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Abstract

Profiling of protein species is important because gene polymorphisms, splice variations and post-
translational modifications may combine and give rise to multiple protein species that have
different effects on cellular function. Two-dimensional gel electrophoresis is one of the most
robust methods for differential analysis of protein species, but bioinformatic interrogation is
challenging because the consequences of changes in the abundance of individual protein species
on cell function are unknown and cannot be predicted. We conducted DIGE of soleus muscle from
male and female rats artificially selected as either high- or low-capacity runners (HCR and LCR,
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respectively). In total 696 protein species were resolved and LC-MS/MS identified proteins in 337
spots. Forty protein species were differentially (P < 0.05, FDR < 10%) expressed between HCR
and LCR and conditional independence mapping found distinct networks within these data, which
brought insight beyond that achieved by functional annotation. Protein disulphide isomerase A3
emerged as a key node segregating with differences in aerobic capacity and unsupervised
bibliometric analysis highlighted further links to signal transducer and activator of transcription 3,
which were confirmed by western blotting. Thus, conditional independence mapping is a useful
technique for interrogating DIGE data that is capable of highlighting latent features.

Keywords

Animal Selection Model; Bibliometric network analysis; Mass spectrometry; N-myc down-
regulated gene 2; Sexual dimorphism; Signal transducer and activator of transcription 3

1. Introduction

The statistical link between exercise capacity and all-cause mortality is irrefutable [1] but the
mechanisms that underpin the preventive effects of physical activity are not yet fully
understood. Previously, we have used proteomic techniques to investigate adaptations in
human skeletal muscle [2], and in the heart [3] and skeletal muscle [4] of outbred rats.
However, it is difficult to know whether changes measured in the proteome after a period of
exercise training reflect an acute response to the last bout of exercise or a summative chronic
response to the increase in habitual activity. Moreover, the concurrent acute effects and
chronic responses to exercise may be influenced by genetic factors that affect either baseline
levels or the responsiveness to training stimuli. To minimise these complications and
specifically investigate the link between aerobic capacity and disease risk we have used
divergent artificial selection in a genetically heterogeneous population of rats to create two
populations with markedly different intrinsic running capacities [5]. Early in the selection
process it was noted [6] that low capacity runners (LCR) were insulin resistant and displayed
cardiovascular risk factors including hypertension and dyslipidaemia. In contrast, high
capacity runners (HCR) exhibit enhanced metabolic flexibility including augmented muscle
glucose uptake and oxidation in the presence of insulin, as well as heightened uptake and
oxidation of lipids under fasting conditions [7]. These differences in substrate utilisation
between HCR and LCR are associated with greater abundance and efficiency of
mitochondria [8] as well as enhanced insulin receptor signalling [9] in HCR animals. As
such these findings add further associational evidence linking muscle aerobic capacity with
metabolic disease risk, but the regulatory networks driving these phenomena remain to be
discovered.

Transcriptome profiling of HCR/LCR muscle [10] reported 239 differentially expressed
genes, and gene-set enrichment analysis found correlations between free-wheel running
capacity and gene-sets including oxidative phosphorylation, fatty acid oxidation and PPAR
signalling. Furthermore, label-free LC—-MS profiling [11] provided protein-level
confirmation for the greater abundance of heart-type fatty acid binding protein, cytochrome
b-c1 complex subunit 1 and cytochrome ¢ oxidase subunit 4, isoform 1 in HCR skeletal
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muscle. Nonetheless, divergence between HCR and LCR populations is likely to involve
complex epistatic interactions and additive selection of genes consisting of different alleles,
which may create differences at the protein-species level [12]. Proteome mining studies (e.g.
[13,14]) have used sophisticated orthogonal separations and LC-MS/MS analysis to
catalogue approximately 2000 of the most abundant muscle proteins. However, it is not
possible to analyse large numbers of protein species (also known as ‘proteoforms’ [15])
using these techniques. This is because tryptic digestion severs the link between the different
combinations of post-translational modifications that make up each species. In contrast,
protein species can be readily resolved using 2D gel electrophoresis based on differences in
isoelectric point (p/) and relative mass (My) [4,16]. Indeed, using 2D difference in-gel
electrophoresis (DIGE) we [17] discovered the first evidence that the cardiac proteome of
LCR is exposed to greater oxidative stress, based on modification of metabolic enzymes by
the cytotoxic aldehyde, 4-hydroxynonenal (4-HNE). Our DIGE analysis resolved almost
1000 cardiac protein species but it was difficult to exploit this highly parallel data using
mainstream bioinformatic tools that assume greater abundance of transcripts or proteins can
be inferred to mean a greater contribution to cellular function. For example, an increase in
the density of a 2Dgel spot may in some cases depict a greater abundance of a relatively
inactive species of that protein and hence a decrease in the related cellular function. Because
we do not know the entire proteome and are unable to predict the role of each species of a
protein, pragmatic methods for finding associations between protein species are needed that
do not rely on prior knowledge. In particular, it is important to seek ‘un-biased’ or
unsupervised approaches because our intuitive interpretations are not objective and are
influenced strongly by our perception of which proteins/events/pathways etc. are of greatest
importance in particular scenarios.

