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Abstract: Due to severe presence of speckle noise, poor image contrast and irregular lesion shape, it is challenging to 

build a fully automatic detection and classification system for breast ultrasonic images. In this paper, a novel and effective 

computer-aided method including generation of a region of interest (ROI), segmentation and classification of breast tumor 

is proposed without any manual intervention. By incorporating local features of texture and position, a ROI is firstly 

detected using a self-organizing map neural network. Then a modified Normalized Cut approach considering the weighted 

neighborhood gray values is proposed to partition the ROI into clusters and get the initial boundary. In addition, a 

regional-fitting active contour model is used to adjust the few inaccurate initial boundaries for the final segmentation. 

Finally, three textures and five morphologic features are extracted from each breast tumor; whereby a highly efficient 

Affinity Propagation clustering is used to fulfill the malignancy and benign classification for an existing database without 

any training process. The proposed system is validated by 132 cases (67 benignancies and 65 malignancies) with its 

performance compared to traditional methods such as level set segmentation, artificial neural network classifiers, and so 

forth. Experiment results show that the proposed system, which needs no training procedure or manual interference, 

performs best in detection and classification of ultrasonic breast tumors, while having the lowest computation complexity. 

Keywords: Breast ultrasonic images, fully automatic, region of interest, Normalized Cut, Affinity Propagation clustering. 

1. INTRODUCTION 

 Breast cancer is one of the most common forms of cancer 
that affects women health, and the second leading cause of 
cancer deaths in women today [1]. Early diagnosis can 
increase ten-year survival rate by up to 90%. So far, due to 
the fact of being noninvasive, portable, real-time and cost 
effective, ultrasonography has been recommended as the 
preferred imaging screening method for early detection, 
instead of other approaches [2]. 

 A computer-aided diagnosis (CAD) system, which can 
process images automatically, is proved to be helpful for 
physicians in terms of ultrasonic images understanding and 
decision making. Traditionally, a CAD system contains three 
steps: tumor segmentation, feature extraction and tumor 
classification. However, it is difficult to implement any of 
these three parts in ultrasonography, due to its low gray level 
contrast, severe speckle noises in ultrasound images and the 
irregular shapes of breast tumors [2]. 

 The segmentation stage of a breast tumor is crucial in a 
CAD system. Many significant features are defined on the 
basis of tumor shape, and gray level or texture in a lesion 
area. Thus, the more accurate tumor boundary will result in 
more precise features. So far, lots of methods for boundary 
extraction have been published, such as: histogram 
thresholding [3], active contour model (ACM) [4-7], Markov 
random field (MRF) [8], neural network [9], watershed [10], 
and a hybrid algorithm gained by machine learning using the 
above principle [11]. However, not all of them can be used 
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to solve the problem related to breast tumor effectively. The 
reasons are: 

(1) Most of the publicized computer-aided diagnosis 
(CAD) systems or methods implement the tumor 
segmentation on the region of interest (ROI) or an 
initial contour, which was marked out manually by 
physicians from the raw image. Thus the 
segmentation is only of semi-automation. 

(2) Due to the abovementioned characteristics of 
ultrasonography, the segmentation accuracy is 
challenged. Being sensitive to noises, histogram 
thresholding may fail to give a precise result. Model 
based algorithms works well in ultrasonography 
demarcation, with a strong noise-resistant ability. But 
for most of the model-based methods, including 
ACM, MRF, level set, manually initialized contours 
are required, and the curve evolution process may fail 
to reach the real target with an inappropriate 
initialization [7]. 

(3) The existing segmentation methods usually perform 
poorly in their algorithmic efficiency. The model-
based methods take longer time to calculate the 
energy functions and reformulate the models. As 
addressed in [6], a modified deformable model avoids 
the shortcoming of initial human intervention, but its 
evolution process is time-consuming. The existing 
automatic segmentation in [10] reaches an initial 
over-segmentation by watershed algorithm, and then 
uses the active contour model (ACM) to refine it. 
Since it takes the whole ultrasound image as an input 
in one go, this procedure suffers a setback of being 
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high computation cost. Moreover, it will not perform 
very well when shadowing artifacts exists. 

 To classify ultrasonic breast tumors, numbers of 
morphologic and texture characteristics have been 
recognized as the accredited criteria [12-14]. These features 
describe the differences among gray level values, grayscale 
distribution properties [12], fractal dimensions [14], as well 
as the edge-sharpness [13], which can be comprehensively 
considered to make the differentiation. 

 Due to the considerable overlap in ultrasonic features 
between benign and malignant tumors, computer-based 
classification methods are developed to increase the 
classification accuracy and stability [15-17]. Up to present, 
popular approaches mainly include: back propagation 
artificial neural network (BPANN), Fisher linear 
discriminant (FLD), support vector machine (SVM) [15], 
self-organizing map (SOM) [16], Bayes classification [17], 
etc. However, most of them require training processing that 
is time-consuming and needs supervision from experienced 
physicians. Thus, developing an unsupervised classifier may 
surmount these obstacles, by dealing with an existing 
database without any training. In addition, for supervised 
methods, since individual classifiers sometimes fail to 
provide a stable high accuracy, ensemble classifiers are 
introduced to overcome this difficulty [18]. Nevertheless, the 
classification accuracy and efficiency of some ensemble 
classifiers remain not quite desirable, due to the limitations 
of individual classifiers and the selective ensemble learning 
algorithms themselves [19]. Therefore, it is meaningful to 
find a stable classifier with a great capacity of generalization. 

