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ABSTRACT
Background. Prey can alter their behavior when detecting predator cues. Little is known
about which sensory channel, number of channels, or the interaction among channels
that shrimp species use to evaluate the threat from predators. The amphidromous
shrimp Xiphocaris elongata has an induced defense, an elongated rostrum, where
predatory fishes are present. We sought to test if kairomones or visual cues when
presented singly from fish either eating flakes or shrimp, had more effect on altering
the temporal feeding and refuge use patterns of long-rostrum (LR) X. elongata. We
were also interested in elucidating potential interactions among cues when presented
simultaneously in different combinations (kairomones + visual + mechanosensory,
kairomones + alarm + visual, kairomones + alarm, kairomones + visual) on the
same response variables. We expected that when presented alone kairomones will
significantly increase refuge use and decrease foraging, particularly late at night, in
comparison to visual cues alone, and that multiple cues when presented simultaneously
will further increase refuge use and decrease foraging at night.
Methods. We exposed shrimp to individual or multiple cues from the predatory fish
mountainmullet,Augonostomus monticola.We examined shrimp behavior with respect
to refuge use and foraging activity during four time periods (after sunset, nighttime,
sunrise, and sunset) in a 24-hour period.
Results. Shrimp presented fish visual and chemical cues singly did not differ from
one another but differed from control shrimp (no cues) with respect to refuge use or
foraging. The number of shrimp using refuge in the treatment with most cues (KVM:
kairomones+ visual + mechanosensory) was higher than in all the treatments with less
cues. A significant decline in foraging was observed when multiple cues were presented
simultaneously. The highest number of shrimp foraged one hour after sunset and at
nighttime. A significant interaction was observed between cue treatments and time
periods, with shrimp in the KVM treatment foraging less and using more refuge late at
night and at sunrise than shrimp in other treatments or time periods.
Conclusions. The observation that fish chemical and visual cues when presented singly
produced similar refuge use and foraging patterns was contrary to expectation and
suggests that visual and chemical cues, when presented alone, provide redundant
information to X. elongata with regards to predation threat. The significant increase
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in refuge use and reduction in foraging observed in the KVM treatment suggest
multimodal signal enhancement in the perception of threat. This makes evolutionary
sense in ‘‘noisy’’ environments, such as streams, where detection, localization, and
intention of predators is much improved when cues are received through multiple
sensory channels.

Subjects Animal Behavior, Ecology, Zoology, Freshwater Biology, Aquatic and Marine Chemistry
Keywords Antipredator defenses, Chemical ecology, Inducible defenses, Kairomones, Predation
risk, Predator cues, Predator recognition, Alarm cues

INTRODUCTION
Predation is an important evolutionary and ecological force because it not only shapes the
behaviors, physiologies, morphologies, and life-histories of their prey, but also impacts
prey population dynamics, community composition, and ecosystem processes (Black,
1993; Pestana, Baird & Soares, 2013). Predators can have indirect effects on prey (those
not resulting in prey mortality) by producing visual, mechanic or chemical cues or a
combination of these cues that induce changes in prey behavior (e.g., spatial or temporal
segregation, changes in activity patterns, decreased movement, increased refuge use),
morphology (e.g., long spines, production of helmets, thickened shells) or life-history
(e.g., reproduction or growth delay) (Havel, 1987; Ives & Dobson, 1987; Adler & Harvell,
1990; Harvell, 1990; Aiken, 1998; Wisenden, 2003; Creel & Christianson, 2008; Hein, 2009;
Ocasio-Torres, Crowl & Sabat, 2014). These changes in prey phenotypes may lead to trait-
mediated top-down trophic cascades because predator presence may lower prey feeding
activities and indirectly reduce the flow of energy from lower trophic levels (Berger, 2010;
Harvey & Menden-Deuer, 2012). Detection of cues indicating increased risk of predation is
crucial for prey to enhance their survival, and to alter the potential impacts that predators
have on community and ecosystem dynamics (Vos et al., 2004); van der (Stap et al., 2007;
Ferrari, Wisenden & Chivers, 2010; Pestana, Baird & Soares, 2013).