Proteins interact with each other physically or through contribution to mutual processes (e.g.
oxidative phosphorylation) so many complex associations exist within proteome data. If key
nodes within these networks could be identified objectively this would direct the integration
of knowledge to focus attention to pertinent avenues of research. Previously, unsupervised
techniques including principal component analysis, hierarchal clustering or self organising
maps (k-means clustering) have been used to group together proteins that share similar
patterns of expression across biological replicates or experimental cases (e.g. [18]). This
approach to finding shared patterns of expression can be useful but the fact that proteins
cluster together does not provide evidence that they are components of the same network or
that they share dependent relationships. In contrast, conditional independence maps can be
used to find networks within complex data based on multivariate associations between nodes
(in this case, protein species). Herein we use the Clmap package [19] which is a constraint-
based approach to discovering multivariate association networks and is used to create a
directed acyclic graph of associations within the data. Conceptually, this approach is
perfectly matched to the task of interrogating data from techniques such as DIGE, which
create highly-detailed parallel information that might reasonably be expected to depict
functional, but unknown, associations between protein species.

The current work focuses specifically on skeletal muscle responses to artificial selection on
running capacity. Previous studies (e.g. [7]) report the greatest differences in muscle
metabolism between HCR and LCR are evident in fast-twitch and mixed-fibre muscles, such
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as the gastrocnemius. However, the proportion of type Ila/x fibres in gastrocnemius of HCR
rats (42 + 16%) is approximately double (P < 0.01) that (22 + 14%) of LCR animals [10],
and this difference in myofibre profile probably contributes to the differences in muscle
metabolism. Here, we investigate whether differences in metabolism between HCR and LCR
are evident in the soleus muscle which has a similar myofibre profile in HCR and LCR
animals [10]. Of equal importance, the aforementioned literature is based on data from
female HCR/LCR animals only. Muscle of females may have a greater capacity for fatty
acid metabolism than male muscle [20], therefore, differences in HCR and LCR metabolism
might be exaggerated or skewed when studied in an entirely female population. Indeed, just
3 studies [21—23] report skeletal muscle analysis of HCR/LCR males. Moreover, few
proteomic studies have addressed the issue of sexual-dimorphism in skeletal muscle.
Preliminary data suggest that sex-specific responses may occur in muscle of rats exposed to
high-fat diet [24] and streptozotocin administration [25] but these comparisons on pooled
samples preclude statistical analysis and interpretation relative to biological variability.
Metskas et al. [26] report sex-specific differences in the biceps brachii proteome of mice,
including greater abundances of creatine kinase, glycolytic enzymes and components of the
pyruvate dehydrogenase complex in males, whereas myoglobin and electron transfer protein
alpha were more abundant in females. These findings seem consistent with the reported [27]
effects of oestrogen on muscle metabolism but fall short of providing clear evidence of gross
differences in mitochondrial density or lipid oxidation. Nonetheless, these limited data raise
the issue of whether literature reporting differences in HCR/LCR muscle metabolism are
biased by the disproportionate use of female animals, including potential underreporting of
paternal traits.

2. Materials and methods

2.1. Animal model

The inception of HCR-LCR strains from a founder population of genetically heterogeneous
N:NIH rats has been described in detail [5]. Thirty-two male and female HCR/LCR rats (7=
8, in each group) from generation 25 (12-13 weeks old) were imported from the University
of Michigan. The transfer of animals to the UK and subsequent procedures were conducted
under the British Home Office Animals (Scientific Procedures) Act 1986 and according to
UK Home Office Guidelines. Rats were housed in a conventional facility and the
environmental conditions controlled at 20 + 2 °C, 45-50% relative humidity with a 12 h
light (0600-1800) and dark cycle. Food and water were available ab libitum during a 14-day
acclimatization period. After an overnight fast, animals were asphyxiated with CO, and
killed by cervical dislocation. Blood was collected by cardiac puncture and allowed to clot at
room temperature prior to being placed on ice overnight. After centrifugation, serum
fractions were stored at —80 °C and later analysed by ELISA for leptin (Millipore, Billerica,
MA). Skeletal muscles and other organs were isolated and cleaned of fat and connective
tissue before being weighed. In preparation for histochemical analysis, a segment of the
mid-belly of each skeletal muscle was resected and mounted in transverse section before
being snap-frozen in supercooled isopentane. Counter lateral muscles were frozen in liquid
nitrogen in preparation for proteomic analyses.
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2.2. Histochemical analysis of muscle phenotype

Serial cryosections (5 um thick) were cut from soleus muscle specimens and stained using
nicotinamide dinucleotidetetrazolium reductase (NADH-TR) or periodic acid-Schiff (PAS)
techniques, described in [28]. Myofibre types were determined based on anti-MyHC type |
and lla (1:10 dilution, N2.261; Axxora) and anti-MyHC type lla and 1Ix (1:50 dilution,
N3.36; Santa Cruz) Ab staining. Primary Ab was detected with HRP-conjugated secondary
Ab (1:100 dilution) and visualised using a DAB and counterstained with haematoxylin.
Cryosections were viewed (100 magnification) by light microscopy and were digitised using
a 12-bit charge-coupled device (1213C; DVC, Austin, Texas). One hundred myofibres from
each muscle were randomly selected and identified as being either type I, type lla or type
II1x/b. Calibrated image analysis software (Lucia; LIM, Hostivar, Czech Republic) was used
to measure myofibre cross-sectional area (CSA), and the average mitochondrial density and
glycogen content were estimated by measuring the optical density of type I, lla, or lIx/b
fibres (100 each) on NADH-TR or PAS-stained cryosections, respectively.

2.3. DIGE of soluble muscle proteins

Soleus muscles were pulverised in liquid nitrogen then homogenised on ice in 8 volumes of
1% Triton X-100, 50 mM Tris pH 7.4 containing Complete™ protease and PhosSTOP
phosphatase inhibitors (Roche Diagnostics, Lewes, UK). Samples were incubated on ice for
10 min then centrifuged at 12,000 rcf, 4 °C for 45 min. Supernates were precipitated in
acetone and resuspended in lysis buffer: 7 M urea, 2 M thiourea, 4% (w/v) CHAPS, 30 mM
Tris, containing protease and phosphatase inhibitors. Protein concentrations were measured
using the Bradford assay (Sigma, Poole, Dorset, UK) and each sample adjusted to 5 ug pl~2
in either Lysis buffer for DIGE analysis or Laemmli buffer for western blot analyses.