 In this paper, we develop a fully automatic, effective and 
time-saving system for breast tumor detection, segmentation 
and classification. With the ROI generated by classifying 
image pixels based on texture and location characteristics, a 
modified Normalized Cut (Ncut) algorithm is used to 
segment tumors with higher system automation. By 
employing morphological and texture features, an 
unsupervised clustering [20] is used to differentiate the 
malignant tumors from the benign ones with the higher 
system accuracy and efficiency. 

2. METHODS 

 The proposed method is composed of three steps which 
are all executed automatically: (1) ROI generation carried 
out by the texture classification of pixels; (2) breast tumor 
segmentation using a modified Normalized Cut algorithm; 
(3) benign and malignant classification using an Affinity 
Propagation clustering, based on the texture and 
morphological features of tumors. The flowchart is shown in 
Fig. (1). 

2.1. ROI Generation 

 In this section, a novel and fast method of ROI 
generation is proposed [21]. The detailed image 
preprocessing, feature extraction, pixel classification and 
ROI selection are described as follows. 

2.1.1. Pre-Processing 

 The raw images, as the output of ultrasonic instruments, 
always hold characters and irons in a black background 
around their inside borders. Since these are useless for the 

image processing here, a morphological mask is designed to 
acquire the real ultrasonic images of breast tissues, as shown 
in Fig. (2a, b). The stepped gray variation of the customized 
mask makes it possible to detect the real margins, and this 
pre-processing is helpful for the complete automation. 
Subsequently, given the condition of speckle noises and 
weak edges, the real ultrasonic images need to be denoised. 
It has been proven that the traditional denoising algorithms 
(such as: Gaussian low-pass filtering, Wiener filtering and so 
forth) may blur the boundaries at the same time in 
implementing noise reduction. While, the anisotropic 
diffusion algorithm overcomes this weakness by introducing 
an edge detection operator to achieve different blur effects in 
areas nearby and far away from the edge area respectively. 
Furthermore, according to the characteristics of ultrasonic 
images, the speckling reducing anisotropic diffusion (SRAD) 
algorithm [22] meliorates the edge detection by integrating 
the performance of gradient operator and Laplace operator, 
in which way the grey variation caused by the speckle noise 
could be exclude from the detected edges. Thus, the real 
ultrasonic images are treated by the SRAD, to reduce speckle 
noises, meanwhile to preserve and even enhance the edge of 
tumors, as shown in Fig. (2c). 

 

Fig. (1). The Flowchart of the proposed method. 

2.1.2. Feature Detection 

 In this section, the image obtained by the above pre-
processing is divided into non-overlapping grids, as shown 
in Fig. (2c). Here the size of each grid is lgrid lgrid, and the 
selection of grid size lgrid will be discussed in the following 
experiments in detail. Then the local texture, local gray level 
co-occurrence matrix and position features are extracted to 
describe each grid. 

 Local texture features [23] include six measures, which 
have been formulated as quantitative shape descriptions of 
the first-order histogram of each grid. 

(1) Average gray level m, which describes the difference 

in gray between the ROI and non-ROI, is defined by: 
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where z, with a range of {z0, z1, …, zL-1}, is the gray 

level variable of the L-grayscale image, and {p(zi), 

i=0,1, ,L 1} is the corresponding proportion. 

(2) Standard deviation , which characterizes the texture 

roughness, is expressed as: 
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(3) Normalized smoothness R, which characterizes the 

texture smoothness, can be calculated by: 
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(4) Third moment μ3, which describes the histogram 

skewness, is defined as: 
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(5) Uniformity U, which reflects the uniformity degree of 

the gray distribution, can be written as: 
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The quantity U depends on the local distribution of 

the image intensities. Its value reaches the maximum 

when the local image intensity distribution is uniform. 

(6) Entropy Eg, a randomness metric which can measure 

the image’s information content, is defined by: 
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 When the image gray distribution has the biggest 
randomness, Eg reaches its maximum. 

 The Gray Level Co-occurrence Matrix (GLCM) features 

reflect the comprehensive information of image gray on 

different directions, adjacent intervals and variations. Thus 

these can be used to analyze the image primitive and its 

structure. To measure the local GLCM features, the image 

after the pre-processing is written as f(x, y), with a size of 

M N and a grayscale of Ng. The local GLCM of each sub-

block is indicated by P, which is an Ng Ng matrix. Then 

1 2( , )P g g
, the element at row 1

g
 and column 2

g
 of P, 

which meets a certain space relation, can be expressed by: 

{ }1 2 1 1 2 2 1 1 1 2 2 2( , ) # ( , ), ( , ) | ( , ) , ( , )P g g x y x y M N f x y g f x y g= = =   (7) 

where 1
g , 2

g  are the gray level values of the current pixel 

pair, #{ } is the number of elements in this set. The 

normalized local GLCM elements 
1 2

ˆ ( , )P g g  equals to 

1 2 pair( , )P g g N , where pairN  is summation of all elements in 

P. If the distance between points (x1, y1) and (x2, y2) is d, and 

their angle with the abscissa axis is , 
1 2

ˆ ( , , , )P g g d  is 

defined as the joint probability density of gray levels 1
g  and 

2
g  separated by the distance d and along the direction . So 

it can not only reflect the brightness distribution, but also 

reflect a tabulation of how often different combinations of 

pixel brightness values (gray levels) occur in an image. Here, 

since the texture in ultrasonography has no specific 

direction, the normalized local GLCM element ä 1 2
ˆ ( , )P g g  

can be calculated by 1 2
ˆ ( , , , ) 4P g g d , where 

{ }0, 4, 2,3 4= , and d  is set to 2 due to the texture 

roughness. Thus, three typical statistics can be calculated by 

the normalized local GLCM 
ä
P̂  of each grid [24]: 

(1) Contrast Cn, which presents to be higher when there 

are more pixel pairs with high gray level difference, is 

defined as: 
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(2) Correlation Cr, a measure of the similarity degree of 

GLCM elements along the vertical or horizontal 

direction, is written as: 
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(3) Energy Et, namely the quadratic sum of the GLCM 

elements, which reflects the uniformity of the image’s 

gray and texture distribution, is expressed as: 
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 The image with coarser texture holds a higher Et. 

