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Abstract

Heart failure is a major clinical problem worldwide. Previous studies have demonstrated an important role for G protein-
coupled receptors, including protease-activated receptors (PARs), in the pathology of heart hypertrophy and failure.
Activation of PAR-2 on cardiomyocytes has been shown to induce hypertrophic growth in vitro. PAR-2 also contributes to
myocardial infarction and heart remodeling after ischemia/reperfusion injury. In this study, we found that PAR-2 induced
hypertrophic growth of cultured rat neonatal cardiomyocytes in a MEK1/2 and p38 dependent manner. In addition, PAR-2
activation on mouse cardiomyocytes increased expression of the pro-fibrotic chemokine MCP-1. Furthermore,
cardiomyocyte-specific overexpression of PAR-2 in mice induced heart hypertrophy, cardiac fibrosis, inflammation and
heart failure. Finally, in a mouse model of myocardial infarction induced by permanent ligation of the left anterior
descending coronary artery, PAR-2 deficiency attenuated heart remodeling and improved heart function independently of
its contribution to the size of the initial infarct. Taken together, our data indicate that PAR-2 signaling contributes to the
pathogenesis of hypertrophy and heart failure.
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Introduction

Heart failure (HF) is defined as the failure of the heart to

provide the metabolic needs of tissues [1]. It is a major clinical

problem of the Western world [2]. In the United States alone, HF

results in more than 500,000 deaths per year [2]. HF reflects the

end point of both acute and chronic insults, including coronary

artery disease, myocardial infarction, hypertension, valve abnor-

malities and inherited mutations in sarcomere and cytoskeletal

proteins [3–5].

The major process that contributes to HF is pathologic

remodeling of the heart caused by cardiomyocyte hypertrophy,

proliferation of cardiac fibroblasts and cardiac inflammation [3,5].

Cardiomyocytes are generally thought not to proliferate after

birth, but can increase in size via hypertrophic growth [4].

Further, cardiac fibroblasts proliferate and synthesize extracellular

matrix that contributes to cardiac fibrosis [3]. Depending on the

heart disease etiology, different forms of fibrosis can be observed,

including perivascular and interstitial fibrosis, as well as deposition

of collagen-rich scar tissue at sites of myocardial infarction [3].

Aside from collagen deposition, dysregulated extracellular matrix

turnover, orchestrated by the matrix metalloproteinase (MMP)/

tissue inhibitor of MMPs (TIMP) system, mediates cardiac fibrosis

leading to HF [6]. Cardiac fibrosis and HF severity was further

connected to increased levels of inflammatory cytokines and

chemokines, such as interleukin (IL)-6 and monocyte chemotactic

protein-1 (MCP-1, CCL2) [7–10].

Protease activated receptors (PARs) are a family of seven

transmembrane domain G protein–coupled receptors activated by

proteolytic cleavage [11]. After their activation, a new amino

terminus peptide is exposed that functions as a tethered ligand

[11]. The PAR family consists of four members: PAR-1, PAR-2,

PAR-3, and PAR-4. The coagulation protease thrombin is the

main physiological activator of PAR-1, PAR-3 and PAR-4 [11].

PAR-2 is activated by various proteases, including trypsin, mast

cells tryptase, and the coagulation proteases FVIIa and FXa [11–

13]. PARs can be also be activated by synthetic agonist peptides

corresponding to the tethered ligand sequence [11]. PARs are

widely expressed by cells within the cardiovascular system. Both

PAR-1 and PAR-2 are expressed on vascular endothelium, smooth

muscle cells, and cardiomyocytes [14]. It was reported that PAR-1

but not PAR-2 is expressed by rat cardiac fibroblasts [14,15].

However, more recent publications indicate that PAR-2 is

expressed on cardiac fibroblasts of rats and mice [16,17]. In vitro

studies demonstrated that activation of PAR-1 or PAR-2 on rat

neonatal cardiomyocytes results in a series of molecular and

morphological changes that lead to hypertrophic growth of these

cells [15,18]. We have previously shown that PAR-1 contributes to

cardiac remodeling after myocardial infarction by inducing

eccentric hypertrophy of cardiomyocytes [19]. Recently, we

demonstrated that inflammation and infarct size were reduced in

PAR-2 deficient mice in an acute model of ischemia/reperfusion

injury; this resulted in long-term beneficial effects reflected by a
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better preservation of heart function [20]. In this model, we

observed reduced levels of IL-6 in the heart after injury in PAR-2

deficient mice [20]. In addition, PAR-2 stimulation leads to MCP-

1 expression in endothelial and epithelial cells [21,22].

In the current study, we investigated the mechanism by which

PAR-2 contributes to hypertrophic growth of cardiomyocytes in

vitro. Furthermore, we determined the effect of cardiomyocyte-

specific overexpression of PAR-2 on heart remodeling and

function. Finally, we used an in vivo mouse model of myocardial

infarction, induced by permanent occlusion of coronary artery, to

further determine the effect of PAR-2 deficiency on the long term

heart remodeling.