Fifty microgram aliquots of each sample and the pooled internal standard were labelled with
400 pM CyDye DIGE Fluor minimal dyes (GE Healthcare, Little Chalfont, UK), consistent
with previous work [17]. To minimise the potential confounding effects of differences in
fluorescence intensity, Cy3 and Cy5, labelling was alternated between LCR and HCR
samples in a ‘balanced’ design. Labelled LCR and HCR aliquots and pooled Cy2-labelled
standard were combined with rehydration buffer: 7 M urea, 2 M thiourea, 2% (w/v) CHAPS,
20 mM DTT and 0.5% (v/v) ampholytes. IPG strips (24 cm pH 3- 10 non-linear;
Immobiline Drystrip, GE Healthcare) were rehydrated overnight in 450 ul rehydration buffer
that contained the combined cyanine-labelled samples. Isoelectric focusing (maximum 50
WA per strip) was performed on an IPGPhor Il (GE Healthcare) at 20 °C using the protocol
(total 44000 Vh): 3 hat 300V, 3 hat600V, 3 hat 1000 V, gradient to 8000 V in 3 h and
then 4 h at 8000 V. IPG strips were equilibrated in 50 mM Tris—HCI pH 8.8, containing 6 M
urea, 70 mM SDS, 30% v/v glycerol and a trace amount of bromophenol blue. DTT (65
mM) was present in the first equilibration and iodoacetamide (135 mM) in the second.
Proteins were electrophoresed (Ettan Dalt six; GE Healthcare) through denaturing 12.5%
poly-acrylamide gels at 20 °C; at 5 W per gel for 30 min, then 17 W per gel until the
tracking dye reached the bottom edge.
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2.4, Difference profiling and statistical analyses

Gels were digitised (16-bit greyscale, 100 um pixel size) immediately after electrophoresis
using a fluorescence scanner (Typhoon 9400, GE Healthcare) at wavelengths appropriate for
Cy2, Cy3 and Cy5 dyes. Gel images (Cy2, Cy3 and Cy5, total = 30) were aligned in
SameSpots (Nonlinear Dynamics, Newcastle, UK) using prominent spots (mean + SD per
gel image: 548 + 36) as vectors to warp each image to a common reference gel. A mask was
used to remove gel artefacts (109 spots deleted) and features with an average normalised
volume < 10,000 (147 spots) or spot area < 150 (33 spots) were disregarded. In total, 696
spots were included in the subsequent analysis. As a measure of technical variation, when
ranked by coefficient of variation, 70% of spots in Cy2 images (pooled standard) had a
coefficient of variation less than 14%. Log transformed spot volumes, expressed relative to
the pooled standard, were exported to PASW Statistics software (IBM, Portsmouth, UK) and
used to investigate differences in expression due to sex (male versus female) and strain (LCR
versus HCR) by two-way analysis of variance. To control false discovery rate (FDR), P-
value distributions were used to calculate g-values [29] and a criterion FDR of <10% was
set. This statistical approach considers the biological variation across each spot and is,
therefore, more sophisticated than arbitrarily implementing a threshold based on fold-
change.

2.5. Identification of gel spots using nLC-ESI-MS/MS

Proteins were identified from colloidal Coomassie-stained (Bio-Safe; Bio-Rad, Hercules,
CA, USA) preparative gels loaded with 1.5 mg protein (pooled standard). A batch of 384
spots was cut and processed using a Xcise robot (Shimadzu Biotech) directed by a picking
list produced from the SameSpots analysis. In addition, spots adjacent to differentially
expressed proteins were also excised to investigate the presence of different species of these
proteins. In-gel tryptic digestion was conducted in 96-well microtitre plates as described
previously [4] and the reaction was terminated by the addition of formic acid to a final
concentration of 0.1%. Tandem mass spectra were recorded using a quadrupole-high
capacity ion-trap (HCT Ultra ETD II; Bruker Daltonics, Bremen, Germany) coupled via an
electrospray ionisation source to a nano-flow HPLC system (Ultimate 3000; Dionex,
Sunnyvale, CA). Samples (10 pl in-gel digest) were loaded in aqueous 0.1% (v/v) formic
acid via a Zorbax 300SB-C18, 5 um, 5 mm x 300 um pre-column (Agilent Technology,
Santa Carla, CA). Separation was conducted at 30 °C through a Zorbax 300SB-C18, 3.5 um,
150 mm x 75 um analytical reverse phase column (Agilent Technology). Peptides were
eluted using a gradient rising to 40% acetonitrile 0.1% (v/v) formic acid over 30 min at a
flow rate of 300 nl/min. An online nanospray source (EasyNano, Bruker Daltonics) was used
equipped with a fused silica emitter. The capillary voltage was —1300 V and a survey scan
from 350 m/z to 1600 m/z was used to select peptides with charge states of +2 or +3 using
Enhanced Scan mode (8100 (m/z)/s). Data dependent MS/MS analysis in alternating CID
and ETD modes was performed selecting the two most abundant precursor ions with active
exclusion enabled. Raw data were processed (Data Analysis 4.0, Bruker Daltonics) and
Mascot generic format files were searched against the Swiss-Prot database (2011.6)
restricted to ‘Rattus’ (7617 sequences) using a locally implemented Mascot
(www.matrixscience.com) server (version 2.2.03). A first round Mascot error tolerant search
and subsequent directed searches were performed using a bioinformatic platform
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(ProteinScape, Bruker Daltonics). The enzyme specificity was trypsin allowing 1 missed
cleavage, carbamidomethyl modification of cysteine (fixed), oxidation of methionine
(variable) and an m/z error of + 0.5 Da. The directed searches also included acetylation of
lysine and phosphorylation of serine, threonine or tyrosine residues as possible
modifications.