 By dividing the ultrasonic image into grids, each sub-

block corresponds to a coordinate value (xb, yb). In human’s 

visual system, the neighborhood property may influence the 

judgment, which comes from the similarity measured by 

other features. In this way, two sub-blocks, which are far 

away from each other, still hold a low possibility belonging 

to the same class, even if their other characteristics are quite 

similar. Meanwhile, it is indicated that sub-blocks locating in 

the center of the image is more likely to be part of the ROI. 

Here, the introduced position features (xb, yb) are multiplied 

by the weight wpos to limit its impact. Considering that the 
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position information is only used to support the distinction of 

objects with a large distance between them, the value of wpos 

generally ranges between 0.01 and 0.1. Here it is empirically 

selected as 0.05. 

 Due to the correlation between the above 11 features, an 
effective feature subset needs to be selected to avoid 
dimension disasters. In this study, the breast tumor ROI and 
non-ROI background marked by the physician are taken as 
the training set. The feature selection tools such as the 
classic Principle Component Analysis (PCA) and the 
Sequential Floating Forward Selection (SFFS) are used to 
obtain the optimal feature vector and minimize the system 
time. Finally the achieved optimal features are: five basic 
local texture features (average gray, standard deviation, 
smoothness, third moment and uniformity), two local GLCM 
features (contrast and energy), and two position 
characteristics. 

2.1.3. Pixel Classification 

 The feature vector of a grid, which consists of nine 
features, is normalized to [0, 1], and the position features are 
scaled by the weighting coefficient wpos. Then, taking the 
nine dimensional vector of each grid as the input of the 
classifier, the ROI and non-ROI background in ultrasonic 
breast tumor images can be distinguished. 

 In this section, the self-organizing feature map neural 
network (SOMNN) [25], proposed by Kohonen according to 
characteristics of the nervous system, is used for the 
classification of these grids to detect the ROI automatically. 
The SOM is trained by the unsupervised learning to produce 
a low-dimensional discretized representation of the input 
space of the training samples, and it uses a neighborhood 
function to preserve the topological properties of the input 
space, which makes it different from other artificial neural 
networks. 

 In this way, the SOM is able to classify the sub-blocks 
into n clusters only by the unsupervised learning. In our 
study, the output layer number n is set to 2 (ROI and non-
ROI output) and the feature vector extracted from each grid 
is taken as the input. To map the sorted sub-blocks back to 
the size of the original ultrasonic images, the initial result of 
ROI detection can be represented by a binary image as 
shown in Fig. (2d), where white areas indicate the ROI 
candidates while black areas the non-ROIs. 

2.1.4. ROI Selection 

 Due the influence of the speckle noise, there will exist 
some isolated points in the binary image after pixel 
classification. Here, a morphological opening is used to 
remove isolated dots, burrs and tiny bridges, and a 
morphological closing is used to fill holes and small cracks, 
while keeping the general position and shape unchanged. 

 Since the hypoechoic areas also comprise the 
subcutaneous fat and muscle region, which scatter around 
the upper and lower bound of the image, the following rules 
are designed to remove their undesirable impact and detect 
the real ROI, according to the general size and position of a 
real ROI in an ultrasonic image. Firstly, the largest 
connected region is found out as B1 and the second largest 
connected region B2. Then, 

(1) if B1 does not reach the image bound, take B1 as ROI, 

else continue; 

(2) if B2 reaches the image bound, take B1 as ROI, else 

continue; 

(3) if the area of B2<1/25 of the original image, take B1 as 

ROI, else take B2. 

 Furthermore, the pre-processing using the SRAD and the 
adjustable sub-block size lgrid instead of a constant value in 
[6], are proven to be beneficial to remove the adjacent 
shadowing artifacts which share similar features as the real 
ROI does to some extent. 

 After the grids selection, an irregularly shaped white area 
Rcand is identified as the candidate ROI. The enclosing 
rectangle of Rcand is found, and its border is then expanded 
outwards by lgrid 4 pixels (if it exceeds the bound of the 
original image, take the bound of image as the final result) to 
gain the final rectangular ROI used for the subsequent 
segmentation. The magnification coefficient 4 is obtained by 
the experiments as described later. 

 As mentioned above, the implementation flow of the 
automatic ROI generation is shown in Fig. (2), and Fig. (2e, 
f) is the final detected ROI. 

2.2. Segmentation of Breast Tumors 

 In this section, a modified Normalized Cut (Ncut) 
method is proposed with the weighted gray values of 
neighborhood pixels, which succeeds in the automatic 
segment of the breast tumor in ultrasonic images. The 
proposed method partitions the original ultrasound image 
into clusters with Ncut, and further receives the initial 
contour of the tumor by employing the different gray values 
and spatial distributions of each cluster. For a small 
proportion of inaccurate segmentation (e.g. grayscale 
leakage), a modified active contour model is used to adjust 
the initial boundary to obtain the final result. Compared with 
the traditional edge detection methods, it can realize 
boundary extraction of tumors efficiently and automatically. 