Materials and Methods

Mice
PAR-2+/2 mice were backcrossed at least 11 generations onto a

C57Bl/6J background and bred to generate PAR-22/2 and PAR-

2+/+ littermate mice [23]. Mice overexpressing PAR-2 on

cardiomyocytes were generated by construction of a transgene

that contained the cardiomyocyte-specific a-myosin heavy chain

(aMHC) promoter and the mouse PAR-2 cDNA. Briefly, a 1.2-

kbp DNA fragment containing the coding sequence of mouse

PAR-2 was cloned into a vector containing the aMHC promoter

(kindly provided by Dr. F. Naya [Boston University]). Next, an

8.5-kbp NotI fragment, containing the aMHC-promoter, the

mouse PAR-2 coding sequence, and the human growth hormone

polyA sequence, was purified and injected into the pronucleus of

fertilized mouse embryos (C57Bl/6J genetic background) by The

Scripps Transgenic Core Facility (La Jolla, CA). Transgenic mice

were identified by PCR using primers specific for the human

growth hormone (hGH) polyA sequence (forward-59-AAC CAA

GCT GGA GTG CAG TGG CAC-39 and reverse-59-AAG GAG

GGT AGA TA CCT GAG ATT-39). Terminal tissue collection

was performed on mice under isoflurane anesthesia with

additional cervical dislocation. The animal study was in line with

the guidelines and approved by the Office of Animal Care and Use

at the University of North Carolina - Chapel Hill (IACUC ID 10-

069) and complied with National Institute of Health guidelines.

Isolation and culturing of rat neonatal cardiomyocytes
Neonatal rat cardiomyocytes were isolated using a commercial

isolation kit (Worthington, Lakewood, NJ) based on the method by

Toraason et al. [24]. Cardiomyocytes were separated from non-

myocytes by discontinuous Percoll density gradient centrifugation

and cultured as described [25]. To analyze the effects of PAR-2

activation on intracellular signaling and gene expression, cells were

starved for 48 hours and stimulated with PAR-2 AP (150 mM

SLIGRL, Tocris Bioscience, Ellisville, MO) or control peptide

(LSIGRL) for the indicated times. To induce hypertrophy, cells

were stimulated for 72 hours with PAR-2 AP (150 mM SLIGRL)

or control peptide (150 mM LSIGRL, Tocris Bioscience) under

serum-free conditions. Cells were also pre-incubated for 30

minutes with PD98059 (10 mM) or SB203580 (10 mM) to inhibit

the activation of MEK1 and p38 MAPKs, respectively [26,27].

Isolation and culturing of mouse embryonic
cardiomyocytes

Cardiomyocytes from hearts of embryonic (E14) WT (C57Bl/6)

or aMHC-PAR-2 mice were isolated as described [27,28]. For

aMHC-PAR-2 mice, each embryo was genotyped. Cardiomyo-

cytes of the same genotype were combined and seeded in 24 well

cell culture dishes [28]. An enriched cardiomyocyte population

was prepared by the pre-plating method [28]. Changes in murine

cardiomyocyte size were analyzed 72 hours after stimulation with

200 mM PAR-2 AP or 200 mM control peptide as well as MEK1

and p38 inhibitor as described above.

To analyze cytokine release, cells were treated with PAR-2 AP

(200 mM) or control peptide (200 mM) for 24 hours and MCP-1

and IL-6 release into the supernatant were analyzed by specific

Duo-Set IC Kits (R&D Systems, Minneapolis, MN) [27] and

adjusted for the total cell protein concentration.

Analysis of cardiomyocyte hypertrophic growth
To determine changes in cell surface area, rat and mouse

cardiomyocytes were visualized with a Leica inverted microscope

and surface area was quantified by imaging the complete

boundary using digitized image analysis software (Image J, version

1.21). After stimulation for 72 hours, 5 frames per dish were

captured at 620 magnification and the cell surface of the

cardiomyocytes was averaged for each frame; in total 45 to 65

cells were analyzed per treatment [15,29]. In addition, mRNA

expression of ANF and BNP was analyzed using real time PCR as

described below.

Analysis of ERK1/2 and p38 phosphorylation
Phosphorylation of ERK1/2 and p38 MAPKs was analyzed by

ELISA using Duo-Set IC Kits (R&D Systems) [20]. Cells from 12

well plates were lysed in 200 mL ice cold lysis buffer containing

1 mM EDTA, 0.5% Triton X-100, 5 mM NaF, 1 M urea, 1 mM

activated sodium orthovanadate, 2.5 mM sodium pyrophosphate,

10 mg/mL leupeptin, 10 mg/mL pepstatin, 100 mM PMSF, 3 mg/

mL aprotinin in PBS, pH 7.2–7.4 (Sigma Aldrich). All further

steps were performed according to the manufacturer’s instructions.

Data were normalized with the total ERK1/2 protein expression

(Duo-Set IC Kit, R&D Systems).