Many studies on the detection of predation risk in aquatic systems have focused on how
detecting chemical cues from predators (kairomones) and from injured conspecifics (alarm
cues) induces behavioral, morphological or life-history changes in the potential prey (Crowl
& Covich, 1994; Ferrari, Wisenden & Chivers, 2010; Parsons et al., 2017). Perhaps the most
documented example of chemical detection in aquatic systems is the planktonic cladoceran
Daphnia spp., which can change its behavior, morphology, and life history when detecting
chemical cues from predatory fish and insect larvae, as well as conspecifics under predatory
attack (Dodson et al., 1994; Ślusarczyk, 1999; Laforsch, Beccara & Tollrian, 2006; Tollrian &
Leese, 2010). Detection of chemical cues from predators or conspecifics is highly useful: (1)
in aquatic systems like rivers where brown runoff water and thick riparian cover can affect
and even impede visual detection of predators and of predator–prey encounters that are
upstream of potential prey (Petranka, Kats & Sih, 1987; Crowl & Covich, 1990; Dodson et
al., 1994; Hickman, Stone & Mathis, 2004), (2) in situations when visual cues are unreliable
indicators of predation risk from fast-moving predators (Hemmi, 2005), and (3) for prey
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that are most active at night and can only rely on nonvisual cues to avoid predators at that
time (Bouwma & Hazlett, 2001).

Multiple signals perceived by different sensory channels can interact and generate
responses that are more complex than when the signals are perceived singly (Partan &
Marler, 1999; Weissburg, Smee & Ferner, 2014). For example, an aquatic prey may feel
more threatened and significantly increase or enhance refuge use when smelling and
seeing a predator than when only seeing or smelling it. Among the benefits of multimodal
signals in the context of predator–prey interactions (reviewed byWeissburg, Smee & Ferner,
2014) are that prey are able to better detect and localize predators and reduce uncertainty,
particularly in ‘‘noisy’’ environments. There is increasing evidence that prey can indeed
use multichannel cues to their advantage (Stauffer & Semlitsch, 1993; Crowl & Covich,
1994; Hazlett, 1999; Bouwma & Hazlett, 2001; Lehtiniemi, 2005; Kim et al., 2009; Hein &
Crowl, 2010). However, understanding the complex interactions that can occur among
different sensory channels and the myriad of responses elicited by prey remains a challenge
(Weissburg, Smee & Ferner, 2014).

The tropical amphidromous shrimp species, Xiphocaris elongata, exhibits two morphs
that are related to the presence and absence of predatory fishes (Covich et al., 2009; Ocasio-
Torres, Crowl & Sabat, 2014). These shrimp possess a short rostrum above geomorphic
barriers like steep waterfalls that impede the upstream migration of native diadromous
predatory fishes but have a longer rostrum below barriers where diadromous predators
move freely (Covich et al., 2009). It has been experimentally demonstrated that kairomones
from the predatory fish Agonostomus monticola affect the upstream migration of post-
larval X. elongata (Kikkert, Crowl & Covich, 2009) and induce long rostrums in juvenile
and adult X. elongata (Ocasio-Torres, Crowl & Sabat, 2014). Predation experiments have
shown that the long rostrum in X. elongata is an effective antipredator defense against
A. monticola (Ocasio-Torres et al., 2015b). Daytime foraging activities of long-rostrum
(LR) adult shrimp, as well as leaf-litter processing by short-rostrum (SR) adult shrimp
decrease in the presence ofA. monticola (Ocasio-Torres, Crowl & Sabat, 2015a). Studies that
incorporate nighttime (whenX. elongata aremostly active) and daytime (whenA. monticola
are mostly active) observations to examine the effect of one predation-related cue versus
multiple cues on the behavior of X. elongata have not been completed (Pringle et al., 1993;
Johnson & Covich, 2000; Scatena & Johnson, 2001; Hein, 2009; Ocasio-Torres et al., 2015b).

Our first objective was to determine if visual or kairomones (chemical cues from
predatory fish), when presented alone, elicit more refuge use and less foraging in long-
rostrum (LR) X. elongata. Secondly, we were interested in elucidating potential interactions
among predator and prey cues when presented simultaneously in different combinations
(kairomones + visual + mechanosensory, kairomones + alarm + visual, kairomones +
alarm, kairomones + visual) on the same response variables. The final objective was to
determine if predator cues, either singly or in the above combinations, affect differently
refuge use and foraging patterns of LR X. elongata at different time periods (after sunset,
nighttime, sunrise, and sunset). To accomplish these three objectives, we ran 24-hour
experiments in laboratory aquaria where we exposed shrimp to eithermultiple or individual
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cues from A. monticola either feeding on flakes or on X. elongata shrimp and measured the
number of shrimp using refuge or foraging.