2.6. Bioinformatic analyses

Functional enrichment analysis was conducted using the Database for Annotation,
Visualization and Integrated Discovery [DAVID; http://david.abcc.ncifcrf.gov/home.jsp
[30]]. The non-redundant lists of differentially expressed proteins (FDR < 10% for each
main effect: sex and strain) were investigated for over-representation of gene ontology (GO)
classes: cellular component (CC), biological process (BP) and molecular function (MF).
Association of proteins with pathways of the Kyoto Encyclopedia of Genes and Genomes
[KEGG; http://www.genome.jp/kegg/ [31]] was also assessed, and the statistical significance
of clusters was estimated by modified Fisher exact P value.

Conditional independence mapping was used to graph interrelations within the population of
spots that were significantly (FDR < 10%) differentially expressed due to HCR/LCR strain.
Data were analysed in MatLab using the Cimap package [19] to create conditional
independence maps that describe multivariate association networks within the data. Log-
transformed continuous data of spot expression were converted to categorical terciles or
quintiles to assess course- and fine-grain associations, respectively. Each analysis began with
a fully-connected undirected graph and conditional independence tests were used to
determine whether edges (associations) between vertices (protein spots) should be kept or
deleted. These decisions were made using conditional mutual information, which is an
estimate of association strength that is approximated by the chi-squared distribution. That is,
decisions regarding inclusion or exclusion of edges were made by performing chi-squared
tests on the null hypothesis that two vertices are independent. This process was ordered so as
to test and exclude weak edges first and arrive at a directed acyclic graph that depicts the
multivariate association network within the data. Cimap also includes computational
procedures for bounding the false positive and false negative rates, to enable conditional
independence testing within small sample sizes. To construct the tercile map a was set at
0.05, whereas more stringent (a = 0.01) testing was used in the construction of the quintile
map. Post-hoc pair-wise testing was used to approximate the relative strength of associations
between vertices in order to dictate edge length (shorter edge = stronger association) during
the construction of each map.

Bibliometric network mapping was conducted using iHOP (http://www.ihop-net.org; [32]).
Gene models were constructed from evidence in the rat, human and mouse interaction pages
for the protein of interest. Information was manually curated and filtered to include evidence
of co-expression, co-localisation, protein—protein interaction and modulation by gain/loss of
function interventions.
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2.7. Western blotting

Samples in Laemmeli buffer [33] were heat denatured (5 min at 95 °C) and aliquots
containing 50 pg protein were loaded on precast 4-20% polyacrylamide gels (Precise Tris—
HEPES protein gels; Thermo Scientific). Electrophoresis was conducted at 80 V for 20 min
then 140 V for 40 min using a mini-gel system (MiniVE; GE Healthcare, Little Chalfont,
UK). Electro-transfer of proteins to methanol-activated polyvinylidene difluoride
membranes was conducted in Towbin buffer [34] at 25 V for 2 h. Successful transfer was
confirmed by staining membranes with direct blue 71, according to [35]. Non-specific
protein interactions were blocked by incubating the membranes with 5% non-fat dry milk in
20 mM Tris, 150 mM NaCl, and 0.1% Tween 20, pH 7.6 (TBS-T) for 1 h at room
temperature. Membranes were then washed in TBS-T and incubated overnight with TBS-T
containing 5% BSA and primary antibodies specific for: signal transducer and activator of
transcription 3 (STAT3; 9139 Cell Signalling Technology; 1:5,000 dilution) and
phosphorylated (S727 or Y705) STAT3 (9134 and 9131, Cell Signalling Technology; 1:500
dilution). Serial washes in TBS-T were performed prior to enhanced chemiluminescence
(ECL Prime; GE Healthcare) and digitization (Gel Doc XRS; Bio-Rad, Hercules, CA) of
immuno-reactive protein bands. Image analysis (Quantity One, version 4.; Bio-Rad) was
used to measure the relative abundances of target proteins. Analysis of phosphorylated and
non-phosphorylated species was achieved by stripping and re-probing of membranes.
Briefly, membranes were stripped by incubation in 62.5 mM Tris, 70 mM SDS, 50 mM f-
mercaptoethanol, pH 6.8 at 50 °C for 30 min. Successful removal of the immuno-signal was
assessed by enhanced chemiluminescence prior to subsequent immuno-detection.

3. Results

3.1. Physical and physiological characteristics

The physical characteristics of male and female HCR and LCR rats are displayed in Table 1.
In females, body weight of LCR was 1.26-fold greater than HCR, and the body weight of
males was 1.38-fold greater in LCR compared to HCR. There was a statistically significant
interaction in distance completed during a standardised exercise test. HCR females ran
significantly further than any other group and the difference in running capacity between
HCR and LCR strains was 5.87-fold in females and 6.44-fold in males. Hence, regardless of
strain, females were lighter and ran further than males and this corresponded with significant
differences in work (J) performed during the exercise test. Consistent with the smaller body
mass of females the wet weight of the heart and skeletal muscles was significantly less in
females compared to males. Similarly, absolute wet weights of heart and red gastrocnemius
muscle were significantly less in HCR (i.e. consistent with the differences in body weight),
but there was no significant difference in the average wet weights of soleus, EDL and tibialis
anterior muscle between HCR and LCR strains.