Real-time PCR
Total mRNA from mouse hearts was reverse transcribed into

cDNA and analyzed by real-time PCR using RealMasterMix and

realplex2 Mastercycler (Eppendorf AG, Hamburg, Germany).

Primers were designed for the SYBR-green method to prevent

genomic DNA amplification and have been previously published

[30] (atrial natriuretic factor (ANF) 59-CAT CAC CCT GGG

CTT CTT CCT and 59-TGG GCT CCA ATC CTG TCA

ATC-39; B-type natriuretic peptide (BNP) 59-GCG GCA TGG

ATC TCC TGA AGG-39and 59-CCC AGG CAG AGT CAG

AAA CTG-39; Collagen III 59-TGG TTT CTT CTC ACC CTT

CTT C-39 and 59-TGC ATC CCA ATT CATCTA CGT-39;

connective tissue growth factor (CTGF) 59-GCA TCT CCA CCC

GAG TTA-39 and TTG ACA GGC TTG GCG ATT-39;

transforming growth factor (TGFb1) 59-GAC GTC ACT GGA

GTT GTA CGG-39 and 59-GCT GAA TCG AAA GCC CTG T-

39; TGFb3 59-TTG AGC TCT TCC AGA TAC TTC G-39 and

59-TTC TTG CCA CCT ATG TAG CG-39; aMHC 59-TCA

TTC CCA ACG AGC GAA A-39 and 59-GCC GGA AGT CCC

CAT AGA GA-39; bMHC 59-GAT GGA CAA TCC CCT GGT

CAT-39 and 59-CCG AAA GTC CCC ATA GAG AAT-39) The

expression of hypoxanthine-guanine phosphoribosyltransferase

(HPRT 59-GTG GTG AAA AGG ACC TCT CG-39 and 59-

TGA AGT ACT CAT TAT AGT CAA GGG GA-39) was used as

internal control. To analyze the expression of MMP-2, MMP-3,

MMP-8, MMP-9, TIMP-1, MCP-1, IL-1b and IL-6 we used

predesigned probe sets (Integrated DNA Technologies, Coralville,

IA). Variations in loading were adjusted using GAPDH mRNA

expression.

PAR-2 and Heart Failure
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Histology
Fibrosis was assessed on formalin-fixed, paraffin-embedded

heart sections stained with Masson’s Trichrome [25].

Echocardiography
Echocardiography on conscious mice was performed using a

VisualSonics Vevo2100 system (VisualSonics, Toronto, ON) as

previously described [20,27].

Northern blot analysis
Samples from mouse hearts were collected, frozen in liquid

nitrogen and stored at 280uC. Total mRNA was isolated using

Trizol reagent (Invitrogen, Carlsbad, CA) [31,32]. Levels of PAR-

2 mRNA and GAPDH mRNA were determined by Northern

blotting as previously described [19].

Myocardial infarction model - permanent ligation of the
left anterior descending (LAD) coronary artery

Male mice were anesthetized with pentobarbital (45 mg/kg),

intubated, and ventilated with a small rodent ventilator (Harvard

Apparatus, Holliston, MA) at a rate of 110 cycles/minute with a

tidal volume of 2 ml/minute and a positive end-expiratory

pressure of 2 cmH2O. A left side thoracotomy was performed,

and the pericardium was incised. Myocardial infarction was then

induced through permanent ligation of the LAD coronary artery

with an 8-0 silk suture proximal to its bifurcation from the main

stem. The incision was subsequently closed with a 5-0 silk suture.

Mice were then allowed to recover in a temperature-controlled

environment. After surgery, mice were administrated with post-

operative dose of buprenorphine every 12 hours for 2 days. Mice

were closely monitored and all efforts were made to minimize

suffering. Four weeks later heart function was analyzed using

echocardiography as described above. In addition, cardiac

troponin I plasma levels were analyzed from the separate sets of

sham and LAD artery occluded animals 24 hours after surgery by

using a highly sensitive mouse cardiac troponin I ELISA kit (Life

Diagnostics, West Chester, PA) as recently described [27] to

analyze initial cardiac injury.

Statistical analysis
All statistical analyses were performed using GraphPad Prism

(version 5.0; GraphPad Software Inc., La Jolla, CA). Data are

represented as mean 6SEM, unless otherwise indicated in figure

legends. For 2-group comparison of continuous data, 2-tailed

Student’s t test was used. For multiple-group comparison,

normally distributed data were analyzed by 1- or 2-way ANOVA

and were Bonferroni corrected for repeated measures over time. A

p-value #0.05 was regarded as significant.