We predicted that (1) chemical cues from fish (hereby kairomones) will increase refuge
use and decrease foraging more than visual cues from fish, (2) multiple predation cues will
have an enhancement effect (sensu Partan & Marler, 1999) on refuge use, and (3) refuge
use and foraging will be affected mostly at nighttime. Knowledge of how predation-related
cues in aquatic systems generate a behavioral response in their prey will contribute to
our general understanding of the ecological and evolutionary mechanisms responsible for
predator–prey communication and specific understanding of their consequences in aquatic
habitats (Crowl & Covich, 1994; Dodson et al., 1994; Ocasio-Torres, Crowl & Sabat, 2014).

MATERIALS AND METHODS
Study organisms
Xiphocaris elongata, yellow-nosed shrimp, are amphidromous shrimp. They spend most
of their adult life in fresh waters where the females carry their eggs until hatching (Fièvet,
Dolédec & Lim, 2001). The larvae then drift downstream to the estuary before migrating
upstream as post-larval juveniles (March & Pringle, 2003; Kikkert, Crowl & Covich, 2009).
Xiphocaris elongata forage on leaf matter, fruits, flowers, algae, biofilm, particulate organic
matter, and dead animals (March & Pringle, 2003; Cross et al., 2008; Ocasio-Torres, Crowl
& Sabat, 2014). They are most active at night though their foraging activities also occur
throughout the day (Pringle et al., 1993; Johnson & Covich, 2000; Scatena & Johnson, 2001;
Hein, 2009; Ocasio-Torres, Crowl & Sabat, 2015a). Their distribution is limited to the West
Indies (Fryer, 1977). Agonostomus monticola (Family: Mugilidae), mountain mullets, are a
visual, pelagic, and amphidromous fish that feed on shrimps, aquatic insects, plantmaterial,
algae, and biofilm (March & Pringle, 2003; Matamores et al., 2009; Smith & Kwak, 2014).
Agonostomus monticola are one of the main predatory fishes in the fresh waters of Puerto
Rico (Covich et al., 2009; Ocasio-Torres, Crowl & Sabat, 2015a; Ocasio-Torres et al., 2015b)
and their distribution has been reported in the West Indies, countries in northern South
America (e.g., Colombia, Venezuela), Central America, and southern and eastern states of
the United States (e.g., Florida, North Carolina) (Aiken, 1998;Matamores et al., 2009).

Animal collection
We collected the fish and shrimp in rivers of eastern Puerto Rico using an LR-20B
electrofisher. We followed the procedure suggested by its user’s guide, which recommends
starting with a frequency of 15 Hz, a 10 percent duty cycle and a voltage of 50 volts. We
increased voltage, duty cycle, or frequency until taxis was detected (Smithroot, Inc, 2018).
Agonostomus monticola were collected in riffles downstream of waterfalls in Río Sabana. LR
X. elongata were collected in pools downstream of waterfalls in Río Espíritu Santo where
predatory fishes like A. monticola are common (Ocasio-Torres, Crowl & Sabat, 2015a).
Fish and shrimp were collected in different rivers because fish were more accessible in
riffles of Sabana, while shrimp were more accessible in pools of Espíritu Santo. No genetic
structuring is expected in fish or shrimp among different rivers due to high gene flow
and metapopulation dynamics given their amphidromous life-history (Engman, Kwak &

Ocasio-Torres et al. (2021), PeerJ, DOI 10.7717/peerj.11011 4/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.11011


Fischer, 2017). LR X. elongata were used in our experiments given that they are the only
X. elongata phenotype that is constantly exposed to predatory fishes in the wild. The sizes of
the fish and shrimp chosen for the experiments were the most common sizes collected and
are comparable to sizes reported by Cooney & Kwak (2013; e.g., fish total length: 17–23 cm)
and Covich et al. (2009; e.g., shrimp post-orbital length: 8–11 mm for LR; shrimp rostrum
length: 10–14 mm for LR). The animal collection methods in this research were approved
by the Department of Natural and Environmental Resources of Puerto Rico with the permit
numbers O-VS-PVS15-SJ-00728-10022015 and R-VS-PVS15-SJ-00516-11042016.

