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Predicting treatment response from longitudinal
images using multi-task deep learning

Cheng Jin® '/, Heng Yu'’, Jia Ke?37, Peirong Ding® *°7, Yongju Yi®, Xiaofeng Jiang%3, Xin Duan?3,

Jinghua Tang®®, Daniel T. Chang', Xiaojian Wu?3™ Feng Gao?3™ & Ruijiang Li® ™

Radiographic imaging is routinely used to evaluate treatment response in solid tumors.
Current imaging response metrics do not reliably predict the underlying biological response.
Here, we present a multi-task deep learning approach that allows simultaneous tumor seg-
mentation and response prediction. We design two Siamese subnetworks that are joined at
multiple layers, which enables integration of multi-scale feature representations and in-depth
comparison of pre-treatment and post-treatment images. The network is trained using 2568
magnetic resonance imaging scans of 321 rectal cancer patients for predicting pathologic
complete response after neoadjuvant chemoradiotherapy. In multi-institution validation, the
imaging-based model achieves AUC of 0.95 (95% confidence interval: 0.91-0.98) and 0.92
(0.87-0.96) in two independent cohorts of 160 and 141 patients, respectively. When com-
bined with blood-based tumor markers, the integrated model further improves prediction
accuracy with AUC 0.97 (0.93-0.99). Our approach to capturing dynamic information in
longitudinal images may be broadly used for screening, treatment response evaluation,
disease monitoring, and surveillance.
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ccurate prediction of treatment response in individual

patients is essential for personalized medicine. Given its

noninvasive nature, radiographic imaging is widely used
in oncology practice and clinical trials for response evaluation,
typically by measuring tumor size change before and after
treatment!. Because response patterns can be complex and het-
erogeneous, this simple approach does not always lead to an
accurate assessment of the underlying biological response?.
Despite numerous efforts to improve upon the standard practice,
a reliable approach to tumor response prediction remains
elusive>*.

Deep learning has been extensively used in image analysis for
several clinical applications®. However, most studies are focused
on disease detection and diagnosis®~!2, by analyzing images
acquired at one time point during patient care. This approach is
inherently limited for response prediction purposes, because it
does not take the therapy-induced changes into consideration.
Recently, deep learning has been used to analyze longitudinal
clinical variables for predicting disease risk or progression!3:14,
Given the special structure of three-dimensional medical image
data, however, there remains an unmet need for deep learning
methods that effectively extract dynamic information from
longitudinal images. Further, it has been challenging to combine
tumor segmentation and response prediction, which were tradi-
tionally treated as separate problems in medical image analysis.
Integration of these interconnected tasks in a unified model may
improve the prediction performance.

Globally, more than 700,000 patients are diagnosed with rectal
cancer every yearl®. Neoadjuvant chemoradiotherapy (CRT)
followed by radical surgery is the standard treatment for locally
advanced rectal cancer. Around 15-27% of patients will have a
pathologic complete response (pCR), where examination of sur-
gical specimens shows absence of residual cancer cells'®. Given
that surgery is associated with considerable morbidity and poor
quality of life, organ-preserving strategies such as “watch-and-
wait” are being actively investigated as a non-operative
management!’~1%. A prerequisite for clinical implementation of
this approach is the accurate prediction of treatment response
prior to surgery20,

Here, we propose a multi-task deep learning approach to
predict treatment response and test the model in multi-institution
cohorts of rectal cancer patients. The deep neural network per-
forms simultaneously two different but related tasks, i.e., tumor
segmentation and response prediction. We show that integration
of the two tasks in one network coupled with incorporation of
change information in longitudinal images improves accuracy for
response prediction.

Results
Patients and datasets. This multi-institution study included
patients with locally advanced rectal cancer who were treated
with neoadjuvant CRT followed by total mesorectal excision
(Fig. 1a). We trained a deep learning model to predict pCR based
on pre-treatment and post-treatment MRI and performed inde-
pendent testing in both internal and external validation cohorts
(Fig. 1b). The detailed flowchart for patient enrollment is shown
in Supplementary Fig. 1. Specifically, the training cohort consisted
of 321 patients who were consecutively treated at a hospital
specialized in colorectal disease. After training the model, we
prospectively collected data for a cohort of 160 patients treated at
the same hospital for internal validation. An independent cohort
of 141 patients treated at a second institution was used for
external validation.

Patients were classified into two categories according to
whether there was a pCR in the resected tumor specimen. For

each patient, longitudinal multiparametric magnetic resonance
images (MRI) before and after neoadjuvant CRT were collected,
including T1-weighted imaging with and without contrast, T2-
weighted imaging, and diffusion-weighted imaging (DWI)
(Supplementary Table 1). In total, 4976 MRI scans from 622
patients were analyzed.