Results

Inhibition of ERK1/2 and p38 MAPKs reduces PAR-2
induced hypertrophic growth of rat neonatal
cardiomyocytes

Consistent with the previous study by Sabri and colleagues [15],

we found that stimulation of rat neonatal cardiomyocytes with

PAR-2 agonist peptide (SLIGRL, 150 mM) led to ERK1/2 and

p38 MAPK phosphorylation (Figure S1A) and hypertrophic

growth measured by increased ANF and BNP mRNA expression

and total cell area (Figure S1B–D). Importantly, the PAR-2-

mediated increase in cardiomyocyte size was attenuated by

inhibition of either the ERK1/2 or the p38 MAPK pathways

(Figure S1C and D). Similar to these observations, stimulation of

mouse embryonic cardiomyocytes with PAR-2 agonist peptide

(SLIGRL, 200 mM) also led to hypertrophic growth measured by

increased ANF and BNP mRNA expression and total cell area

(Figure 1A–C). Furthermore, inhibition of either ERK1/2 or the

p38 pathways significantly reduced hypertrophic growth of mouse

embryonic cardiomyocytes (Figure 1A–C). These data indicate

that activation of these two pathways is required for PAR-2

induced hypertrophic growth of both rat and mouse cardiomyo-

cytes.

Figure 1. Activation of PAR-2 leads to ERK1/2 and p38-
dependent cardiomyocyte hypertrophy in vitro. A: Changes in
the total cell area of murine cardiomyocytes were analyzed after
72 hours of stimulation with PAR-2 AP in the presence or absence of
MEK1 or p38 inhibitors (9–12 separate wells and 45–60 cardiomyocytes
per condition, averaged from two independent cardiomyocyte
isolations). B–C: Expression of ANF and BNP in cardiomyocytes 72 hours
after PAR-2 AP stimulation in the presence or absence of MEK1 or p38
inhibitors (N = 5–8 per condition). * p,0.05 vs control cells; *** p,0.001
vs control cells; + p,0.05 vs PAR-2 AP treated cells without MAPK
inhibitor.
doi:10.1371/journal.pone.0081733.g001
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Generation of transgenic mice with cardiomyocyte-
specific PAR-2 overexpression

To directly investigate the role of PAR-2 in the heart, we

generated mice overexpressing PAR-2 on cardiomyocytes using

the alpha myosin heavy chain (aMHC) promoter (aMHC-PAR-2

mice). We used this promoter previously to express PAR-1 on

cardiomyocytes [19]. Germline transmission of the transgene was

observed in six different lines of aMHC-PAR-2 mice and four of

them (lines 11, 12, 18 and 32) demonstrated a significant increase

in the heart weight to body weight (HW:BW) ratio by 2–3 months

of age compared to control mice. We observed a dramatic increase

in HW:BW ratio in aMHC-PAR-2 mice line 11 (10.060.39 vs.

4.8860.22; p,0.005; n = 3 per group) and line 32 (7.3060.41 vs.

4.9260.40; p,0.01; n = 3 per group) compared to wild type (WT)

littermates, which was associated with premature death of these

mice around 2–3 months of age. A moderate increase in the

HW:BW ratio was observed in line 12 at the age of 2 months

(5.5460.54, n = 7 vs. 4.8560.20, n = 5; p,0.01) and line 18 at the

age of 3 months (5.1760.38 vs. 4.6960.24; n = 6; p,0.05).

Northern blot analysis demonstrated that the PAR-2 transgene

was specifically expressed in the heart of aMHC-PAR-2 mice line

18 whereas the expression of the PAR-2 transgene in aMHC-

PAR-2 mice line 12 was detected not only in the heart but also in

the lung (Figure 2A). Therefore, we used mice from line 18 to

study the long-term effect of cardiomyocyte-specific overexpres-

sion of PAR-2 on heart remodeling and function.

Cardiomyocyte-specific overexpression of PAR-2 leads
heart hypertrophy

Since we recently demonstrated that PAR-2 contributes to heart

remodeling after cardiac ischemia/reperfusion injury [20] and that

activation of PAR-2 leads to hypertrophic growth of cardiomyo-

cytes in vitro [15], we investigated if cardiomyocyte-specific

overexpression of PAR-2 induced heart hypertrophy and HF in

mice. First, we analyzed the effect of the PAR-2 overexpression on

1 year old mice from line 18. Gross morphological analysis

demonstrated that aMHC-PAR-2 mice had larger hearts com-

pared to WT littermates (Figure 3A). Real-time PCR analysis

showed that mRNA expression of ANF, BNP and b-myosin heavy

chain (bMHC) were significantly increased, whereas mRNA

expression of aMHC was significantly decreased in the hearts of

aMHC-PAR-2 mice compared to the WT littermates (Figure 3B).

Consistent with visibly larger hearts and altered hypertrophic gene

mRNA expression, we observed an increase in HW:BW ratio in

aMHC-PAR-2 mice compared to the WT littermates (Figure 3C).

In addition to heart hypertrophy, aMHC-PAR-2 mice had an

increased lung weight to BW ratio (LW:BW, Figure 3C),

suggesting lung edema secondary to HF, a common co-morbidity

of congestive HF. The ratio of kidney weight to BW was not

changed in aMHC-PAR-2 mice (Figure 3C). The ratio of heart

weight as well as lung weight to the tibia length was also

significantly increased (data not shown). These data indicate that

overexpression of PAR-2 in cardiomyocytes leads to heart

hypertrophy in mice.