Procedure
Given that A. monticola are found in small groups in the stream reaches where they were
collected (ME Ocasio-Torres, pers. obs., 2009; Kenny, 1995), we wet-transferred them in
groups of 3 or 4 to 75.7-L holding aquaria. Each holding aquarium had fish that were
housed for 2 weeks to give them sufficient acclimation period to laboratory conditions.
The shrimp (10-20 individuals) were also acclimated in holding aquaria (also 75.7-L) two
to ten days before the experiments. The fish and shrimp in the holding aquaria were fed
1 g of flake food (OmegaTM One Freshwater Flakes Fish Food, OmegaSea, Bacon Road
Painesville, Ohio) every two days. The holding and experimental aquaria had gravel (9 kg
of CaribSea Instant Aquarium Gravel; CaribSea, Fort Pierce, Florida) to provide surface
area to denitrifying bacteria. The holding and experimental aquaria were filled with filtered
water up to 1 inch from the top of the aquaria. The aquaria water was kept at 23 ◦C. The
aquaria had filters without activated carbon (API SuperClean Power Filter, Size 30, Mars
Fishcare Inc., Chalfont, Pennsylvania) and a power head (Aqua Clear 20 Power Head; Rolf
C Hagen Corp., Mansfield, Massachusetts) to oxygenate and circulate the water. Five PVC
tubes (125mm long, 25mm in diameter) were added to the experimental aquaria to provide
refuge space for the shrimp (Fig. 1). The aquaria had either white or clear dividers that split
the tanks in half and allowed water to flow between the two compartments but prevented
movement of organisms between tank halves (holes were <0.1 mm diameter) (Fig. 1).
Clear dividers permitted visual and chemical exposure between tank halves, while white
dividers limited visual exposure between the compartments but allowed chemical exposure
(see Ocasio-Torres, Crowl & Sabat, 2014). Ten X. elongata were added to each experimental
aquarium 24 h before the experiments started. Different shrimp were used for the different
treatments and the different replicates; therefore, each individual shrimp was subject to
only one replicate of one treatment. Shrimp density was higher than densities documented
in natural pools; there were 10 X. elongata 0.18 m−2, which equals 55.6 X. elongata m−2.
Previous studies and observations have reported X. elongata densities for natural streams
at the Luquillo Experimental Forest that have ranged between 0 and 28.6 X. elongata m−2

(Crowl et al., 2001; Covich et al., 2009). Our experimental density was higher than the
natural one in order to compensate for the reduction in experimental shrimp due to the
occurrence of predation events in the KVM (kairomones + visual + mechanosensory).
This treatment (see Fig. 1) had fish in the same compartment as experimental shrimp and,
thus, predation of these shrimp was possible. With ten shrimp we increased the possibility
of having live shrimp for the KVM treatment throughout the duration of the trials.

Ocasio-Torres et al. (2021), PeerJ, DOI 10.7717/peerj.11011 5/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.11011


Figure 1 Illustrations that represent the eight treatments in our experiment. (A) KVM = kairomones
+ visual + mechanosensory cues; (B) KAV = kairomones + alarm + visual cues; (C) KA= kairomones +
alarm cues; (D) KV: = kairomones + visual cues; (E) K = kairomone cues; (F) C = Control (no fish cues);
(G) VP = visual cues from fish that ate shrimp; (H) VF = visual cues from fish that ate flakes.

Full-size DOI: 10.7717/peerj.11011/fig-1
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Table 1 Description of the eight treatments in our study in relation to the type of cues, the food that was fed to the fish, the divider color, the
type of barrier between fish and shrimp, and the location of fish in relation to shrimp.

Treatment
acronyms

Type of cues Fish food Divider
color

Barrier between
fish and shrimp

Fish location
in relation to shrimp

KVM Kairomones + Visual + Mechanosensory Flakes* White None Same compartment
KAV Kairomones + Alarm + Visual Shrimp Clear Divider Adjacent compartment of the same tank
KA Kairomones + Alarm Shrimp White Divider Adjacent compartment of the same tank
KV Kairomones + Visual Flakes Clear Divider Adjacent compartment of the same tank
K Kairomones Flakes White Divider Adjacent compartment of the same tank
VP Visual Shrimp Clear Aquarium wall Adjacent aquarium
VF Visual Flakes Clear Aquarium wall Adjacent aquarium
C Control (no fish or alarm cues) Not

applicable
White Divider No fish

Notes.
*Although fish were fed flakes in the KVM treatment, all fish in this treatment were able 4 to feed on experimental shrimp; therefore, alarm cues were also present in this treat-
ment.