3.2. Soleus muscle phenotype

Soleus had type | (~20%) and type Ila (~80%) myofibres only and there was no significant
difference in the portions of these fibres between male and female HCR and LCR. The CSA
of type I and lla fibres was greater in male than female, this was statistically significant for
type Ila fibres and consistent with the greater soleus mass in males compared to females.
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The area fractions of type | and type Ila were not different in male and female HCR and
LCR soleus (Table 2). Mitochondrial density (NADH-TR staining) of both type | and type
I1a fibres was significantly greater in HCR than LCR. No significant differences were
detected in myofibre glycogen content (PAS staining).

3.3. Proteome mining of soluble skeletal muscle proteins

Mass spectrometry of selected 2D gel spots unambiguously identified proteins in 337 spots
and generated a non-redundant list of 154 gene products. A detailed 2D gel map of the
proteins identified by mass spectrometry is available in the World 2D-PAGE repository
(http://world-2dpage.expasy.org/repository/), accession number 0069. This resource displays
the position and Swiss-Prot database identification of each gel spot. The spot reference
numbers used in this article are also displayed and each identified spot is linked to the raw
CID and ETD MS/MS spectra in Mascot Generic Format (.mgf).

Based on the outcomes of Mascot error tolerant searches, directed MS/MS ion searches were
performed with phosphorylation (S/T and Y) and acetylation (K) as possible modifications.
Manual verification of fragment-ion sequence ladders in peptides with scores >20 created a
list of 70 peptides from 29 gel spots, which encompassed 19 non-redundant gene products
(Supplementary Table S1). Of the 70 modified peptides, 59 have been previously reported
and 11 were novel modifications not currently recorded in PhosphoSite
(www.phosphosite.org). In the majority, potential sites of modification were supported by
CID spectra only, which may be a consequence of the relatively short LC gradient, arbitrary
ordering of CID before ETD fragmentation or the preference of ETD fragmentation for
higher charge-state precursors. Five spots (411, 419, 427, 431, 433) each identified as N-
myc down-regulated gene 2 (NDRG2) protein, exhibited CID evidence of numerous S/T
phosphorylation sites. In each of the NDRG2 spots, CID and ETD fragment spectrum pairs
for a peptide spanning residues 328-343 and indicating phosphorylation of serine 228, 230
or 332 were recorded during the proteome mining exercise.

3.4. DIGE profiling of male and female, HCR and LCR soleus

Two-way analysis of variance performed on the 696 gel spots matched in male and female
soleus muscle of HCR and LCR rats detected 15 spots that were significantly (P < 0.05,
FDR < 10%) different between males and females (Table 3) and 40 spots that were
significantly (P < 0.05, FDR < 10%) different between HCR and LCR strains (Table 4). An
image of the 2D reference gel annotated with the position of each of the statistically
different protein spots is shown in Fig. 1. Overlap of spots that were different between
HCR/LCR strain and those different between sexes was limited to 4 spots (#53 HSP7C,
#139 SPA3K, #165 ODP2 and #379 ENOB) and just one spot (#379, B-enolase) exhibited a
statistically significant interaction (more abundant in male LCR). B-Enolase is a highly
abundant glycolytic enzyme and was resolved into 9 spots that had different p/but similar
Mr. This spot pattern may reflect different states of modification. p-Enolase can undergo S,
T and Y phosphorylation and K acetylation but proteome mining did not identify post-
translational modifications specific to spot #379. Moreover, the 1.06-fold greater abundance
of spot #379 specific to male LCR was somewhat overshadowed by the 2.57-fold greater
abundance of f-enolase spot #410 that was observed in both male and female LCR (Table 4).
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Considering the wider effects on metabolic enzymes (Fig. 2), the greater abundance of -
enolase likely reflects a shift toward greater reliance on glycolytic metabolism in LCR
muscle.

Functional annotation linked the non-redundant protein identifications with several GO
classes and KEGG pathways. Proteins more abundant in HCR (total 25 non-redundant gene
products) linked with mitochondria (CC), generation of precursor metabolites (BP),
nucleotide binding (MF) and were associated with TCA Cycle and Ox Phos KEGG
pathways (Fig. 2). Proteins more abundant in LCR (total 7 non-redundant gene products)
linked with serine-type endopeptidase inhibitor activity (MF) and were associated with the
Glycolysis KEGG pathway. The main sex-specific difference was the enrichment of
cytosolic proteins (CC) linked with the response to oxidative stress (BP) and chaperone
binding (MF) in males (total 8 non-redundant gene products). The 7 non-redundant gene
products that were more abundant in females did not exhibit significant enrichment of GO or
KEGG classifications.

Conditional independence maps of course- and fine-grain associations within the DIGE data
were complementary with the functional enrichment analysis and also highlighted important
additional information. Course-grain mapping (Fig. 3A) based on significant (a = 0.05)
associations found using tercile categorisation of the data highlighted 3 clusters focusing on
60 kDa heat shock protein (CH60; spot #328), protein disulphide isomerase A3 (PDIA3;
spot #210) and hypoxanthine—guanine phosphoribosyltransferase (HPRT; spot #757). The
cluster centred on CH60 primarily consisted of mitochondrial proteins, which is consistent
with the functional enrichment analysis and the key role of CH60 in mitochondrial protein
import. A second PDIAS3 spot (#206) linked the two principal clusters of CH60/spot #238
and PDIA3/spot #210. Thus protein species of PDIA3 were connected with a large number
of the differentially regulated proteins and may also provide a link to the different
mitochondrial and aerobic capacities of HCR and LCR muscle. PDIA3 (spot #210) became
the most prominent feature when more stringent (a = 0.01) conditional independence
mapping was performed on quintile categorised data (Fig. 3B) but the link with theCH60was
broken. The PDIAS3 cluster included, amongst others, PDIA3 spot (#206) and serine protease
inhibitor A3K (spot #539), which was the spot exhibiting the greatest difference (3.18-fold)
between HCR and LCR muscle. Post-hoc testing revealed that the strongest associations
with PDIAS3 spot #210 wereNDRG2 (spot #433; K = 1.1761), fumarate hydratase (FUMH,
spot #426; K = 1.1761) and very long-chain acetyl CoA dehydrogenase (ACADYV, spot #65;
K =1.1573).