2.2.1. Automatic Segmentation Using the Modified Ncut 

 The basic principle of clustering is to minimize the 

similarity among different clusters whereas to maximize the 

similarity inside each cluster itself. In this study, the graph 

theory-based clustering algorithm is applied for image 

segmentation. Firstly, the ROI generated above is processed 

by the SRAD [22], whilst the resultant IS is taken as the 

object image to be segmented. Then a weighted undigraph 

( ),G V E=
 is obtained, where V is the node set (composed 

of all pixels in IS) and E  is the similarity between different 

pixels. 

 Given an image with a size of N N , its adjacency 

matrix can be noted as
2 2

N NW , which is regarded as 

the similarity matrix as well. By dividing the image into two 

disjoint parts A and B ( A B V= ), we can define the sum 

of weight between A and B as 
cut

W  

( ( ) ( )
,

, ,
cut i A j B

W A B W i j= ). Then the optimum 

segmentation of the image can be achieved by minimizing 



30    The Open Medical Informatics Journal, 2011, Volume 5 Su et al. 

the value of 
cut

W . However, there are always some clusters 

which only consist of individual nodes in the result of 

Minimum Cut [26]. This is an unfavorable phenomenon for 

image segmentation. Fortunately, it can be overcome by 

Normalized Cut (Ncut) [27]. Ncut is targeted to find a 

normalized minimum cut ( ),Ncut
W A B

 
by firstly respectively 

dividing ( ),cut
W A B  by ( ),assoc A V  and ( ),assoc B V , then 

adding up the ratios, where ( ),assoc A V  represents the total 

connections between A and V, and so it is the same with 

( ),assoc B V . 

( )
( )

( )

( )

( )

, ,
,

, ,

cut cut

Ncut

W A B W A B
W A B

assoc A V assoc B V
= +        (11) 

where ( ) ( )
,

, ,
i A j V

assoc A V W i j= . 

 The optimum solution is to minimize the value of 
Ncut

W  

between A and B, which is a complex NP-complete. In [27], 

Shi and Malik defined X as a matrix of N
2

NC, where NC is 

the number of clusters. Xl is the l
th

 column vector of X. If a 

node i belongs to l
C

, ,i l
x

 which is the i
th

 row and l
th

 column 

element of X is set to 1, otherwise ,
0

i l
x = . They also defined 

the connectivity of the i
th

 node as ( ),i j
d W i j= , and a 

diagonal matrix D ( ( ), i
D i i d= ). Based on a series of linear 

algebra derivation, the search of the minimum 
C

NcutN
W can be 

transformed to the optimization of X. 

( )
1

1
max min

C

C

TN

l l

NcutN T

lC l l

W
N =

=
X X

X WX
X

X DX        (12) 

 The constraint condition is: { }
2

0,1
C

N N

X , 2
C
N N

=X1 1 , 

where 
C
N
1  and 2

N
1  are vectors of all ones with sizes of 

NC 1 and N
2

1 respectively. Let ( )
1 2

T
=Z X X DX , 

Equation (12) can be expressed by: 

( ) ( )
1

max min
C

T

NcutN

C

W tr
N

=
Z Z

Z Z WZ        (13) 

 Here, the constraint condition can be rewritten as 

C

T

N
=Z DZ I . In (13), tr  represents the trace of a matrix, 

and 
C
N
I is an identity matrix of NC NC. By extending the 

range of Z  to the set of real numbers, the discrete problem 

will be transformed to a continuous optimization problem, 

which is much easier to be handled. 

 In this paper, by taking pixels in ultrasound images as 

nodes in the graph theory, the similarity matrix W  can be 

calculated based on the different position and gray level of 

each pixel. 

( )

( ) ( ) ( ) ( )

( ) ( )

2
2

2
2

2
,

0

C C

C

L i L jF i F j

C Ce if L i L j rW i j e

otherwise

<=
L

F

      (14) 

where ( )C
L i  represents the position of node i, or 

equivalently its coordinate inside IS. ( )F i  describes the 

gray level information of node i. r  is the set effective range, 

F
 and 

C
L  are the control parameters. In our study, the 

brightness of i’s neighborhood nodes is also considered 

when ( )F i
 

is defined, due to the ultrasonic image 

characteristics. 

 In [28], Qiu PH demonstrates that a proper local 

smoothing of the observed image intensities would benefit 

 

Fig. (2). The automatic ROI generation flow, (a) the original image; (b) the result of the morphological filtering of (a); (c) the result of the 

SRAD and contrast enhancement for (b); (d) the result of the SOM classification; (e) and (f) the detected ROI. 
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edge detection, because neighboring image intensities often 

carry helpful information about the edge structure at a given 

pixel. Thus, a mask of 5 5  is designed here as shown in 

Fig. (3). The gray level of the image center is ( ),g i i , with its 

weight set to 1. The weights of its neighborhood pixels are 

also marked. The further away a node is to the image center, 

the smaller its weight will be, and the darker its brightness is 

equivalently. Then in the center of an image, ( )F i  can be 

expressed by ( ) { }2 , 0,1, 2,3, 4,5
kk

F i k = , where 

( )
k

F i  can be defined as follow: 
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F i g i i

F i a sum g i j sum g i j

a
F i sum g i j sum g i j

a
F i sum g i j

a
F i sum g i j

a
F i sum g i j sum g i j

=

= ± + ±
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= ± ±

= ± ±

= ± ± + ± ±

  

(15)

 

where a should satisfy the condition  

4 8 1
2 2 2 2 5

a a a a
a + + + + =

,  

that is 0.0724a = . By substituting the value of a  into the 

definition of ( )F i , the pixel i’s gray level information 

considering weighted neighborhood gray level is obtained. 