PAR-2 dependent cardiac inflammation
One year old aMHC-PAR-2 mice also showed increased

expression of IL-6 and MCP-1 in the heart compared to age

matched littermate controls (Figure 4A). In addition, we found that

PAR-2 stimulation leads to increased MCP-1 and IL-6 protein

expression in embryonic murine cardiomyocytes isolated from WT

mice (Figure 4B–C). Importantly, PAR-2 stimulation of cardio-

myocytes isolated from aMHC-PAR-2 mice resulted in signifi-

cantly higher expression of MCP-1 and also slightly higher levels

of IL-6 compared to that observed in cell isolated from the hearts

of WT littermate mice (Figure 4B–C). The data suggest that acute

and chronic PAR-2 activation leads to cardiac inflammation.

aMHC-PAR-2 mice develop cardiac fibrosis
We showed that PAR-2 deficiency reduced cardiac fibrosis after

cardiac ischemia/reperfusion injury [20]. Therefore, we investi-

gated whether the overexpression of PAR-2 in cardiomyocytes led

to cardiac fibrosis. Masson’s Trichrome staining of heart sections

from one year old aMHC-PAR-2 mice showed increased

interstitial fibrosis (Figure 5A). Furthermore, a significant up-

regulation of the mRNA expression of known pro-fibrotic genes,

including TGFb1, TGFb3, collagen III, and CTGF, was observed

in the hearts of one year old aMHC-PAR-2 hearts compared to

their WT littermates (Figure 5B). Cardiac fibrosis is often

associated with dysregulation of the MMP/TIMP system [3,6].

Consistent with this notion, hearts from aMHC-PAR-2 mice

exhibited increased mRNA expression of MMP-2 and TIMP-1,

decreased levels of MMP-9, MMP-13 and TIMP-4 and no change

in TIMP-2 compared to littermate controls (Figure 5C). These

data indicate that cardiomyocyte-specific overexpression of PAR-2

resulted in pathologic heart fibrosis and remodeling due to

increased matrix deposition and dysregulated MMP/TIMP

system.

Cardiac hypertrophy, inflammation and fibrosis are
associated with impairment of heart function in
aMHC-PAR-2 mice

Pathologic heart hypertrophy, inflammation, and fibrosis

lead to heart dysfunction and HF. Therefore, transthoracic

Figure 2. Heart specific PAR-2 overexpression. Northern blot analysis of PAR-2 mRNA expression in different organs from aMHC-PAR-2 (line 12
and 18) and littermate controls (WT) mice. Overexposed blot demonstrating expression of endogenous PAR-2 mRNA in organs is shown on Figure S2.
doi:10.1371/journal.pone.0081733.g002
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echocardiography was used to measure LV function. Consistent

with the gross histological analysis, we found that the diameter

and volume of the LV was increased significantly in aMHC-

PAR-2 mice compared with littermate controls at 12 months of

age (Table 1). Moreover, the thickness of the anterior and

posterior LV wall at systole but not diastole was reduced in the

aMHC-PAR-2 mice (Table 1). As expected, LV function

measured by percentages of fractional shortening and ejection

fraction was significantly reduced in aMHC-PAR-2 mice

compared with WT littermates (Table 1).

PAR-2 contributes to the heart remodeling after
permanent occlusion of the LAD coronary artery

To further explore the role of PAR-2 in heart remodeling

independent of reperfusion injury, we used a mouse model of heart

failure induced by a permanent occlusion of LAD coronary artery.

Figure 3. Myocardial PAR-2 overexpression leads to cardiac hypertrophy in mice. A: Representative cross-sections of one year old hearts
from WT and aMHC-PAR-2 mice. Sections were stained with hematoxylin and eosin (Bar = 2.0 mm). B: Expression of pro-hypertrophic gene
quantified by real-time PCR in WT (open boxes) and aMHC-PAR-2 (grey filled boxes) at the age of one year (7–8 mice per group). C: The organ weight
to body weight ratio was determined in one year old WT (open bars) and aMHC-PAR-2 (grey filled bars) mice (8 to 15 mice per group). * p,0.05.
doi:10.1371/journal.pone.0081733.g003
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First we analyzed the myocardial infarction 24 hours after

permanent occlusion in PAR-2+/+ and PAR-22/2 mice. Plasma

levels of cardiac troponin I were significantly increased in both

groups of mice compared to the levels observed in sham operated

mice (Figure 6A). There was no difference between PAR-2+/+ and

PAR-22/2 mice indicating that PAR-2 does not contribute to the

initial ischemic injury in this model. Four weeks after permanent

occlusion, we used echocardiography to analyze heart remodeling

and function in PAR-2+/+ and PAR-22/2 mice. As shown in

Figure 5, occlusion of the LAD resulted in significant dilation of

LV and dramatic reduction of heart function. Importantly, both

these parameters were significantly attenuated in PAR-22/2 mice

compared to PAR-2+/+ mice (Figure 6B–D). Heart weights of

PAR-2+/+ mice were increased compared to PAR-22/2 mice 4

weeks after LAD occlusion (208.6616.1 mg vs. 172.468.2 mg,

p,0.05). Since PAR-22/2 mice body weights were slightly lower

than PAR-2+/+ mice (27.9860.56 g vs. 29.6360.95 g, p = 0.12)