Proteome mining showed that PDIA3 was resolved as a total of 4 gel spots, and 3 of the
protein species were differentially expressed between HCR and LCR (Table 4). Spot #206
and #220 were more abundant in LCR whereas spot #210 was greater in HCR, which
indicate a shift in post-translational state. Routine mass spectrometry analysis conducted
during the proteome mining exercise identified potential phosphorylation of S176 in PDIA3
spot #210 (see Supplementary data).

A bibliometric network was constructed as an unbiased means to explore literature evidence
of proteins that have been associated with PDIA3 (Fig. 4). The majority of citations were
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related to protein—protein interactions between PDIA3 and the ER chaperones calnexin and
calreticulin. Second to these interactions was strong evidence of the association of PDIA3
with the signal transducer and activator of transcription 3 (STAT3), which encompassed
evidence from co-expression, co-localisation, protein—protein interaction and gain/loss of
function studies.

3.5. Western blot analysis of STAT3

The abundance of STAT3 protein was not significantly different between male and female or
HCR and LCR soleus muscles (Fig. 5). Similarly, there was no significant difference in the
relative ratio of tyrosine (Y795) phosphorylation of STAT3. However, serine (S727)
phosphorylation of STAT3 was 1.54-fold greater (P = 0.0058) in LCR soleus.

3.6. Serum leptin levels

STAT3 is a canonical component of skeletal muscle leptin signalling and differences in
serum leptin levels in HCR/LCR animals have been reported [36]. There were significant (P
< 0.05) sex-specific and strain-specific differences in serum leptin concentrations. Values in
males (M-HCR = 2.92 + 1.56 ng-mI~1; M-LCR = 5.71 * 2.59 ng-mlI~1) were greater than
values in females (F-HCR = 1.07 + 0.46 ng-ml™1; F-LCR = 2.76 + 0.71 ng-ml~1) but there
was no statistically significant interaction between sex and strain. Further to differences
between HCR and LCR group means, significant correlation was found between individual
serum leptin concentrations in LCR and the abundance of 60 kDa heat shock protein (spot
#238: R2=0.238, P = 0.029), stress-70 protein (spot #107: R? = 0.415, P = 0.0022), serine
protease inhibitor A3K (spot #123: R = 0.392, P = 0.0031 and Spot #139: R2 = 0.4915, P =
0.0006), B-enolase (spot #379: R2 = 0.2668, P = 0.0197 and spot #341: R2 = 0.227, P =
0.034), enoyl-CoA hydratase (spot #762: R2 = 0.204, P = 0.046) and fumarate hydratase
(spot #423: R2 = 0.211, P = 0.042 and spot #426: R2 = 0.266, P = 0.02).

4. Discussion

DIGE analysis revealed that there is little or no sexual dimorphism in the muscle response to
artificial selection on running capacity. Significant main effects of sex (15 spots) and strain
(40 spots) were clearly evident in the soleus proteome but just 1 spot (#379; B-enolase)
exhibited a statistically significant sex strain interaction. As anticipated, the myofibre profile
was identical in HCR and LCR soleus and HCR muscle exhibited significantly greater
mitochondrial content (Table 2). Indeed, the majority of differences between the HCR and
LCR soleus proteomes were of mitochondrial origin, which support recent hypothesis-led
studies [8,37] and our preliminary proteome profiling [11] using label-free LC-MS.
Furthermore, our current DIGE analysis highlighted mitochondrial protein import as a
potential mechanism underpinning the enhanced mitochondrial function in HCR muscle.

Further to the conventional analysis of the DIGE data, we used conditional independence
mapping as an objective means to identify associations between protein species that
exhibited significant differences in abundance (Fig. 3). This novel approach highlighted
important interactions, which were not obvious from first-principle deduction of gene
ontology annotations. The 2most prominent networks highlighted by conditional
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independence mapping centred on protein disulphide isomerase A3 (PDIA3; spot #210) and
60 kDa heat shock protein (CH60; spot #238). This places particular emphasis on these
proteins as candidate biomarkers and potential mediators of the differences between HCR
and LCR skeletal muscle.

4.1. PDIA3 species are associated with STAT3 signalling

PDIA3, also known as endoplasmic reticulum protein 57 (ERp57) or glucose-responsive
protein58 (GRP58), was first described as a thiol-dependent reductase [38,39]. However,
silencing of PDIA3 does not have major effects on ER morphology or processes such as the
unfolded protein response, but instead significantly affects STAT3 signalling [40].
Accordingly, PDIA3 and STAT3 are reported to interact in a ~200-400 kDa ‘statosome’,
which is capable of influencing cytokine (I1L-6) signalling in hepatoma (Hep3B) cells [41].
In fibroblasts, the protein abundance, Y79 phosphorylation and transcriptional activity of
STAT3 are augmented in the absence of PDIA3 and this effect is reversed by transfection
with PDIAS3 directed to the ER lumen [40]. Changes in the abundance of PDIA3 have been
reported due to ageing or exercise. PDIA3 is more abundant in the gastrocnemius of elderly
compared to young rats [42], and endurance training is associated with an increase in PDIA3
abundance in human muscle mitochondria [43]. However, the current DIGE data depicts
changes across different species of PDIAS3 rather than differences in total abundance.