The patient characteristics of the three cohorts are summarized
in Table 1. We compared the distribution of different clinical
variables between the two response groups (pCR vs. non-pCR).
Neither demographic (age, gender) nor pre-treatment disease
characteristics (tumor location, T stage, N stage) was consistently
associated with pCR across different cohorts. However, there was
a statistically significant association between pCR and post-
treatment T stage (p < 0.001) in all three cohorts. This suggests,
not surprisingly, that radiologic evaluation of the tumor on post-
treatment imaging may be a better indicator of treatment
response than on baseline imaging. In terms of prediction for
pCR, post-treatment T stage (T0 vs. T1-4) had a good accuracy of
88%, 81%, and 86% but a moderate positive predictive value of
61%, 62%, and 69% in the training, internal, and external
validation cohorts, respectively.

Proposed network model. In order to effectively capture the
dynamic information contained in longitudinal images, we pro-
posed a multi-task learning framework with a deep neural net-
work architecture (3D RP-Net). The network consists of two
main components: (1) a convolutional encoding/decoding sub-
network for feature extraction and tumor segmentation, and (2) a
multi-stream Siamese subnetwork for response prediction
(Fig. 2a). The feature extraction and segmentation subnetwork
consists of two identical 3D U-net with shared parameters. The
response prediction subnetwork combines the extracted image
features from three different network layers via depth-wise con-
volution (Fig. 2b). This allows for integration of multi-scale fea-
ture representations and comprehensive pair-wise comparison
between images at the two time points. More details about the
network design are presented in “Methods” and Supplementary
Fig. 2.

Model performance. After training the network, we prospectively
collected data for additional patients from two institutions and
independently tested this model. The tumor segmentation from
the proposed network was in good agreement with expert deli-
neation, and the results were very similar to specialized deep
neural networks trained with a single task, i.e., tumor segmen-
tation (Supplementary Fig. 3). For response prediction, the pro-
posed 3D RP-Net achieved consistently high accuracy across the
training and two validation cohorts (Fig. 3a). The AUC was 0.95
(95% CI: 0.91-0.98) and 0.92 (95% CI: 0.87-0.96) in the internal
and external validation cohorts, respectively. At the optimal
cutoff point, the 3D RP-Net showed sensitivity at 93% and 91%,
specificity at 94% and 92% for predicting pCR for the two vali-
dation cohorts (Fig. 3e).

Improvement over models with pre- or post-treatment image
or T2-weighted image alone. To demonstrate the importance of
including dynamic information for response evaluation, we
compared 3D RP-Net with deep neural networks trained with
either pre-treatment or post-treatment multiparametric MRI
alone. In both validation sets, the proposed network that incor-
porates changes before and after treatment significantly improved
the AUC by 14-19% in absolute terms (all p <0.01) compared
with ResNet-18 models trained using image at one time point
only (Fig. 3b, ¢, and Supplementary Tables 2 and 3).
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tests were performed for each patient before and after neoadjuvant chemoradiotherapy. b Development and validation of a deep learning system to predict

pathologic complete response from longitudinal imaging.

We then assessed the response prediction performance by
training a network model using T2-weighted imaging only, which
is the most commonly used imaging technique in rectal cancer.
Although the prediction using pre-treatment and post-treatment
T2-weighted imaging was quite accurate with AUC 0.86-0.88 in
the validation cohorts (Supplementary Table 4), it did not
outperform the model trained using multiparametric imaging,
which indicates the benefit of incorporating complementary
anatomic and functional imaging information.

Improvement over alternative deep learning models. We then
assessed how the proposed multi-task approach compared with
alternative deep learning using the longitudinal multiparametric
MRI for response prediction. For comparison, Siamese networks
with a ResNet were trained for a single task of predicting
response. Two types of network schemes were adopted: (1) a
traditional Siamese network where two subnetworks are joined at
the fully connected layer with simple concatenation; (2) an
improved Siamese network where two subnetworks are joined at
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three different layers, similarly as our network. Both comparison
networks are single-task learning, with or without multi-scale
feature integration (Supplementary Fig. 4). We also compared
with traditional radiomics models (Supplementary Methods).