Eight treatments were performed to determine if the refuge use and foraging patterns of
LR X. elongata were affected by individual cues from A. monticola or by multiple cues from
A. monticola and from otherX. elongata shrimp in danger (Table 1 and Fig. 1). Experiments
started at sunset (between 1700 and 1800 depending on the time of the year). At sunset,
one fish was placed in the same compartment where the shrimp were previously placed
in the KVM treatment (Table 1 and Fig. 1). Predation of experimental shrimp occurred
in all KVM replicates; therefore, alarm cues were present in this treatment (see Results).
At sunset, one fish was also placed separate from the shrimp, in the empty compartment
of the aquaria in the KAV (kairomones + alarm + visual), KA (kairomones + alarm), KV
(kairomones + visual), and K (kairomones) treatments (Table 1 and Fig. 1). One fish was
also placed in an adjacent aquarium that allowed visual cues but prevented chemical or
mechanosensory cues for the VP (visual cues from fish that ate shrimp) and VF (visual
cues from fish that ate flakes) treatments (Table 1 and Fig. 1). Finally, filtered water was
transferred to the empty side of the tank in the C (control) treatment to simulate water
movement from the fish addition that occurred in all other treatments (Table 1 and Fig. 1).
Shrimp from all the treatments were fed with 1 g of flake food half an hour after the
experiments started. At this time, the fish from the KVM, KV, K, and VF treatments were
also fed with 1 g of flake food, and the fish from the KAV, KA, and VP treatments were fed
with one live X. elongata that weighed approximately 1 g (Table 1 and Fig. 1).

Discrete observations occurred one hour after sunset (between 1800 and 1900 depending
on the time of the year) and at nighttime (2300) of Day 1, and at sunrise (between 0600
and 0700), and at sunset (between 1700 and 1800) of Day 2 of the experiments. These
four observation times were chosen to have them correspond approximately to (1) the
first moments of darkness at night, (2) the time when shrimp are very active (Pringle et
al., 1993; Johnson & Covich, 2000; March et al., 1998; Scatena & Johnson, 2001; Hein, 2009;
Ocasio-Torres, Crowl & Sabat, 2015a), (3) the first moments of sunlight in the morning,
and (4) 24 h after fish addition, respectively. For night observations, low-intensity red lights
that were 15 cm in front of each aquarium were used to observe the shrimp. Observations
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consisted of counting the number of shrimp in refuge, the number of shrimp that were
foraging out of refuge, and the number of shrimp that were inactive out of refuge. We
considered that shrimp were foraging (out of refuge) when they were actively searching
for food or eating (bringing food from their chelae to their mouths) and we considered
that shrimp were inactive (out of refuge) when they were standing still (neither searching
for food or eating). Experiments were run in eight cycles, with each cycle consisting of
one replicate for each of the eight treatments. The experiments took place between August
2015 and September 2016. Aquaria were thoroughly cleaned between experimental sets.
All fish and surviving shrimp were released to their natural habitats when the experiments
were finished. The Institutional Animal Care and Use Committee at Florida International
University (IACUC-15-018) and at the University of Puerto Rico (3000-07-06-2015)
approved all procedures.

Data analysis
We used a generalized linear mixed-effects model (GLMMs) to examine the effects of the
observation times, the treatments, and the interactions between the observation times and
the treatments on the number of shrimp in refuge and on the number of shrimp that
were foraging. The fixed factors of the GLMM model were the observation times, the cue
treatments, and the interactions between the observation times and the cue treatments.
The total number of live shrimp in the tank was treated as a covariate, and the replicates as
a random block effect. We assumed a binomial error distribution and logit-link function.
The GLMMs were run in the lme4 package in Infostat, which links to the R environment
(R for Windows 4.0.2). We also ran Fisher’s LSD (Least Significant Difference) tests to
identify means that differed when the treatments were significantly different (P <0.05).

RESULTS
Number of live shrimp in the KVM treatment
Fish predated on experimental shrimp in all replicates from the KVM (kairomones + visual
+ mechanosensory) treatment (Table 2).