Then by substituting the value of ( )F i  into Equation (14), 

the similarity matrix W  used in NCut fully automatic 

segmentation can be calculated. 

 In ultrasonic images, due to the severe presence of 
speckle noise, low contrast, as well as the irregular shape and 
area of objects, it is hard for 2-way Ncut to segment the 
tumor and the background directly. So we partition the ROI 
image into NC (NC 2) clusters. According to the gray 
information and space distribution of each cluster, the ones 
belong to the tumor area can be easily screen out from the 
background tissue. For instance, the clustering result of the 
modified Ncut with NC set to 5 is shown in Fig. (4a, b).  
Firstly, by sorting the average gray of each cluster in 
ascending or descending order, the kink of the gray 
distribution curve can be found. Then, the clusters with a 
higher average gray than that of the kink point (e.g. Cluster 
a2, a4, a5 and b1, b3, b4 in Fig. (4a, b)) are removed. 
Subsequently, due to the fact that tumors always locate 
centrally, an elongated mask across the center of the ROI 
image is taken to eliminate clusters which have no intersects 
with this mask ((e.g. Cluster a3 in Fig. (4c))). Lastly, a 
morphological post-processing is used to eliminate the 
minute crevices. In this way, the boundary CI of the checked 
regions IC is the result of NC-way Ncut automatic 
segmentation, just as shown in Fig. (4c, d). 

 

Fig. (3). The mask considering the weighted neighborhood gray 

values. 

 

Fig. (4). Automatic boundary extraction using Ncut, (a), (b) the 

5
C
N =  clusters; (c), (d) the boundary of tumor extracted by the 

modified Ncut. 

 It is proven that a quite different result of partition is 
obtained with a different NC parameter. So it is of great 
significance to choose an appropriate NC. Traditionally the 
Ncut algorithm is invoked recursively to over-segment the 
image, and then the region merging is used to get the lesions 
area [29]. However, our study proves that the over-
segmentation is unnecessary with an automatic searching 
algorithm of NC. Here, by setting NC to different values 
ranges from 2 to 10, it is found that the modified Ncut results 
in an ideal segmentation with NC belongs to {5, 6, 7}. So the 
optimal NC value is searched from 5 to 7, with the stopping 
criterion of area(IC(t))-area(IC(t+1))< (1/16) area(IC(t)) (t is 
the trial times). Then IC(t) could be found as the final 
checked regions IC. 

2.2.2. Boundary Adjustment 

 For natural images, the Ncut can result in an ideal 
segmentation. However, for some poor quality and edge-
missing ultrasonic breast tumor images, the boundary CI 
gained by the method in section 2.2.1, may have a certain 
Hausdorff distance and mean distance error (MDE) from the 
real contour (i.e. gold standard, the boundary marked by 
physicians). To overcome this problem, we employ the 
active contour model containing a local gray level item in the 
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energy function. So this model may refine the imprecise 
cases to much more accurate breast tumor segmentation. 

 The concept of Region-scalable Fitting Active Contours 

(RFAC) is proposed in [30]. For each node i (the image 

domain), the regional energy item 
Fit

i  is defined as: 

( ) ( )( ) ( ) ( ) ( )
2

2

1 2

1

, ,
k

Fit

i k k

k

f i f i K i j I j f i dj
=

=    (16) 

where k=1 or 2 denotes the node i outside or inside the 

closed curve respectively, f1, f2 represent the regional gray 

energy of the node outside and inside the close curve, k  is 

the corresponding weighting coefficient, and the kernel 

function
( )K i j

indicates the weight assigned to each 

intensity 
( )I j

 at j. In level set methods, a contour  is 

represented by the zero level set of a Lipschitz function , 

then the following energy function is defined for : 

( ) ( ) ( ) ( ) ( )( )( )
2

2

1 2

1

, , k k k

k

f f K i j I j f i M j dj d
=

=

( )( )H i di+          (17) 

where H is the Heaviside Function, and 

( ) ( ) ( ) ( )1 2
, 1M H M H= = . Taking CI as its initial 

contour, RFAC will continuously evolve the closed curve , 

to reduce the value of , until it finally reaches the real 

edge of the target. At this time, the optimal 1 2
,f f

 have been 

selected to stop the whole process. Then the comprehensive 

consideration of global and regional energy makes it possible 

to reach the precise segmentation. 

2.3. Benign and Malignant Classification 

 In the analysis of benign and malignant status of 
ultrasonic breast tumors, many system-independent, robust 
and effective texture and morphologic features have been 
defined based on physician’s experience. In this study, three 
texture features and five morphologic features are selected 
out from the feature set for the subsequent classification, to 
avoid the complexity of dimensionality and save processing 
time of the system. 

 

2.3.1. Texture and Morphological Features 

 Pixels of an ultrasound image hold different gray level 
intensities. Different lesions always have different textures. 
In this study, T tumor the standard deviation of the gray level 
intensity in tumors, T edge the standard deviation of the gray 
level intensity in the annular boundary area, and TRltRrt the 
ratio of the gray level intensity in tumors to the value in the 
annular boundary area are exploited as texture 
characteristics. Their definitions are given in Table 1. 