In both internal and external validation sets, the proposed
network again achieved better performance for response predic-
tion compared with single-task learning (Fig. 3b, ¢, and
Supplementary Tables 2 and 3). The AUC was improved in
absolute terms by 7% and 8% (p <0.01, adjusted for multiple
comparison) in the internal and external validation cohorts,
respectively. The proposed deep learning model also outper-
formed the radiomics model for pCR prediction (Supplementary
Table 5). These results confirm that the integration of tumor
segmentation in the multi-task learning framework is crucial for
its superior response evaluation. Interestingly, we note that for
single-task learning, multi-scale feature integration also improved
performance over simple concatenation used in classical Siamese
networks (Supplementary Fig. 5), indicating its beneficial role in
effectively mining change information in longitudinal images.
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Table 1 Patient characteristics in the training, internal validation, and external validation cohorts.
Characteristics Training cohort Internal validation cohort External validation cohort
Non-pCR pCR p Non-pCR pCR p Non-pCR pCR p
(n=264) (n=57) (n=116) (n=44) (n=98) (n=43)
Gender <0.001 0.01 0.157
Female 37 (14.0%) 17 (29.8%) 36 (31.0%) 5 (11.4%) 27 (27.6%) 17 (39.5%)
Male 227 (86.0%) 40 (70.2%) 80 (69.0%) 39 (88.6%) 71 (72.4%) 26 (60.5%)
Age, mean £ 53.6+12.1 51.9+12.8 0.202 54.6£M.1 521+13.0 0.124 563111 50.2+£9.2 <0.001
SD, years
Tumor location 0.0m 0.638 0.844
Upper 33 (12.5%) 5 (8.8%) 9 (7.8%) 3 (6.8%) 1 (1.2%) 4 (9.3%)
Upper middle 50 (18.9%) 7 (12.3%) 6 (5.2%) 0 (0%) 5 (5.1%) 1(2.3%)
Middle 41 (15.5%) 4 (7.0%) 29 (25.0%) 14 (31.8%) 42 (42.8%) 16 (37.2%)
Middle lower 52 (19.7%) 7 (12.3%) 5 (4.3%) 2 (4.5%) 4 (4.1%) 2 (4.7%)
Lower 88 (33.3%) 34 (59.6%) 67 (57.8%) 25 (56.8%) 29 (29.6%) 10 (23.3%)
Pre-CRT T stage 0.826 0.374 0.179
T 9 (3.4%) 2 (3.5%) 1(0.9%) 0 (0%) 1(0.1%) 0 (0%)
T2 12 (4.5%) 4 (7.0%) 3 (2.6%) 2 (4.5%) 4 (4.1%) 3 (7.0%)
T3 185 (70.1%) 41 (71.9%) 91 (78.4%) 31 (70.5%) 81(82.7%) 30 (69.8%)
T4a 40 (15.2%) 6 (10.5%) 9 (7.8%) 2 (4.5%) 4 (4.1%) 1(2.3%)
T4b 18 (6.8%) 4 (7.0%) 12 (10.3%) 9 (20.5%) 8 (8.2%) 9 (20.9%)
Pre-CRT N stage 0.419 0.061 0.02
NO 56 (21.2%) 13 (22.8%) 27 (23.3%) 10 (22.7%) 23 (23.5%) 9 (20.9%)
Nla 69 (26.1%) 8 (14.0%) 16 (13.8%) 13 (29.5%) 12 (12.2%) 12 (27.9%)
N1b 36 (13.6%) 7 (12.3%) 23 (19.8%) 2 (4.5%) 19 (19.4%) 2 (4.7%)
N1c 8 (3.0%) 4 (7.0%) 7 (6.0%) 1(2.3%) 8 (8.2%) 2 (4.7%)
N2a 66 (25.0%) 17 (29.8%) 32 (27.6%) 14 (31.8%) 33 (33.7%) 13 (30.2%)
N2b 29 (11.0%) 8 (14.0%) 11 (9.5%) 4 (9.1%) 3 (3.1%) 5 (1.6%)
Pre-CRT CRM 0.257 <0.001 0.521
Negative 215 (81.4%) 50 (87.7%) 95 (81.9%) 37 (84.1%) 75 (76.5%) 35 (81.4%)
Positive 49 (18.6%) 7 (12.3%) 21 (18.1%) 7 (15.9%) 23 (23.5%) 8 (18.6%)
Post-CRT T stage <0.001 <0.001 <0.001
TO 30 (11.4%) 47 (82.5%) 22 (19.0%) 36 (81.8%) 19 (19.4%) 42 (97.7%)
T 1 (4.2%) 6 (10.5%) 21 (18.1%) 4 (9.1%) 18 (18.4%) 1(2.3%)
T2 107 (40.5%) 3 (5.2%) 48 (41.3%) 3 (6.8%) 38 (38.8%) 0 (0%)
T3 51 (19.3%) 1(1.8%) 15 (12.9%) 1(23%) 12 (12.2%) 0 (0%)
T4a 45 (17.0%) 0 (0%) 4 (3.4%) 0 (0%) 5 (51%) 0 (0%)
T4b 20 (7.6%) 0 (0%) 6 (5.2%) 0 (0%) 6 (6.1%) 0 (0%)
Post-CRT N stage <0.001 0.104 0.068
NO 174 (65.9%) 52 (91.2%) 86 (74.1%) 42 (95.5%) 80 (81.7%) 43 (100%)
N1a 52 (19.7%) 5 (8.8%) 16 (13.8%) 2 (4.5%) 9 (9.2%) 0 (0%)
N1b 10 (3.8%) 0 (0%) 6 (5.2%) 0 (0%) 5 (5.1%) 0 (0%)
N1c 8 (3.0%) 0 (0%) 4 (3.4%) 0 (0%) 2 (2.0%) 0 (0%)
N2a 15 (5.7%) 0 (0%) 3(2.6%) 0 (0%) 1(1.0%) 0 (0%)
N2b 5 (1.9%) 0 (0%) 1(0.9%) 0 (0%) 1(1.0%) 0 (0%)
Post-CRT CRM 0.004 0.115 0.006
Negative 224 (84.8%) 56 (98.2%) 103 (88.8%) 43 (97.7%) 83 (84.7%) 43 (100%)
Positive 40 (15.2%) 1(1.8%) 13 (11.2%) 1(2.3%) 15 (15.3%) 0 (0%)
Data shown are the number and percentage of patients, with the exception of age (mean and SD). Statistical comparisons were performed for each clinical variable between the two response groups
(pCR vs. non-pCR). p values were computed using the two-sided t test for age as a continuous variable and the Chi-square test or Fisher's exact test for categorical variables, as appropriate. Stage and
CRM status was assessed by magnetic resonance imaging. pCR pathologic complete response, SD standard deviation, CRT chemoradiotherapy, CRM circumferential resection margin.

