codons are from epitope B sites, which
had 180 nonsynonymous substitutions and only 6 synonymous substitutions, indicating
strong adaptive evolution driving the evolution of these codons in these functional domains
(Figure S2). When we inferred substitutions along the egg terminal branches for these
17 codons, we observed an average of 289 nonsynonymous changes and 11 synonymous
changes, which contributed to 63.5% of all the nonsynonymous changes, but only 5.2% of
the synonymous substitutions for all codons along the terminal branches. This high level
of nonsynonymous to synonymous ratio has hitherto not been observed in any naturally
evolving system [24], indicating extremely strong adaptive evolution in embryonated eggs
(Figure 1A).

When an allele (amino acid) is preferentially selected in egg-passaged sequences, it will
be in relatively high frequency in the egg sequences relative to the background frequency.
In order to systematically measure frequency differences in egg-passaged strains versus
all the sequences, we previously developed an enrichment score (ES) as pegg/pall for each
allele observed over all 329 HA1 codons [10]. Here, pegg denotes the proportion of strains
carrying the specific allele in the egg-passaged strains, while pall represents the proportion
of strains carrying the specific allele among all sequences. Interestingly, a few alleles from
several codons responsible for egg passage adaptation exhibit extremely high ESs (i.e., high
frequency in egg strains, low frequency in the total set), such as 186V (ES = 35.13) and
194P (ES = 46.6) (Figure 1B). Alleles with high enrichment scores also tend to enrich in
important antigenic epitopes such as epitope B as well as RBS (Figure S2B). In summary, we
defined an important statistic known as the ES score which could measure the preference
of individual alleles at codons responsible for egg passage adaptation.

Given the extremely high level of nonsynonymous to synonymous change (dN/dS is of-
ten infinity), we previously developed an important metric known as the adaptive distance
(AD) to measure the level of egg passage adaptation that occurred in the sequence [10].
For a given sequence, enrichment scores for alleles at the 17 HA1 positions provided a
17-dimensional metric defining the unique sequence feature of that input sequence (i.e.,
allelic barcode). Sequences bearing preferred alleles (i.e., amino acid) at selected codons
will have very high ES scores across the 17 dimensions. Using principal component analysis
(PCA), we projected the 17-dimensional space into the first two leading principal com-
ponents (PCs). Interestingly, most of the sequences not passaged in embryonated eggs
cluster as a major group (group 1, Figure 1C), whereas egg-passaged sequences reside
within various clusters away from the major group. Inspecting allelic configurations in each
dispersed cluster, specific egg-passage related alleles are enriched in the clusters similar
to the antigenic map [3] (Figure 1C,E,F). We thus defined the adaptive distance (AD) as
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the distance from the input strain to the centroid of the major group representing viruses
without egg passage adaptation (i.e., group 1, Figure 1C, Methods (Section 2)). When we
performed a linear regression between AD and VE curated from a recent meta-analysis
combining many studies [5], we found a strong negative relationship with a correlation
coefficient of R2 = 0.741 (p-value = 0.039) (Figure 1D). This high linear correlation allowed
us to predict VE of any input CVV with a regression line as VEad = −0.022 × AD + 0.78
(Figure 1D).

When we investigated the historical records for these vaccine strains, the egg passage
adaptation correlated very well with the VE data. For example, A/Victoria/361/2011 was
recommended as the vaccine strain for 2012–2013 by the WHO [14]. When we calculated
AD for multiple A/Victoria/361/2011 strains grown in MDCK cells, the MDCK-passaged
sequences yielded a mean AD of 0.384 (located within cluster 1, Figure 1C), whereas the egg-
passaged sequences had a mean AD of 29.528 (located in cluster 3 in Figure 1C), resulting
in a low predicted VEad (~12.1%). Looking at the substitutions in the egg-passaged vaccine
strain, it carries three adaptive changes in the antigenic epitope B (H156Q, ES = 2.139,
G186V, ES = 35.130) as well as epitope D (S219Y, ES = 5.186), consistent with the low vaccine
performance in the 2012–2013 season [14]. These observations suggest that egg passage
adaptation can often affect the antigenicity of the virus and subsequently lead to poor
vaccine efficacy (see Discussions (Section 4)).