whereas the tibia length were equal between the groups

(22.6660.18 mm vs. 22.5560.10 mm, PAR-2+/+ vs. PAR-22/2,

p = 0.57), we used tibia length to calculate heart weight:tibia length

ratio. PAR-2 deficient mice exhibited reduced heart hypertrophy

compared to PAR-2+/+ mice as demonstrated by lower heart

weight:tibia length ratios (Figure 6E). Representative cross-sections

of the hearts from the PAR-2+/+ and PAR-22/2 mice 4 weeks

after LAD occlusion are shown in Figure 6F.

Discussion

In this study, we demonstrated that cardiomyocyte-specific

overexpression of PAR-2 led to pathologic heart hypertrophy

associated with cardiac fibrosis. Pathologic remodeling of the heart

in aMHC-PAR-2 mice was accompanied by increased ANF, BNP

and bMHC expression and decreased aMHC expression.

Importantly, BNP is a strong predictor of cardiac hypertrophy

and dysfunction in both mouse models and in humans [24].

During heart hypertrophy, an initial increase in LV wall thickness

is usually followed by wall thinning and dilatation of the LV

chamber [5]. Echocardiography analysis revealed that the

diameter and volume of the LV were significantly increased,

whereas the thickness of LV walls was significantly reduced at

systole but not diastole in aMHC-PAR-2 mice. Moreover, we

observed a significant decrease in the heart function in aMHC-

PAR-2 mice compared to littermate controls. These data indicate

that cardiomyocyte-specific overexpression of PAR-2 results in

pathologic heart remodeling which leads to systolic HF in mice.

Hypertrophic growth of cardiomyocytes is one of the processes

that contribute to heart remodeling. Activation of PAR-2 in vitro

leads to the hypertrophic growth of rat cardiomyocytes and

increased phosphorylation of ERK1/2 and p38 [15]. However,

the role of these MAPKs in PAR-2 induced cardiomyocyte

hypertrophy has not been investigated. We demonstrated that

inhibition of these two MAPK pathways significantly attenuated

PAR-2-mediated growth of both rat neonatal and mouse

embryonic cardiomyocytes in vitro. These data suggest that

activation of PAR-2 might contribute to heart remodeling, in

part, via MAPK-dependent hypertrophic growth of cardiomyo-

cytes.

Dilated cardiomyopathy caused by pathologic hypertrophy is

often associated with inflammation and fibrosis [3,7,8]. Cardio-

myocyte-specific overexpression of PAR-2 resulted in cardiac

fibrosis. The fibrotic area and levels of TGFb, collagen III, and

CTGF mRNA expression were increased in the hearts of aMHC-

PAR-2 mice. In addition, mice with PAR-2 overexpression on

cardiomyocytes exhibited increased cardiac inflammation seen as

elevated IL-6 and MCP-1 expression. Furthermore, we demon-

strated that stimulation of PAR-2 on cardiomyocytes leads to

Figure 4. Cardiomyocyte-specific overexpression of PAR-2 results in inflammation of the heart. A: mRNA expression of inflammatory
mediators in hearts of one year old WT (open boxes) and aMHC-PAR-2 (grey filled boxes) mice (7–8 mice per group). B: Fold changes in MCP-1 and IL-
6 (C) protein levels in the culture supernatant from WT (open boxes) and aMHC-PAR-2 (grey filled boxes) mouse cardiomyocytes stimulated with
PAR-2 AP for 24 hours. (N = 4–9 for control and N = 9–13 for PAR-2 AP). * p,0.05. ** p,0.05 vs. stimulation with scramble peptide (control).
doi:10.1371/journal.pone.0081733.g004

PAR-2 and Heart Failure
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Figure 5. Cardiomyocyte-specific overexpression of PAR-2 results in heart fibrosis. A: Representative cross-sections of one year old WT
and aMHC-PAR-2 hearts stained with Masson’s Trichrome. B–C: mRNA expression of pro-fibrotic genes and MMPs and TIMPs in the heart of one year
old WT (open boxes) and aMHC-PAR-2 (grey filled boxes) mice (7–8 mice per group). * p,0.05.
doi:10.1371/journal.pone.0081733.g005
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increased expression of MCP-1 in vitro. MCP-1 signaling leads to

aberrant cardiac fibrosis and induction of HF [7,10]. Importantly,

it has been shown that inflammation influences cardiac fibrosis

[7,8]. Increased expression of MCP-1 caused changes in the

balance between matrix synthesis and degeneration by interacting

with the MMP/TIMP system [6,7,9]. End stage failing human

hearts show increased expression of MMP2 and TIMP-1, and a

decrease MMP-9 expression [33,34], which we also observed in

one year old aMHC-PAR-2 mice. Our data imply that chronic

PAR-2 activation on cardiomyocytes induces the release of pro-

fibrotic mediators, such as MCP-1, which stimulate cardiac

fibroblasts leading to pathologic heart fibrosis.