Model performance in patient subgroups by tumor location,
gender, magnetic field strength. Depending on the tumor loca-
tion along the rectum, which can extend more than 10 cm, tumor
response to systemic therapy and surgical management may be
different. We thus divided the patients into two subsets of upper/
middle and lower rectal cancer and evaluated the network per-
formance separately. The 3D RP-Net obtained satisfactory pre-
diction in both patient subgroups, with slightly better
performance in lower rectal cancer with AUC of 0.95 (Fig. 3d and
Supplementary Table 6). Results were similar between internal
and external validation cohorts (Supplementary Fig. 6 and Sup-
plementary Table 7). In addition, we evaluated the model per-
formance in patients within each gender, and the results were
slightly better in the male gender (Supplementary Tables 8 and 9).

We also performed subgroup analysis based on the magnetic field
strength (Supplementary Tables 10 and 11). There was a slight
improvement in prediction performance (around 2-4% increase
in AUC) in patients scanned under a magnetic field strength of 3
T compared with 1.5 T. This is possibly because of the improved
image quality in 3T MRIL

Model calibration and association with tumor regression
grade. In addition to discrimination, we also assessed the model
calibration. The proposed 3D RP-Net showed good calibration
with close agreement with the observed probabilities of pCR at
both ends of the calibration curve (Supplementary Fig. 7). Beyond
the binary classification for pCR, we also assessed the relation
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feature extraction and tumor segmentation, and one for response prediction. The network takes pre- and post-therapy images as inputs and performs two
tasks simultaneously: tumor segmentation and response prediction. b Depth-wise convolution of pre- and post-therapy images at multiple network layers

for multi-scale feature integration and response prediction.

between four categories of tumor regression grade (TRG) and
established imaging parameters as well as the deep learning model.
While there was a general trend for MRI-defined tumor shrinkage
across TRG, the change in tumor volume exhibited substantial
variability and overlap between TRGO (pCR) and TRGI (non-
PCR) and the difference was not statistically significant in the
internal validation cohort (Supplementary Fig. 8). On the other
hand, each of the four TRG was significantly associated with the
deep learning score (p <0.01, adjusted for multiple comparison),
with a consistent pattern across different cohorts (Supplementary
Fig. 9). In particular, the TRGO and TRG1 groups were well
separated based on the deep learning score (Supplementary Fig. 9).