 In a morphological way, a physician clinically 
differentiate between benign and malignant breast tumors 
based on the principle that benign ones usually hold smooth 

shapes whilst malignant ones tend to have irregular borders. 
To describe this hypothesis using the mathematical 
expression, five morphologic characteristics including 
Mcompt, Mspicu, Mlobus, Mrectlike and Meccent can be selected to 
describe the pathological region [31-32]. They are also 
defined in Table 1. 

Table 1. Texture and Morphologic Features Extracted 

 

Feature Distribution 
Feature Feature Definition 

Benign Malignant 

T tumor the  of tumor
gray

 Smaller Larger 

T edge the  of 
edgegray  Larger Smaller 

TRltRrt tumor edgegray gray  Larger Smaller 

Mcompt 2

4 * Area

Perimeter
 Larger Smaller 

Mspicu 

/4 /2

0 /4

( ) ( )R R

= =

 Larger Smaller 

Mlobus #{local extrema in r( )} Fewer More 

Mrectlike tumor rect
area area  Larger Smaller 

Meccent short longL L  Smaller Larger 

 

 In Table 1, Area and Perimeter are the area and perimeter 

of the tumor respectively. The polar coordinates ( , )r of 

boundary pixels are calculated with the origin at their center 

of mass. ( )R  is the Fourier transform of the curve-fitted 

radial distance ( )r , and the #{·}means the element number 

of this set. Mlobus is defined as the number of local extrema in 

the curve-fitted ( )r . Stavros AT, et al. proved that the 

spiculation shows higher odds ratio for malignant 

ultrasonographic features versus benign findings in [33], and 

this could be reflected by Mlobus. The area of the tumor versus 

the area of its minimum enclosing rectangle is represented as 

Mrectlike. Llong means the length of the longest chord connected 

by a pair of boundary points, and Lshort the maximum of a 

chord set perpendicular to the longest chord. 

 In this way, three texture features and five morphologic 

features form a 1 8vector to figure a single tumor. Lastly, it 

is necessary to normalize each element in the feature matrix 

of our ultrasonic breast tumor database into [0,1] . 

2.3.2. Affinity Propagation Clustering 

 The Affinity Propagation (AP) clustering [20] is a novel 
clustering algorithm with good performance and high speed. 
This algorithm avoids the influence of initialization by 
treating all data points as potential exemplars at its initial 
stage. Here, instead of traditional methods, the AP clustering 
is presented as an effective classifier to differentiate 
benignancies from malignancies in an existing database. 

 The main iteration procedure of the AP clustering is the 

updating and transmission of two kinds of message: 
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“responsibility” ( , )r i k  and “availability” ( , )a i k . Here, 

( , )r i k  denotes the accumulated evidence for how well-

suited the point k is to be the exemplar for the point i, while 

( , )a i k  denotes the accumulated evidence of the 

appropriateness if the point i selects the point k as its 

exemplar. In order to calculate these two kinds of message, 

the matrix denotes similarity between each data point is 

introduced. The “similarity” ( , )s i k shows how well the data 

point k is suited to be the exemplar for the data point i. The 

“preference” values ( , )s k k of all k data points are set to a 

same negative real number. Consequently, the input of AP 

clustering is a collection of real-valued similarities between 

each pair of data points. Taking the whole dataset as a 

network of data points, these two kinds of message are 

exchanged along edges of this network. For a point i, if the 

value of k maximizes ( , ) ( , )a i k r i k+ , k is an exemplar for the 

point i. The values of responsibilities and availabilities are 

combined to monitor the exemplar decisions, and thus the 

iteration procedure will be stopped when any termination 

condition is satisfied. 

 In this section, the AP clustering is used to classify the 
ultrasonic breast tumor database without any training process. 
Here each tumor’s feature vector is taken as a node in the 
network. Due to the fact that different initialized value of 
“preference” results in different number of identified exemplars, 
an empirical “preference” is chosen to access the most rational 
result. With the “preference” set to the minimum of input 
similarities, the AP classifies the breast tumor database into five 
clusters firstly. Each cluster has specific and similar features and 
tends to hold a certain malignant probability. Then, referring to 
the feature distribution of breast tumors, a further identification 
is implemented on these five clusters to differentiate benign 
tumors from malignant ones. 

 Actually, the AP clustering can be modified by 
introducing a constraint in the process of message passing, 
so as to realize an effective and specified K-cluster AP, 
which can directly generate K clusters as user defined just as 
Zhang XL, et al. introduced in [34]. However, K-cluster 
(K=2) AP fails to reach an ideal result, because of the 
complex clustering structure in our database. On the 
contrary, the original AP clustering with the empirical 
“preference” can finish the superior assortment based on the 
similarity between each tumor case. 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

3.1 Materials 

 In this paper, the database we used includes 132 breast 
ultrasound images with pathologically confirmed tumors, 

including 67 benign tumors and 65 carcinomas. All digital 
images were real-time captured from a HDI-3000 ultrasound 
machine (ATL, USA), with a transducer whose frequency 
ranged from 5 to 14 MHz in clinical practices. This database 
was supplied by the workstation of Ultrasound Department, 
Huashan Hospital of Shanghai. An experienced physician 
marked the location of each breast tumor in its original 
image in advance and gave the advice whether the tumor is 
malignant or not. Then they were transferred to a personal 
computer for the following automatic ROI detection, breast 
tumor segmentation and classification by programming with 
Matlab R2008a on a PC with E8400 3GHz CPU and 3GB 
RAM. 