Tissue factor (TF), the primary initiator of coagulation cascade

is constitutively expressed by cardiomyocytes. We have previously

shown that TF not only maintains heart hemostasis [35] but also

contributes to myocardial infraction [36] and heart hypertrophy

induced by increased PAR-1 signaling in cardiomyocytes [34].

This indicates that the TF-dependent signaling cascade plays an

important role in the heart during both physiological and

pathological conditions. Therefore, PAR-2 activation in the heart

may occur by either the TF:FVIIa or the TF:FVIIa:FXa complex

[37]. Indeed, treatment of mice with active-site inhibited FVIIa

attenuated inflammation and myocardial injury after ischemia/

reperfusion [38]. This suggests that the TF:FVIIa complex

contributes to inflammation and cardiomyocytes injury, possibly

through PAR-2 signaling. However, this does not rule out the

potential effect mediated by TF:FVIIa-dependent thrombin

generation. Another potential PAR-2 activator in the heart might

be mast cell tryptase [14]. Mast cells are present within the

myocardium, and mast cell deficiency is associated with attenu-

ation of cardiac remodeling and HF after injury [39,40]. Mast cells

also contribute to cardiac inflammation by expressing IL-6 [39],

and MCP-1 causes mast cell degranulation. Furthermore,

increased mast cell numbers, degranulation and tryptase release

leads to increased MMP2 expression/activity and MCP-1

expression [21,41,42] providing a positive feedback loop.

We have previously demonstrated that the reduced pathologic

remodeling of the heart observed in PAR-2 deficient mice after

ischemia/reperfusion injury was associated with attenuation of

inflammation, oxidative stress and significant reduction of

myocardial infarction [20]. Importantly, the size of the initial

infarct affects the extent of heart remodeling [43]. To determine if

PAR-2 contributes to the heart remodeling via mechanisms other

than reducing the initial infarct size, in our present study we used a

mouse model of heart failure induced by a permanent occlusion of

the LAD coronary artery. Since we have previously shown that

PAR-2 deficiency had no effect on the topography of heart

coronary vessels and the size of the area at risk in a mouse model

of ischemia/reperfusion injury [20], we expect that permanent

occlusion of LAD artery should result in the similar initial

myocardial infarction in both PAR-2+/+ and PAR-22/2 mice,

caused by ischemia. Consistent with this assumption, plasma levels

of cardiac troponin I, a well-established marker of myocardial

injury, where the same in PAR-2+/+ and PAR-22/2 mice.

However, despite a similar initial myocardial infarction, PAR-

22/2 mice displayed reduced dilatation of LV and better

preservation of heart function four weeks after permanent

occlusion of the LAD coronary artery compared to PAR-2+/+

mice. These data indicate that PAR-2 can also directly modulate

pathologic remodeling of the heart independently of its previously

demonstrated role in the ischemia/reperfusion-mediated myocar-

dial injury. Our observation is in line with the recent data showing

an association of cardiac PAR-2 expression with increased cardiac

inflammation and reduced heart function in patients with dilated

cardiomyopathy [44].

One limitation of our study is that the phenotype of aMHC-

PAR-2 mice is the result of overexpressing PAR-2. It has been

previously demonstrated that overexpression may lead to the

generation of non-specific effects. For example, cardiomyocyte-

specific overexpression of green fluorescent protein results in HF

[45]. On the other hand, cardiomyocyte-specific overexpression of

various genes has significantly contributed to our understanding of

heart diseases, and the results obtained from overexpression

studies have been confirmed by complementary studies using

knockout mice. For example, cardiomyocyte-specific overexpres-

sion of either wild type or constitutively active forms of Gaq

induced dilated cardiomyopathy [46,47], whereas mice with

cardiomyocyte-specific deletion of Gaq/Ga11 are resistant to

ventricular hypertrophy induced by pressure overload [48].