To make these methods available to the research community, we developed MADE
(Figure 2), a software that can perform the above-mentioned functions for any given candi-
date CVV including (1) calculating ESs for alleles at the 17 positively selected codons in HA1
gene, (2) performing principal component analysis and calculating the AD for the CVV, and
(3) predicting VEad of the input CVV based on the signal of adaptive evolution measured
in AD. As MADE is assuming appreciable levels of egg passage adaptation, the prediction
will not be performed for strains with very little signal of egg passage adaptation (Figure 2).
Since many egg-passaged sequences bear specific alleles, we developed machine learning
methods to predict whether the input sequence has truly been passaged in embryonated
eggs. Using one-hot encoding along with machine learning methods such as Random
Forest [25] and XGboost [20], we can predict the passage history of the input sequence very
accurately (F1-score of 0.8624 under Random Forest and 0.864 under XGboost) based on
the allelic configuration at these 17 codons.

In addition to predict potential vaccine efficacy of an egg-passaged CVV, as 1/3 of
the sequences in the GISAID database have unknown passage history and egg passage
adaptation can often confound many sequence studies including evolutionary analysis of
influenza evolution in humans [18,19], the machine learning model in the pre-screening
step can also be further extended to distinguish egg-passaged strains from non-egg strains.
We thus constructed a multi-class classification method which can further classify the
unknown passage history into four passage types including “Cell”, “MDCK”, “SIAT” and
“Other”. These multi-class machine learning models can achieve good performances with
F1-score of 0.9566 under the Random Forest and 0.9521 under the XGboost method (see
Methods (Section 2) and Supplementary Materials).

After all the analysis, MADE will output a complete report including: (a) the sequence
information of the CVV; (b) allelic status and enrichment scores at the 17 codons responsible
for the egg passage adaptation; (c) AD and predicted VEad; (d) the likely passage history of
the input sequence if the growth medium is not embryonated eggs. The backend engine for
generating the report is “R Markdown”. MADE is freely available online in two different
versions with an open-source form available at github (https://github.com/chenh1gis/
MADE_docker_v1 (accessed on 1 June 2022)) and an interactive web interface available at
http://39.105.1.41/made (accessed on 1 June 2022).

https://github.com/chenh1gis/MADE_docker_v1
https://github.com/chenh1gis/MADE_docker_v1
http://39.105.1.41/made
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Figure 2. Schematic workflow of MADE. For any candidate vaccine virus (CVV), enrichment scores
(ES) of all the alleles (amino acids) at the 17 positively selected HA1 codons were computed. These
high dimensional vectors calculated at the 17 codons serve as allelic barcodes for each strain. Principal
component analysis of the ES scores for all existing sequences was conducted, and the adaptive
distance (AD) for the CVV was computed. Subsequently, MADE predicted the VEad of the input CVV
based on the linear relationship between AD and vaccine effectiveness (VE). In addition, a machine
learning algorithm can be applied to classify whether the input sequence with unknown passage
history has been grown in embryonated eggs or other passage mediums (e.g., MDCK).

4. Discussion

Using a powerful probabilistic approach known as mutational mapping, we have
developed an efficient tool that can measure the extent of egg passage adaptation in a given
CVV and predict its potential vaccine effectiveness (VEad). For the first time, the strength
of egg passage adaptation can be integrated into a single metric (i.e., AD) alleviating the
challenge studying different substitutions across years. The strong correlation between AD
and VE provides an important connection linking egg passage adaptation to vaccine effec-
tiveness. Following up statistical evidences provided by MADE, subsequent experimental
methods (e.g., animal challenge experiments using ferrets) can be employed to test the im-
munogenicity and functional consequence of these passaged strains (e.g., analyzing elicited
antibodies for their neutralizing abilities against the wild-type and passaged viruses) [26].
Moreover, the statistical approach developed here can potentially be further extended to
other viral types including influenza H1N1. To facilitate its accessibility, we have integrated
MADE with Flusurver and FluCluster-AI (https://flusurver.bii.a-star.edu.sg/ (accessed
on 1 June 2022)), a popular tool hosted at GISAID that can allow users to link candidate
mutations with literature-reported and 3D structurally relevant phenotypes based on infor-
mation submitted to GISAID. Taken together, MADE provides a swift and powerful tool
for the research community to select the best candidate strains without strong signals of
egg passage adaptation.