3.2. ROI Generation 

 For each case (e.g. Fig. 5a) in the database, after the pre-
processing (e.g. Fig. 5b) and partitioning, a nine-dimensional 
feature vector can be extracted from each grid. Taking this 
feature vector as the input of the SOM, the sub-blocks will 
be classified into two parts. 

 In our research, the original image is tentatively divided 
into grids with a size of 32 32, 16 16, 8 8 and 4 4 
respectively. The results show that a large lgrid will cause an 
under-segmented result and fail to distinguish the ROI and 
non-ROI. On the other hand, a relatively smaller lgrid means 
that each block only contains limited information, thus it will 
cause over-segmentation while incurring large cost of 
computation. Experimental results also show that the 
classification result reaches its best with lgrid =8. 

 The proposed method is implemented on 132 cases in the 
database with a sub-block size of 8 8. The ROI both 
extracted automatically and manually by physicians are 
compared in Table 2. There are 109 (88+21) successfully 
detected ROIs in total, taking up 82.58% of all cases. The 
rest 23 images failed, which means the detected ROIs do not 
contain the areas marked by physicians. Among those 
successfully detected ROIs, 80.73% are with a moderate 
size, which suggests that the results are almost consistent 
with physicians’ views. The remaining 19.27% are those 
which contain the ROIs marked by physicians but are 
generally larger in size. Among 23 failed cases using the 8 8 
sub-block, eight cases will succeed by extend lgrid to 16 16. 
Thus the total rate of success can be promoted to 88.64%. 

 According to our experiments, in order to realize the 
adaptive selection of the grid size, the initial lgrid can be set to 
1/80 of the original image width at the beginning. For those 
failed cases, lgrid can be successively resized to 1/40, 1/20 of 
the image width, etc., meanwhile further analyses are made 
until the accuracy rate does not improve. Since each tumor 
takes up different areas of an image, it is hard to predict the 
accurate size of the tumor area. Therefore it is difficult to 

Table 2. The Results of ROI Extraction 

 

8 Pixel 8 Pixel Initial Treatment 16 Pixel 16 Pixel Further Treatment 
Result 

Number Percentage/% Number Percentage/% 

Moderate ROI  88 66.67 91 68.94 

Larger ROI 21 15.91 26 19.70 

Failed ROI 23 17.42 15 11.36 
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directly obtain the optimal grid size. In order to avoid the 
under-segmentation by a large lgrid and the over-segmentation 
by a small lgrid, the above processes are needed. 

 Due to defects like speckle noise, artifacts, edge loss and 
uneven brightness of breast tumors, traditional ROI 
generation methods have some difficulties when applied in 
this area. The algorithm brought out in this paper will solve 

this problem to some extent. Fig. (5) shows two examples of 
the ROI generation, in which (c) are the binary output of the 
SOM. After the morphological filtering and the ROI 
selection step, the final ROIs are correctly detected (as 
shown in Fig. 5d), even if the shadowing artifacts (marked 
by the red ellipses in Fig. (5)) or the subcutaneous fat, 
muscle region exists. 

 

Fig. (5). The result of ROI generation, (a) the original images; (b) the preprocessing of (a); (c) the result of SOM classification; (d) the 

detected ROI. 

 

Fig. (6). Accuracy comparison of boundary extraction algorithms, (a1-a3) segmentation to clusters; (b1-b3) region of tumor extracted by the 

Ncut; (c1-c3) boundary extracted by the proposed method, the local fitting of boundary in (b1-b3); (d1-d3) boundary extracted by the LFAC; 

(e1-e3) boundary extracted by the RFAC only. 
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3.3. Tumor Segmentation 

 The performance of tumor segmentation can be evaluated 
in two ways: accuracy and efficiency. 

 For example, Fig. (6) shows the result of each 
segmentation step based on the detected ROI, and the 
comparison with two leading methods, the LFAC (i.e. Local-
Fitting Active Contour) [35] and the RFAC model only [30]. 

 The proposed Ncut partitions the ROI into an auto-
searching NC clusters (e.g. Fig. 6a1-a3), and the clusters 
belonging to the breast tumor are selected out as shown in 

Fig. (6b1-b3). Thus, 120 cases out of 132 breast tumor 
database can be segmented correctly, and all others can 
result in an ideal boundary with a further adjustment using 
the RFAC. The white contours in Fig. (6c1-c3) represent the 
final automatically detected boundaries, while the red ones 
are the contours outlined by physicians (the gold standard). 
According to the segmentation results of physicians, if the 
automatically detected boundaries are close to the gold 
standard, it is considered to be a success. Thus, without any 
manual intervention or initial contour delineation, the 
proposed method receives a high segmentation accuracy of 
100%, overcoming the obstacle of inhomogeneity of gray 
level intensities and grayscale leak. Meanwhile, compared to 
the tumor areas in the gold standard, these three 
segmentation results have a high mean True-Positive ratio of 
95.08%, a low mean False-Positive ratio of 3.38%, and a low 
mean False-Negative ratio of 4.92%. 

 Fig. (6d1-d3, e1-e3) show the segmentation results of the 
LFAC and the RFAC only respectively. Here, the initial 
contour needs to be provided in both the LFAC and the 
RFAC only. The LFAC [35] reaches a rough contour by the 
traditional global optimal level set algorithm, and refines it 
by adding the regional energy. Since the LFAC is sensitive 
to the initial contour, it fails in all these three cases. The 
RFAC only [30] employs the RFAC directly on the initial 
contour provided. Due to its time-consuming nature, it is 
also necessary to set an appropriate initialization. Besides, 
Fig. (6e3) shows that the RFAC only may fail to detect the 
grayscale leak, and result in a coarse contour in the end. 
Being implemented on the whole databases, the LFAC fails 
on 27 cases, while the RFAC on 16 cases. 