Visualization and model interpretation. Next we sought to
understand which areas of the image and what kind of features
contributed to the network’s output. First, we note that both
morphological and physiological information contained in mul-
tiparametric MRI is useful for response prediction, and the two
types of information tend to be captured in different layers of the
network. The image features at shallow layers mainly reflect the
structural information, such as tumor boundary, shape, and
texture, based on T1w and T2w MRI. On the other hand, features
at deep layers mainly represent high-level semantic tumor char-
acteristics from anatomical images as well as functional infor-
mation contained in DWTI (Supplementary Fig. 10).
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Fig. 3 Performance for predicting pathologic complete response. a Receiver operating characteristic (ROC) curves of the proposed 3D RP-Net in the
training and two validation cohorts. b ROC curves of three different network models in the internal validation cohort. € same as (b), except for external
validation cohort. d ROC curves in the subgroup of patients with upper, middle, and lower rectal cancer in the internal validation cohort. e Detailed

information for prediction performance of the proposed model in the study cohorts. AUC, area under the ROC curve; PPV, positive predictive value; NPV,
negative predictive value.

Another notable property is that because of depth-wise convolu-
tion in the response prediction subnetwork, the feature maps for the
channels in each layer are nearly orthogonal to each other. This
allows for the activation of only a few channels in each layer leading
to sparse feature maps. Similar features tend to be activated in the

6

same channel, and this pattern was consistently observed across
patients. For example, among all 256 channels in the intermediate
layer of the response prediction subnetwork, less than 10 channels
showed high activation. These feature maps were evaluated by the
radiologist in conjunction with the original multiparametric MRI,
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positive lymph nodes, there was no activation (maximum magnitude <50%) in either case. In the 162nd channel corresponding to EMVI, feature map was
not activated in the case with pCR, while the overall magnitude decreased by only 9.2% (p = 0.89) with non-pCR. In the 201st channel corresponding to
submucosal lesions, the overall magnitude of the feature map decreased by 88.9% (p < 0.001) with pCR, but decreased by only 11.3% (p = 0.67) with non-
pCR. In the 219th channel corresponding to mesorectum invasion, the overall magnitude of the feature map decreased by 85.7% (p < 0.001) with pCR, but
decreased by only 16.7% (p = 0.41) with non-pCR. In the 228th channel corresponding to tumor invasion, the overall magnitude of the feature map
decreased by 90.5% (p < 0.001) with pCR, while tumor invasion was not activated with non-pCR. p values were computed based on the two-sided paired t
test between the corresponding feature maps within each channel (n= 256 feature values) and adjusted for multiple comparisons. CRT,
chemoradiotherapy; pCR, pathologic complete response; EMVI, extramural vascular invasion.

and were found to be related to pathophysiologic characteristics
such as mesorectum invasion, extramural vascular invasion, and
lymph node involvement (Supplementary Fig. 11).

We selected two representative patients in the external
validation set, one with pCR and one with non-pCR. The feature
maps in key channels of the response prediction subnetwork were
quite similar in the baseline pre-treatment MRI, as shown in
Fig. 4. On the other hand, there were substantial decreases of
these salient features from pre- to post-therapy images for the
patient with pCR. For instance, the overall magnitude of the
feature map decreased by 88.9% between the two images (paired ¢
test p<0.001, adjusted for multiple comparison) in the 201st
channel related to submucosal lesions. By contrast, for the patient
with non-pCR, these changes were mostly minor or modest, with
only 11.3% decrease (p = 0.64) in the same channel.

Integration with blood-based biomarkers. Finally, considering
that imaging mainly captures local tumor response while blood-
based markers better reflect systemic disease, we combined the
imaging model with dynamic changes of blood CEA levels in an
integrated model. Based on the pre- and post-CRT CEA levels
and change information, we defined five discrete categories of
patients with varying degrees of response (Fig. 5a). The CEA
model alone had a moderate accuracy for predicting pCR. When
combined with imaging, the integrated model achieved the
highest AUC 0.97 (95% CI: 0.93-0.99) among three models in the
validation cohort (Fig. 5b). The deep learning-based imaging
score played a dominant role in the integrated model (Supple-
mentary Fig. 12). Incorporation of post-therapy CEA level also
improved imaging model performance but did not outperform
the dynamic model (Supplementary Fig. 13 and Supplementary
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Fig. 5 Integration of imaging and blood-based biomarkers. a Definition of five discrete categories of blood marker response based on the clearance
patterns of CEA level before and after CRT. b ROC curves for three different models: combined imaging and CEA model, imaging alone, and CEA alone in
the internal validation cohort. ¢ Comparison of response prediction performance of different models at 95% specificity. d same as (¢) except for 99%
specificity. In the box plots, the central line represents the median, the bounds of box correspond to the first and third quartiles, and the whiskers are the
minimum and maximum of the data. p values were computed based on the two-sided t test (n =160 patients) between the prediction models as indicated
in (¢, d) and adjusted for multiple comparisons. CEA, carcinoembryonic antigen; PPV, positive predictive value; NPV, negative predictive value. ns, not

*x

significant, p > 0.05; "0.01< p<0.05; 70.001<p<0.07;

Table 12). At different specificity thresholds, the integrated model
significantly improved sensitivity and negative predictive value
(p<0.01, adjusted for multiple comparison) over the imaging
model (Fig. 5¢, d). Of note, the integrated model maintained
relatively high sensitivity at 99% specificity, and the positive
predictive value surpassed 97%, meaning that only 3% patients

0.0001<p<0.007;

Hkx

p<0.0001.

eligible for watchful waiting under this model would have residual
disease after neoadjuvant therapy.