The analysis of adaptive distance provides a unique opportunity connecting adaptive
evolution, immunogenicity of the viral strains and vaccine efficacy. For example, in addition
to A/Victoria/361/2011 mentioned earlier, in the strain selected for both 2016–2017 and
2017–2018 seasons (i.e., A/Hong Kong/4801/2014), egg passage adaptation generated
a series of adaptive substitutions including HA1 T160K, L194P and N96S [27], with the
L194P mutation being one of the strongest selected alleles with an ES of 46.6. Human sera
collected from individuals vaccinated with egg-based strains displayed much reduced

https://flusurver.bii.a-star.edu.sg/
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inhibition abilities against circulating strains, leading to one of the most severe influenza
seasons since the A/H1N1 pandemic of 2009 in the United States [27]. In addition, even
though the adaptive distance calculated based on ES is not a direct measurement of the
antigenic property, it behaves very similarly to the antigenic space generated using the
hemagglutination inhibition (HI) assay [3]. For example, the PCA map based on ES scores
is similar to the antigenic space with discrete islands representing different passage-related
substitutions across years. Substitutions with higher enrichment scores tend to be those with
large adaptive distance as well as strong antigenic jumps. Thus, the evolutionary analysis
of egg passage adaptation provides an important means connecting egg passage adaptation,
immunogenicity of the viral strains in humans as well as vaccine effectiveness [28].

It is worth pointing out that in addition to egg adaptation, many other viral [9] and
host factors [11–13] have also been implicated in the variable vaccine efficacy [4]. For
example, using a recently developed method for predicting vaccine efficacy based on
antigenic distance [29], we observed that a slightly different trend of VE was predicted
across the years (Figure 1D and Figure S3), suggesting that different factors can influence VE
through different mechanisms. Even though MADE provides an important computational
tool integrating signal of egg passage adaptation, it is still an inference method based
on historical data. As influenza viruses are constantly co-evolving with humans, we
can imagine egg passage adaptation will also change accordingly through time and it
will be important to update the inference procedure continuously. Moreover, further
experimental studies will be needed to further confirm functional consequences of egg
passage substitutions. Taken together, how to holistically integrate multiple factors and
how we can combine computational and experimental evidence for vaccine efficacy will be
a crucial question for the field.

Even though many efforts including a universal influenza vaccine [30], non-egg cell
lines [31,32], genetically engineered viruses with egg-adapted neuraminidase (NA) [33,34]
and DNA vaccines [4] have been explored to improve vaccine efficacy, the transition to
newer technologies [35] will likely progress rather slowly due to economic and technologi-
cal limitations. It is likely that the egg-based vaccine production system will continue for
quite some time [4,7]. Given the steadily increasing intensity of egg passage adaptation of
the H3N2 influenza strains [18], MADE provides a timely and powerful method for the
research and public health community circumventing the impact of egg passage adaptation
when selecting seasonal A/H3N2 influenza vaccine strains.

5. Conclusions

We have developed a computational package called MADE that can predict VEad for
any candidate vaccine strain. We believe that MADE will help the community select more
reliable A/H3N2 influenza strains with minimum egg-passaged adaptation, providing a
unique opportunity for improving influenza vaccines.

Supplementary Materials: The following supporting information can be downloaded at: https:
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of sequences from different passage histories. Table S3: Performance of the binary classification
(Egg and non-egg). Table S4: Performance of the multi-class classification (Egg, Cell, MDCK and
SIAT). Figure S1: The maximum likelihood tree with labeled passage histories. Figure S2: Patterns
of egg passage adaptation. Figure S3: Correlation between the adaptive distance (AD) and vaccine
efficacy (VE). Figure S4: Performance of the binary classification. Figure S5: Performance of the
multi-class classification.
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