 Meanwhile, Table 3 records the mean time cost and its 
standard deviation by each segmentation method to validate 
the efficiency. 

Table 3. Efficiency Comparison of Three Segmentation 

Methods 

 

Index The Proposed LFAC RFAC Only 

Mean time (s) 1.35 2.98 5.51 

Standard deviation 0.23 2.12 3.78 

 

 Since the proposed method readily admits combinations 
of different clues such as the brightness, location and 

windowed histograms, it outweighs the other two methods 
mentioned above both in segmentation performance and 
operation efficiency (1.35s per case)  

3.4. Benign and Malignant Classification 

 In the section, the extracted three texture and five 
morphologic features are firstly normalized, and then used to 
figure a single breast tumor. Table 4 shows the different 
performances of different classifiers including the BPANN, 
the FLD, the SVM, and the proposed method respectively. 
Whereby, the measures of true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN) cases are 
calculated. Then five measures can be obtained: which are 
Accuracy=(TP+TN)/(TP+TN+FP+FN), Sensitivity=TP/(TP+ 
FN), Specificity=TN/(TN+FP), PPV=TP/(TP+FP), NPV= 
TN/(TN+FN). 

 Here, with the initial value of “preference” set to the 
minimum of input similarities empirically, the proposed 
method using the AP clustering is implemented directly on 
the dataset including 67 benignancies and 65 malignancies. 
The BPANN is exploited with one of 10 nodes hidden layer. 
Thirty-three benign tumors and thirty-two carcinomas are 
chosen at random to serve as the training samples of the 
BPANN, the FLD and the SVM [15]. Meanwhile, all the 
cases in the database are taken as their testing dataset. 
Experiments using each method are conducted for 100 times 
respectively. The proposed system receives a high accuracy 
of 93.18%, which is unique because of the outstanding 
stability of the AP clustering. Given the condition of the 
instability, for the BPANN, the FLD and the SVM, the mean 
performance of their 100 time trials is recorded. Since the 
AP clustering is non-supervised unlike others such as the 
BPANN, the FLD, the SVM, it avoids being influenced by 
the subjective errors of physicians. Therefore, the 

Table 4. Performances of Different Classifiers 

 

Classifiers 
Classification Performance 

The Proposed System BPANN FLD SVM 

Accuracy (%) 93.18 82.45±6.97 89.05±1.69 89.52±1.31 

Sensitivity (%) 92.31 83.54±10.90 90.51±3.91 89.48±3.08 

Specificity (%) 94.03 81.39±10.79 87.64±1.93 89.57±2.13 

PPV(%) 93.75 82.14±8.12 87.70±1.52 89.33±1.81 

NPV(%) 92.65 84.39±8.58 90.65±3.41 89.87±2.60 

Needs training or not No yes yes Yes 
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unsupervised AP clustering results in a better performance of 
classification by employing the similarity between each case, 
without any training procedure. Meanwhile, it outweighs 
other clustering methods (e.g. k-means) in a high accuracy 
and extremely low computation (only 6ms per case). 

 

Fig. (7). ROC curve of three traditional classification methods. 

 Since the complete receiver operating characteristics 
(ROC) can give a better overall view of the classification 
performance of methods, which holds a specific threshold to 
determine whether the tumor is benign or not. Thus the ROC 
curves of the BPANN, the FLD, and the SVM are shown in 
Fig. (7). Where, each curve is also the mean of 100 times 
trials. From Fig. (7), it is proven that the classification 
performance of the SVM is superior to the others. However, 
since the proposed AP clustering is based on the principle of 
clustering, the method itself does not require any threshold to 
make decisions. Therefore, no ROC is given for the 
proposed AP. 

3.5. Selection of Classification Methods 

 Two kinds of unsupervised clustering algorithms are used 
in the CAD methods for breast tumors in ultrasonic images. 
Each of them has its specific application here, because of its 
intrinsic feature. In Section 2.1.3, the SOM is used for the 
pixel classification to identify the ROI, since we can appoint 
the cluster number to two directly and train a certain network 
in advance. (One cluster denotes the initial selected ROI, and 
the other the initial selected background.) The AP clustering 
is unsuitable for the ROI detection, because it is hard to find 
an appropriate “preference” to determine the cluster number. 
While in Section 2.3.2, the AP clustering is used for the 
classification of benign and malignant tumors, by clustering 
them based on the similarity between each other. Therefore, 
the proposed AP also wins in its great stability and training-
free property. 

4. CONCLUSIONS 

 A fully automatic system for breast tumor detection and 
classification in ultrasonic images is proposed in our study. 
The better accuracy and time-saving features make it 
beneficial to help the physicians in clinical practice. 

 Future work will focus on the follows. (1) Further post-
processing needs to be added, to reduce the influence of 
severe shadowing artifacts in ROI detection and tumor 
segmentation. (2) Data smoothing may be added in the 
image preprocessing after the automatic ROI generation for a 

more precise boundary extraction, to avoid the limitations of 
the traditional histogram thresholding methods. Thus it 
might be helpful for the further development of our research 
to draw lessons from smoothing image segmentation 
methods [36, 37]. (3) More effective features are needed to 
be exploited to differentiate benign tumors from malignant 
ones, since the existing feature vectors often suffer 
characteristic conflict in ultrasound images. 
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