We resolved PDIA3 as 4 spots (220, 206, 210 and 202) of equivalent M, but different p/
indicating different protein species, which may be due to post-translational modifications or
sequence variations. A similar PDIA3 spot pattern has been reported in hepatic tissue [44],
where some PDIA3 species exhibited diurnal fluctuations. PDIA3 spot 4 and spot 3 reported
in [44] were found to contain phosphorylated (S°%) PDIA3 and probably correspond to
spots 220 and 206 of current DIGE map, which were more abundant in LCR muscle. Our
proteome mining work failed to unambiguously identify site-specific phosphorylations of
PDIA3 but Kita et al. [44] used a phosphorylation specific Ab to show that S50
phosphorylation of PDIA3 occurs in response to periods of fasting greater than 12 h [44]. In
our experiment rats were fasted overnight (~12 h) so the significant differences in muscle
PDIA3 spot pattern (Table 4) may also be a response to fasting. Nevertheless, the period of
fasting was standardised across male and female, HCR and LCR groups, meaning LCR
exhibit a greater response than HCR to an equivalent metabolic stress. Kita et al. [44] report
that native species of PDIA3 co-precipitate with STAT3 whereas S150 phosphorylation of
PDIA3 blocks this interaction. If S0 phosphorylation of PDIA3 is also greater in LCR
soleus then selection on low running capacity might be associated with greater STAT3
signalling. In support of this suggestion, the STAT3 pathway was the most highly-enriched
gene-set in LCR gastrocnemius [10], and unsupervised bibliometric analysis highlighted
robust connection between STAT3 and PDIA3 (Fig. 4). Using western blotting (Fig. 5), we
found no differences in STAT3 protein abundance or Y705 phosphorylation but $727
phosphorylation of STAT3 was greater in LCR soleus.

The canonical STAT3 pathway is activated by cytokine receptors (e.g. leptin and IL-6) and
involves tyrosine (Y795) phosphorylation of STAT3 by Janus kinases [45]. Tyrosine
phosphorylation enables homo-dimerisation and nuclear translocation of STAT3, whereas
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serine (S727) phosphorylation of STAT3 disrupts this process [46]. S727 phosphorylation may
be mediated by ERK-family mitogen activated protein kinases or ERK-independent
processes involving the mammalian target of rapamycin (mTOR). Interestingly mTOR was
one of the genes listed in the STAT3 pathway enriched in LCR muscle transcriptome [10].
Moreover, PDIAS3 also interacts with mTOR and may be mechanistically involved in the
activation of mTOR by oxidants such as phenylarsine oxide [47]. Phosphorylation of Akt
S473 by mTOR is prevented when cells are incubated with a 2-fold excess of amino acids.
This effect co-occurs with S727 phosphorylation of STAT3 while deletion of STAT3
abolishes the inhibitory effects of amino acids on insulin signalling. Using a STAT3 reporter
assay, [48] reports that amino acid excess increases the transcriptional activity of STAT3 and
leads to greater expression of SOCS3, which may inhibit insulin signalling. These effects in
hepatocytes could also be seen in muscle and adipose cells, therefore, S727 phosphorylation
of STAT3 in LCR soleus may contribute to the greater insulin resistance of LCR animals and
warrant further investigation.

Amongst other proteins in the PDIA3 cluster were serine protease inhibitor A3L (Serpin;
Spot #539), which has a STAT3 site in its promoter and exhibited the most prominent
increase (3.18-fold greater) in LCR muscle, and N-myc down regulated gene 2 (NDRG2;
spot #433), which is reported to modulate STAT3 and SOCS3 responses to cytokine
stimulation in U937 lymphablasts [49]. NDRG2 has previously been associated with
modulation of insulin signalling [°0] and can be phosphorylated at T330, S332 and T348 by
serum- and glucocorticoid-induced kinase 1 (SGK1) [51], at $332 by PKCH and at T348 by
Akt [50]. Evidence of phosphorylation at each of these sites was detected during proteome
mining but it was not possible to distinguish spots wherein phosphorylation patterns were
specific to an individual kinase. Nevertheless, interrogation of CID and ETD spectra revelled
spots #431 and #433, which were more abundant in LCR, lacked any evidence of
phosphorylation at S338, which is a commonly reported modification to NDRG2 (131 MS
reports in PhosphoSite) that was present in the other NDRG2 spots. Currently no empirical
evidence of an upstream kinase exists but NetPhosK predicted casein kinase 1 (CK1) may
target S338 of NDRG2. CK1 has been implicated with metabolic circadian rhythms via its
modulation of the degradation rate of PGC-1a [52]. Therefore, greater phosphorylation of
NDRG2 S338 may be consistent with the lesser mitochondrial content or greater response to
fasting in LCR.