Number of shrimp in refuge
The treatments significantly influenced the number of shrimp in refuge (Table 3, Fig. 2A
and Table S1). The number of shrimp in refuge was significantly higher in the KVM
(kairomones + visual + mechanosensory) treatment than in all other treatments (Fig. 2A
and Table S2). Refuge use was similar in the KAV (kairomones + alarm + visual), KA
(kairomones + visual), KV (kairomones + visual), K (kairomones), and VF (visual cues
from fish that ate flakes) treatments (Fig. 2A and Table S2). The number of shrimp in refuge
in the C (control) treatment was lower than in all other treatments (Fig. 2A and Table S2).
Observation times significantly influenced the number of shrimp in refuge; refuge use was
higher at nighttime of Day 1 than at sunset of Day 2 (Table 3, Fig. 2B and Table S2). The
interaction between the treatments and the observation times was also significant (Fig. 2C
and Table 1). Shrimp exposed to all fish cues (KVM) hid in refuge more than shrimp in the
K, VP, VF, and C treatments at nighttime, and more than shrimp in the KAV (kairomones
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Table 2 Number of live shrimp in the KVM (kairomones+ visual+mechanosensory cues) treatment
in relation to the replicate number and the observation times.

Replicate Observation time Live shrimp

1 One hour after sunset of Day 1 9
Nighttime of Day 1 8
Sunrise of Day 2 7
Sunset of Day 2 7

2 One hour after sunset of Day 1 10
Nighttime of Day 1 10
Sunrise of Day 2 10
Sunset of Day 2 8

3 One hour after sunset of Day 1 9
Nighttime of Day 1 9
Sunrise of Day 2 9
Sunset of Day 2 6

4 One hour after sunset of Day 1 10
Nighttime of Day 1 10
Sunrise of Day 2 9
Sunset of Day 2 9

5 One hour after sunset of Day 1 9
Nighttime of Day 1 9
Sunrise of Day 2 9
Sunset of Day 2 5

6 One hour after sunset of Day 1 10
Nighttime of Day 1 8
Sunrise of Day 2 8
Sunset of Day 2 8

7 One hour after sunset of Day 1 8
Nighttime of Day 1 8
Sunrise of Day 2 8
Sunset of Day 2 7

8 One hour after sunset of Day 1 8
Nighttime of Day 1 6
Sunrise of Day 2 6
Sunset of Day 2 6

+ alarm + visual), KV (kairomones + visual) and C treatments at sunrise (Table 3, Fig. 2B
and Table S3).

Number of shrimp that were foraging out of refuge
The treatments, the observation times, and the interaction between the treatments and
the observation times significantly influenced the number of shrimp that were foraging
(Table 3 and Fig. 3). There was an increasing trend in the number of shrimp foraging as
the number of cues decreased (Fig. 3A and Table S4). There were less shrimp foraging in
the KVM treatment than in all other treatments (Fig. 3A and Table S4). There were also
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Table 3 Statistical results of the generalized linear mixed-effects model (GLMMs) with binomial dis-
tribution errors performed in our study.

Test Dependent variable Effects df F P

Effect of cues on the Number of shrimp Treatment 7 10.05 <0.0001
Number of shrimp in refuge Time 3 3.06 0.0292
in refuge Time × Treatment 21 2.15 0.0033

Error 224
Effect of fish cues on the Number of shrimp Treatment 7 24.60 <0.0001
Number of shrimp that that were foraging Time 3 13.44 <0.0001
were foraging Time × Treatment 21 3.37 <0.0001

Error 224

less shrimp foraging in the KAV treatment than in the KV, K, VP, VF, and C treatments
(Fig. 3A and Table S4). There were less shrimp foraging in the KA treatment than in the
K, VP, VF, and C treatments (Fig. 3A and Table S4). There were also less shrimp foraging
in the KV than in the VF and C treatments. Shrimp in the K, VP, and VF foraged similarly
(Fig. 3A and Table S4). Shrimp in the C treatment foraged less than shrimp from all other
treatments (Fig. 3A and Table S4). Regardless of the treatments, shrimp foraged similarly
one hour after sunset and at nighttime but decreased their foraging at sunrise (Fig. 3B and
Table S5). Shrimp in the KVM treatment foraged less than shrimp in other treatments one
hour after sunset, at nighttime, and at sunrise, but foraged similarly to shrimp in the KAV,
KA, KV, K, VP, and VF treatments 24 h after fish addition (Fig. 3C and Table S6).