Discussion
In this work, we present a multi-task deep learning approach
to predict tumor response by leveraging dynamic information
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contained in longitudinal images. The proposed deep neural
network achieved accurate prediction of pCR to neoadjuvant
CRT in rectal cancer. This may help identify which patients will
have no residual cancer after neoadjuvant CRT and can safely
undergo watchful waiting, avoiding potentially serious compli-
cations from radical surgery.

The multi-task learning approach allows the network to per-
form tumor segmentation and response prediction simulta-
neously. The performance of the proposed network for tumor
segmentation was on par with specialized deep neural networks
trained with a single task. Clinically, tumor delineation plays an
important role in surgical planning and radiation treatment
planning. However, reliable tumor segmentation is challenging,
limited by intra/inter-rater variations even among expert physi-
cians. The multi-task learning approach may be used to generate
more consistent tumor contours and can benefit several clinical
applications.

Because our primary goal is to predict response, one key
question is whether tumor segmentation is truly necessary or
simply a by-product of the network. By comparing with networks
that do not perform explicit segmentation, we showed that the
segmentation subnetwork was actually a critical component of the
model and integration of the two subnetworks led to superior
accuracy in response prediction. One reason could be that tumor
boundary information provided by segmentation enables the
network to focus on the most relevant regions for response pre-
diction. Indeed, image features of the peritumoral region have
been associated with key aspects of tumor biology and clinical
outcome?!-24,

An important distinction of our study from previous works is
the incorporation of longitudinal imaging for response predic-
tion. There has been intensive investigation on the use of baseline
pre-treatment images for predicting (mainly survival) outcomes
of cancer patients?. This approach is fundamentally limited by the
inability to incorporate information about tumor changes caused
by treatment. Although tumor phenotypes can have substantial
variations, there may be shared imaging characteristics in the way
it responds to treatment, such as change in tumor size, which is
the basis for response evaluation in clinical practice. In addition,
changes in tumor cellular density and blood perfusion are com-
mon after CRT. These changes can be reflected on multi-
parametric MRI that provides complementary anatomic and
functional information.

In order to effectively mine these treatment-induced changes,
we designed two Siamese subnetworks with pre/post-therapy
images as input. We emphasize that our network is designed not
only to learn features of the tumor itself, but also the dynamic
changes in response to therapy. Network visualization revealed
several high-risk features including depth of tumor invasion and
extramural vascular invasion, which were associated with poor
response, consistent with previous findings2>2°. Importantly, we
observed substantial decreases in these features from pre- to post-
therapy images in responders compared with non-responders,
while these feature maps were quite similar in the pre-treatment
images. This reinforces the notion that information about tumor
response is mainly contained in the change of imaging pheno-
types before and after treatment, confirming the effectiveness of
our approach.

Radiomics has been used to predict pathologic response
after neoadjuvant CRT in rectal cancer. These studies included
small, single-institution cohorts, mostly using pre-treatment
images2’-30. In a recent multi-institution study, Liu et al. used
radiomic analysis of pre-treatment T2-weighted MRI and
DWI to predict distant metastasis after surgery in rectal
cancer3!l. The radiomics approach relies on domain expertise to
manually define hand-crafted features. Radiomics also requires

accurate tumor segmentation, which can be challenging in
practice. By contrast, our multi-task deep learning approach
allows both precise tumor segmentation and accurate response
prediction.

Although deep learning has been widely used for disease
detection and diagnosis, there is a paucity of methods that are
designed to track disease progression in longitudinal datal314,
Recently, this has been explored for monitoring the natural his-
tory of disease!®32 or assessing response to treatment with
longitudinal imaging33. However, from a technical perspective,
there are some key limitations with previous approaches. First,
these networks were designed for the single task of risk prediction
without explicit segmentation of the disease. Second, previous
studies adopted the classical Siamese structure, where two sub-
networks were joined at the final output layer of the network.
Consequently, comparison between two images was only possible
at the highest abstraction level, which significantly limits the
amount of information that can be extracted. In this work, we
designed the network by combining feature representations from
multiple (shallow, intermediate, deep) layers, which allowed for
multi-scale integration and in-depth comparison of paired ima-
ges. Indeed, our results from ablation studies confirm that multi-
task learning coupled with multi-scale integration achieved
superior prediction performance compared with single-task
learning with or without multi-scale integration. Finally, differ-
ent from previous single-institution studies using deep learning??,
we conducted rigorous internal and external validation of our
model in multi-institution cohorts.