In contrast to our studies with PAR-2 deficient and aMHC-

PAR-2 mice, it has been reported that activation of PAR-2 with a

PAR-2 agonist peptide has a beneficial effect in both ex vivo and

in vivo models of heart ischemia/reperfusion injury [49–51]. The

protective mechanism involved vasodilation of coronary vessels,

mediated by activation of PAR-2 on endothelial cells [51]. Similar

discrepancy between treatment with PAR-2 agonist peptide and

PAR-2 deficiency has been observed in the mouse model of colitis

induced by intrarectal injection of trinitrobenzene sulfonic acid

[52]. Interestingly, PAR-2 plays different roles in different organs

subjected to ischemia/reperfusion injury. For example, PAR-2

deficiency increases the infarct volume in the brain [53], has no

effect on kidney function [54] and reduces infarct size in the heart

[20]. Furthermore, in a mouse model of Alzheimer disease PAR-2

signaling had opposite effects in different cell types within the

brain [55]. These apparently contrasting results strongly suggest

that PAR-2 mediated effects may be not only organ but even cell

type-specific. Therefore, it is possible that after myocardial

infarction the activation of PAR-2 on endothelial cells may be

protective, whereas PAR-2 signaling on other cell types, such as

cardiomyocytes or infiltrating leukocytes may be detrimental.

Another possible explanation could be the fact that PAR-2 is

differentially activated by tethered versus soluble ligands, such as

an agonist peptide [56]. These two types of ligands differentially

bind and stabilize different conformations of the receptor, leading

to the activation of distinct subsets of signaling pathways [56]. A

Table 1. Heart function analysis by echocardiography on one
year old wild-type and aMHC-PAR-2 mice.

Wild-type aMHC-PAR-2 p-value

LVID;d (mm) 2.9060.35 3.4460.45 0.01

LVID;s (mm) 1.8060.33 2.6260.55 0.001

LVAW;d (mm) 1.2260.09 1.2160.14 n.s.

LVAW;s (mm) 1.6960.15 1.4860.15 0.01

LVPW;d (mm) 1.2360.16 1.1660.13 n.s.

LVPW;s (mm) 1.3660.17 1.2160.23 0.08

LV Vol;d (mL) 33.0769.71 49.99615.30 0.01

LV Vol;s (mL) 10.3564.77 26.87613.04 0.001

EF (%) 69.8066.39 48.91611.51 0.001

FS (%) 38.3465.11 24.4666.73 0.001

LVID left ventricle internal diameter, LVAW left ventricle anterior wall, LVPW left
ventricle posterior wall, Vol volume, d diastole, s systole, EF ejection fraction, FS
fractional shortening.
doi:10.1371/journal.pone.0081733.t001
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better understanding of the cell type- and ligand-specific responses

of PAR-2 after myocardial infarction is needed.

In conclusion, our study suggests that PAR-2 contributes to the

pathogenesis of heart hypertrophy and failure. Further studies

investigating the effectiveness of specific PAR-2 inhibitors in

various mouse models of heart hypertrophy and failure are

warranted and will validate if PAR-2 is a good target to attenuate

heart failure.

Supporting Information

Figure S1 Activation of PAR-2 leads to ERK1/2 and p38-
dependent rat neonatal cardiomyocyte hypertrophy in
vitro. A: Activation of ERK1/2 and p38 signaling pathway in

cardiomyocytes in response to PAR-2 agonist peptide (PAR-2 AP,

150 mM). (N = 5 each time point). B: Expression of ANF and BNP

in cardiomyocytes after 72 h of PAR-2 AP stimulation. (N = 8–11)

C: Changes in the area of cardiomyocytes were analyzed after

72 h of stimulation with PAR-2 AP in the presence or absence of

MEK1 or p38 inhibitors. (45–65 cardiomyocytes per condition,

averaged from two independent cardiomyocyte isolations). D:

Representative pictures of cardiomyocytes 72 h after stimulation

with PAR-2 AP (SLIGRL) alone or in combination with ERK1/2

(PD) or p38 (SB) inhibitors. * p,0.05 vs control cells; *** p,0.001

vs control cells; + p,0.05 vs PAR-2 AP treated cells without

MAPK inhibitor.

(TIF)

Figure S2 Heart specific PAR-2 overexpression. Northern

blot analysis of PAR-2 mRNA expression in different organs from

aMHC-PAR-2 (line 12 and 18) and littermate controls (WT) mice.

Arrow head indicates endogenous expressed PAR-2 mRNA.

(TIF)

Figure 6. PAR-2 contributes to heart remodeling after permanent LAD occlusion. A: Cardiac troponin I plasma levels, as marker for cardiac
injury, in sham and LAD artery occluded WT (open boxes) and PAR-22/2 (black boxes) mice 24 hours after surgery (N = 4 for sham and N = 10–13 for
LAD). B: Systolic left ventricular internal diameter (LVIDs) before and 4 weeks after occlusion of the LAD artery measured by echocardiography.
Changes in heart function calculated as (C) fractional shortening (FS) and (D) ejection fraction (EF) before and after LAD artery occlusion. E: Cardiac
hypertrophy shown as ratios of the heart weight to tibia length (HW:TL) 28 days after permanent LAD artery occlusion. (N = 8–13 per group) F:
Representative cross-sections of hearts from PAR-2+/+ and PAR-22/2 mice 4 weeks after LAD occlusion stained with Masson’s Trichrome. (Bar
= 1.0 mm). * p,0.05 vs. day 0 within the same genotype; # p,0.05.
doi:10.1371/journal.pone.0081733.g006
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