DISCUSSION
Shrimp exposed to only visual (VP and VF) cues or kairomones (K) did not differ in
refuge use or foraging from control (C) shrimp that were not presented any fish or alarm
cue. These results were not expected and suggest that fish visual and chemical cues when
presented alone are not perceived as predation threats to X. elongata. Another unexpected
result was that shrimp exposed only to kairomones used refuge similarly to shrimp only
exposed to visual cues (VP and VF). This result is contrary to our prediction, which was
based on previous studies suggesting that in localities or time periods with poor visibility
(such as in turbid streams or at night), chemical cues should be more useful or reliable
than visual ones (Petranka, Kats & Sih, 1987; Crowl & Covich, 1990; Stauffer & Semlitsch,
1993; Dodson et al., 1994; Bouwma & Hazlett, 2001; Hickman, Stone & Mathis, 2004). An
explanation for the lack of difference in refuge use between visual and kairomones cues
from fish when presented singly is that they are redundant to X. elongata (i.e., they carry the
same information or certainty about predation threat) (Partan & Marler, 2005; Weissburg,
Smee & Ferner, 2014).

The result that shrimp in the KVM treatment significantly used refuge in a higher
number and foraged in a lower number than shrimp in all other treatments supports
our prediction that multiple cues would elicit an additive or enhancement response. Bear
in mind that in all KVM replicates fish fed on experimental shrimp, thus shrimp in this
treatment were, in effect, exposed to four cues: kairomones + alarm cues + visual cues +
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Figure 2 Mean (±0.95*SE) number of shrimp in refuge in relation to the treatments (A), the observa-
tion times (B), and the interaction between the treatments and the observation times (C). X-axis for (A)
and (C) KVM = kairomones + visual + mechanosensory cues; KAV = kairomones + alarm + visual cues;
KA= kairomones + alarm cues; KV = kairomones + visual cues; K = kairomone cues; VP = visual cues
from fish that ate shrimp; VF = visual cues from fish that ate flakes; C = Control (no fish cues). X-axis for
(C) 1: One hour after sunset of Day 1; 2: Nighttime of Day 1; 3: Sunrise of Day 2; 4: Sunset of Day 2. Data
points with different uppercase letters are significantly different.

Full-size DOI: 10.7717/peerj.11011/fig-2
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Figure 3 Mean (±0.95*SE) number of shrimp that were foraging in relation to the treatments (A), the
observation times (B), and the interaction between the treatments and the observation times (C). X-
axis for (A) and (C) KVM = kairomones + visual + mechanosensory cues; KAV = kairomones + alarm +
visual cues; KA= kairomones + alarm cues; KV = kairomones + visual cues; K = kairomone cues; VP = vi-
sual cues from fish that ate shrimp; VF = visual cues from fish that ate flakes; C = Control (no fish cues).
X-axis for (C) 1: One hour after sunset of Day 1; 2: Nighttime of Day 1; 3: Sunrise of Day 2; 4: Sunset of
Day 2. Data points with the different uppercase letters are significantly different.

Full-size DOI: 10.7717/peerj.11011/fig-3
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mechanosensory. Another interesting conclusion that can be drawn from the responses of
shrimp to the multiple cue treatments is that there appears to be a threshold or hierarchical
response in the number of cues needed to elicit a clear antipredator response in terms of
refuge use. Treatments with two (KV and KA) or three (KAV) cues tended to not differ
from treatments with one cue or among themselves in the number of shrimp in refuge. It
appears that in X. elongata (at least under laboratory conditions) at least four predator cues
perceived simultaneously (kairomones + alarm cues + visual cues + mechanosensory) are
necessary to elicit refuge use. The effect of multiple cues on the number of shrimp foraging
was different to that observed on refuge use. A significant trend towards a reduction in the
number of shrimp foraging with increasing number of cues, particularly in treatments that
included kairomone exposure in combination with alarm and visual cues (KAV, KA and
KV), can be observed (Fig. 3 and Table S3). This difference suggests that ‘‘freezing’’ and
stopping foraging is a more sensitive response to predator cues than refuge use. It is also
probably the first response of these shrimp to the threat of predation and suggests a gradual
response to predation threat similar to what has been documented in the crab Heterozius
rotundifrons (Hazlett & Mclay, 2005). Xiphocaris elongata are translucent shrimp (Johnson
& Covich, 2000), so reducing their mobility should reduce the likelihood of being detected
by a visual predator. We envision that a foraging shrimp that starts receiving predator cues
would initially freeze and cease foraging. If the cues disappear, it will continue foraging.
However, only if signals indicate the almost certain presence of a predator will it seek a
refuge and hide. Freezing when perceiving a moderate level of threat and subsequently
resuming foraging when the threat decreases may be more energetically cost effective than
stopping foraging, seeking a refuge and remaining in hiding for a length of time.