By integrating imaging with complementary blood-based
markers, we show that the model performance could be further
improved. Here, we used blood CEA level which is an established
marker of response in rectal cancer’%3>. Beyond traditional
protein markers, other analytes such as circulating tumor DNA
are being investigated for liquid biopsy>® and may also be used
in combination with imaging to further improve response
prediction.

This study has some limitations. First, it is a retrospective
study and subject to potential selection bias. The general-
izability and clinical utility of the proposed model should be
rigorously tested in future prospective studies. Second, our
deep learning model was trained using data from Asian
patients, and its reproducibility across different ethnic groups
such as patients from Western populations remains to be
evaluated. Finally, in order to select patients who can safely
forego surgery, the positive predictive value for complete
response must be very high. This deep learning model is not yet
ready for clinical use, given the need for prospective validation
and demonstration of a sufficiently high positive predictive
value. In future, it will be important to integrate information
from other investigations such as clinical examination, endo-
scopic assessment, or molecular approaches to further improve
the prediction accuracy.

While the current study is focused on analysis of multi-
parametric MRI, the network can also take input from multi-
modality imaging such as PET/MRI and PET/CT, which reveal
additional aspects of tumor biology such as metabolism. With
minor modifications, the network can be adapted to incorporate
imaging data acquired at multiple time points, which will open
the door to many other clinical applications including cancer
screening, monitoring of treatment response and resistance, and
surveillance for disease relapse.

In conclusion, we present a multi-task deep learning approach
to predict tumor response by extracting treatment-induced
change information from longitudinal images. Our approach
can be used to improve treatment response evaluation with the
potential to inform personalized treatment.
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Methods

Study design and patients. We collected clinical, pathologic, and imaging data for
rectal cancer patients enrolled from two institutions. The inclusion criteria were:
(1) pathologically confirmed diagnosis of locally advanced rectal adenocarcinoma;
(2) treatment with neoadjuvant CRT followed by total mesorectal excision; (3) both
pre-CRT and post-CRT MRI scans available within one week prior to the initiation
of CRT and surgery, respectively. The exclusion criteria were: (1) patients had other
concurrent malignancies or had previously received anticancer treatment; (2)
patients did not complete the entire course of CRT or did not undergo radical
surgery. Patients were also excluded if the MRI quality was insufficient or relevant
clinical and pathologic information was missing or incomplete.

In total, 622 patients were included in this retrospective study. The training
cohort consisted of 321 patients who were treated from 2013 to 2016 at the Sixth
Affiliated Hospital (SAH), Sun Yat-sen University, Guangzhou, China. An
independent cohort of 160 patients treated from 2017 to 2018 at the same hospital
was used for validation purposes. In addition, an external validation cohort of 141
patients was enrolled at the Sun Yat-sen University Cancer Center (SYSUCC),
Guangzhou, China. The detailed flowchart for patient enrollment is shown in
Supplementary Fig. 1.

This study was approved by the institutional review boards at the respective
institutions (SAH and SYSUCC, Guangzhou) and was conducted in accordance
with ethical standards of the Helsinki Declaration. Informed consent was waived
for this retrospective study, as no protected health information was used.

Definition of pathologic response. Information about pathologic response to
neoadjuvant CRT was obtained through detailed histopathological analysis of the
resected tumor specimen. The TRG was defined according the AJCC system?’.
TRG 0 indicates complete regression, with no viable tumor cells remaining in the
specimens; TRG 1 indicates near-complete regression with single or small number
of tumor cells; TRG 2 indicates moderate regression with residual cancer outgrown
by fibrosis; TRG 3 indicates minimal or no regression. Only patients with a pCR
would be candidates eligible for watchful waiting (without the need for radical
surgery). Therefore, patients were divided into two main groups: pCR (TRG 0) and
non-pCR (TRG 1-3).

Image acquisition and processing. All patients underwent multiparametric MRI
scans before and after neoadjuvant CRT. MRI sequences included T1-weighted
imaging with and without Gadolinium contrast, T2-weighted imaging, and DWIL
For each patient, the pre- and post-CRT images were spatially aligned in 3D using
rigid registration given the tumor location in pelvis. Registration was visually
checked by anatomical landmarks such as bony structures. Rather than simply
stacking the multiparametric images together, we combined them in a four-
dimensional tensor image with the last dimension being each of the four MRI
sequences and fed this as input to the network model. Details regarding the MRI
acquisition protocol and image processing can be found in Supplementary Meth-
ods and Supplementary Table 1. Some differences in imaging protocol across
institutions and residual registration errors exist as expected. These issues were
addressed by data normalization and harmonization, as well as data augmentation
techniques during network training.

Development of the deep learning model. The proposed multi-task learning
network takes pre- and post-therapy multiparametric MRI as input, and outputs
are both tumor segmentation and response prediction. The network architecture
consists of two subnetworks: one for feature extraction and tumor segmentation,
and one for response prediction (Fig. 2a). The segmentation subnetwork consists of
two identical 3D U-net, which contains a contracting path, an expansive path, and
skip connections between the corresponding layers. The Siamese subnetwork for
response prediction combines the extracted image features via depth-wise con-
volution from three distinct network layers: (1) intermediate layer in the con-
tracting path, (2) bottom layer of the U-net, and (3) intermediate layer of the
combination module at the end of the U-net.

We designed two types of loss function for tumor segmentation and response
prediction. To address the issue of class imbalance, we adopted the focal loss and
used a sampling technique to ensure a constant ratio of the two classes in each
training batch. Given the large number of parameters in our model, we employed
several established strategies to minimize the risk of over-fitting, including cross-
validation, data augmentation, instance normalization, and early stopping. We
implemented the deep learning network on the open source TensorFlow platform
with the Keras framework and Adam optimizer and trained using a NVIDIA
Quadro P6000 GPU. Detailed description about the loss function and training
procedures is provided in the Supplementary Methods.

Network model ablation analysis. To investigate whether different components
of the proposed network are truly necessary for accurate response prediction, we
simplified or modified the network and compared their performance (Supple-
mentary Fig. 3). First, we removed the Siamese subnetwork and used a single
ResNet to predict response based on pre-treatment images only. Second, we
replaced the Siamese 3D-Unet architecture with Siamese ResNet and concatenated
features from the final convolutional layers for the pre/post- treatment images. This

network performs classification only, but no segmentation. Similar approaches
were adopted for outcome prediction33 and disease monitoring!%-32. In addition,
we designed an improved network where two Siamese subnetworks are joined at
three different convolutional layers, similarly as our network. Again, this is a single-
task learning network designed for classification only.

Integration with blood markers. We combined the imaging-based model with
blood CEA levels to further improve accuracy of response prediction. First, CEA
levels were dichotomized by using a well-established cutoff at 5 ng/ml for defining
negative/positive samples. Based on dynamic information about pre/post-therapy
blood CEA levels, we defined five mutually exclusive and exhaustive categories
(Fig. 5a). These five categories coded as 1-5 were converted into dummy variables,
i.e., binary indicator variables. The integrated model was developed in the training
cohort using the random forest algorithm. The total number of trees (100) in the
forest and maximum number of levels (3) in each decision tree were determined by
using grid search with five-fold cross-validation in the training cohort.

Evaluation of model performance. We evaluated the accuracy of response pre-
diction using receiver operating characteristic (ROC) analysis. The area under the
ROC curve (AUC) was calculated to compare different models.

In addition, we computed sensitivity and specificity, and positive and negative
predictive values. The optimal cutoff point was determined by maximizing the
Youden’s index on the ROC curve. The calibration curve was used to evaluate the
prediction probability of the model.

Statistical analysis. Comparisons were performed using the ¢ test for continuous
variables and Chi-square or Fisher’s exact test for categorical variables, respectively.
ROC curves were generated using the bootstrap method with 1000 replicates. The
95% confidence interval of AUCs was obtained using a non-parametric bootstrap
approach by calculating the interval between 2.5 and 97.5 percentiles from the
distribution of AUCs. The statistical significance for difference in AUC between
models was assessed by the DeLong’s test. The raw p values for multiple pair-wise
comparisons were adjusted using the Bonferroni correction by multiplying the
number of tests. All statistical tests were two-sided and p values below 0.05 were
considered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The clinical and MRI data are not publicly available for patient privacy protection
purposes. Any individual affiliated with an academic institution may request access to the
original image and clinical data from the corresponding authors (X.W. and F.G.) for
non-commercial, research purposes. Data will be provided with a signed data access
agreement (Supplementary Fig. 14). Source data are provided with this paper.

Code availability

The deep learning models were developed using standard libraries in open-source
platforms including Keras and TensorFlow. Custom codes for the deployment of the
model®® are available https://github.com/Heng14/3D_RP-Net.
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