Our results add to the growing literature on how prey that detect more than one predator
cue produce a greater and more complex behavioral antipredator response than prey that
only detect one cue (Weissburg, Smee & Ferner, 2014). Prey that perceive predators by way
of multiple sensory channels cannot only improve detection, but can estimate distance
to a predator because visual, chemical, and mechanosensory signals travel at different
speeds (Weissburg, Smee & Ferner, 2014). Another advantage of multiple-channel cues
is reduction of habituation, or increase in certainty (Weissburg, Smee & Ferner, 2014).
Habituation can happen to a Xiphocaris elongata shrimp continuously receiving chemical
signals from upstream predators and becoming unresponsive to such cues. Overreacting
to such chronic signals would not be advantageous neither if such a shrimp stops foraging
and seek refuge when only smelling a predatory fish. Given persistence of such a signal,
a prey behaving in such a way will most likely not grow or reproduce and might even
starve to death. Alternatively, it will be adaptive to such a shrimp to stop foraging and seek
refuge when simultaneously smelling, seeing, and sensing the pressure waves of a moving
fish. Such a combination of signals increases certainty, unambiguously communicating
imminent danger.

Finally, we accept our prediction that shrimp behavior would be affected by the
observation times. Xiphocaris elongata shrimp are documented to be mostly nocturnal
although they can be seen actively eating throughout the day (Johnson & Covich, 2000;
Kikkert, Crowl & Covich, 2009; Ocasio-Torres, Crowl & Sabat, 2015a), and our results
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support these mostly nocturnal habits; more shrimp foraged in dark hours (1800–1900
and 2300) than in lighter hours (0600-0700 and 1700–1800). Our results also suggest an
interaction between cue treatments and time periods. At nighttime (23:00), shrimp exposed
to all fish cues (KVM) hid in refugemore than shrimp in the K, VP, and VF treatments. This
suggests that visual cues alone lose relevance as a signal of danger at night, which makes
sense. At sunrise, shrimp in the KAV, KV, and C treatments were the ones that used refuge
less than the KVM shrimp. This suggests that during the day sensing a fish mechanically
in combination with seeing and smelling it communicates danger more strongly than just
smelling and seeing it. Thus, during the day the mechanosensory channel gains relevance.
Another interesting result is that regardless of cue treatment, shrimp tended to forage
less at sunrise. Visual predators such as A. monticola that reduce foraging at night should
have high hunger and activity levels at sunrise, which makes this time-period particularly
dangerous for X. elongata.

CONCLUSIONS
Based on results from this and previous studies, we conclude that the ability of Xiphocaris
elongata shrimp to detect predator signals using different sensory channels increases their
defensive responses, which ultimately increases their survival (Ocasio-Torres, Crowl &
Sabat, 2014; Ocasio-Torres, Crowl & Sabat, 2015a; Ocasio-Torres et al., 2015b). This study
also suggests that predator detection by X. elongata can, indirectly, alter the effects of
predatory fishes on the energy flow of the stream ecosystem, given that decreased foraging
and increased hiding time may reduce the amount of leaf-litter shredded by these shrimp
(Ocasio-Torres, Crowl & Sabat, 2015a). Studies that examine the effect of other predators
(e.g., other fishes, the decapod Macrobrachium spp.) on amphidromous shrimp like
X. elongata and on Atya spp. (shrimp from the Atyidae family) are recommended to
understand a more complete spectrum of predator–prey dynamics and their consequences
at the community and ecosystem level in Caribbean streams. Understanding how aquatic
prey detect and generate a behavioral response to their potential predators is essential for
comprehending how animal interactions impact aquatic communities and ecosystems and
crucial for the general understanding of the ecological and evolutionary mechanisms that
regulate predator–prey interactions.
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