Fumarate hydratase was also a prominent component of the PDIA3 cluster (Fig. 2B), and
was resolved as 3 spots that were significantly less abundant in LCR muscle (Table 4). The
lesser overall abundance of fumarate hydratase provides protein-level confirmation of earlier
transcriptome data [10] and may point to alterations in amino acid or purine metabolism.
Fumarate hydratase is an anaplerotic entry point for phenylalanine and tyrosine to the TCA
cycle and is also associated with purine metabolism [53]. Accordingly we found that several
other enzymes of purine metabolism were less abundant in LCR, including 3-
mercaptopyruvate sulfurtransferase and hypoxanthine— guanine phosphoribosyltransferase.
Alongside its role in purine metabolism, 3-mercaptopyruvate sulfurtransferase performs the
final reaction in the metabolism of glycine, serine and threonine to produce pyruvate. A
lesser capacity for purine metabolism could negatively effect muscle energy regulation. In
addition, severe fumarase deficiency may inhibit fatty acid oxidation due to inadequate
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production of oxaloacetone, which is required to accept acetyl-CoA in to the TCA cycle.
This latter effect seems consistent with the lesser abundance of ACADV and enoyl-CoA
hydratase, which were also clustered with PDIA3 spot #210 (Fig. 2B).

4.2. CH60 is a key node for mitochondrial proteins

The second most prominent cluster is centred on 60 kDa heat shock protein (spot #238).
This finding likely relates to the differences in mitochondrial content between HCR and
LCR muscle, which are widely acknowledged. The mitochondrial proteome encompasses
approximately 1000 known proteins [54], many of which have been described in proteome
mining studies of muscle mitochondria (e.g. [55]). The majority of mitochondrial proteins
are transcribed from nuclear genes whereas 13 are derived from mitochondrial DNA [56].
Nuclear-encoded proteins often contain target sequences to direct the pre-protein to
mitochondria. This process is mediated by cytosolic chaperones including heat shock
cognate 71 kDa protein [57], which was more abundant in HCR soleus. Chaperone binding
prevents aggregation of the precursor and facilitates its recognition by the translocase of the
outer membrane (TOM), which is the first step in mitochondrial protein import. Proteins
destined for the mitochondrial matrix must also transverse the inner membrane, and this
energy-dependent process is driven by stress-70 protein (more commonly known as
mitochondrial heat shock protein 70; mtHsp70). Within the matrix pre-sequences are cleaved
and nascent proteins are folded in to their mature form by the chaperonin complex, which is
a heteroligomeric structure consisting of subunits of 60 kDa heat shock protein (chaperonin
60; CH60) and 10 kDa heat shock protein (chaperonin 10; CH10). The crucial role of
mitochondrial protein import is illustrated by data from yeast [58] reporting that 5 genes are
essential for mitochondrial viability, and the products of each of these genes are components
of the mitochondrial protein import machinery. Included in this list are chaperonin 60 and
stress protein-70, which were significantly less abundant in LCR soleus (Table 4). In
addition to being lethal in yeast, mutation of CH60 is related with inherited human diseases,
including spastic paraplegia and hypomyelinating leukodystrophy [59].

It is important to mention that we detected CH60 in 5 spots and just one of these spots was
more abundant in HCR muscle. This is consistent with our previous proteomics data [2] in
human skeletal muscle where 3 species of CH60 were detected and one spot was
significantly more abundant in samples collected after high-intensity interval training. As yet
the individual CH60 species have not been characterised but it is clear that innate and
acquired differences in muscle aerobic capacity affect proteins such as CH60 at the species
level, in addition to reported changes in the total abundance of the protein (e.g. [60]). It
remains to be determined whether the different species of CH60 influence the oligomeric
structure or activity of the chaperonin complex. Similar to CH60, stress-70 protein was
detected as a series of 3 spots, one of which (spot #53) was more abundant in HCR muscle.
Consistent with our findings (Table 4) using artificial selection and earlier experience in
exercise training [61], chronic low-frequency stimulation (CLFS) also increases Stress-70
protein and CH60 [60]. In response to CLFS, the magnitude of the change in abundance of
Stress-70 and CH60 is proportionally greater than that of respiratory chain proteins such as
COX [60], which suggests that robust augmentation of protein import is necessary to
facilitate mitochondrial adaptations.
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Consistent with our previous findings [11], several of the mitochondrial proteins that
exhibited differences between HCR and LCR (Table 4) were also highlighted in the
‘longevity interactome’ produced from genes that modify lifespan when mutated in model
organisms such as yeast and Caenorhabditis elegans [62]. In particular, proteins involved in
mitochondrial protein import (heat shock cognate 71, stress-70 protein and 60 kDa heat
shock protein) fatty acid metabolism (aspartate aminotransferase) and NDRG2 belong to the
‘core set’ of the longevity interactome, which comprises genes that also exhibit significant
differences between muscle of young and elderly humans [62]. Therefore, our current data
(Table 4) in young animals may link with the differences in natural ageing and life
expectancy of HCR and LCR rats [63].

In LCR animals, serumleptin concentrations were negatively correlated with the majority of
metabolic proteins that were differentially expressed between HCR and LCR muscle.
Typically, leptin signalling stimulates muscle fatty acid oxidation and glucose uptake and
improves insulin sensitivity [61]. We found that serum leptin levels were greater in males
than females and male LCR exhibited the highest serum leptin concentrations. These
findings extend earlier work in females [36] and the inverse correlations between serum
leptin and the muscle proteome data suggest that LCR animals are leptin resistant.

5. Conclusion

The current work reports the first broad-scale profiling of the muscle proteome from male
and female animals selected based on either high- or low-running capacity. Relatively few
differences were detected between the soleus proteome of male and female animals, and sex-
specific protein regulation (Table 3) did not demonstrate strong functional clustering. In
contrast, selection on running capacity was associated with differences in functional groups,
such as glycolysis, TCA cycle and oxidative phosphorylation. Importantly, graphical
network analysis of the proteome data highlighted potential interactions which were not
obvious from first-principle deduction of the gene ontology information. The application of
conditional independence mapping enabled us to gain insight to latent interactions, which
may highlight underlying mechanisms. The utility of this novel unsupervised approach to
the interpretation of DIGE data warrants wider application, and our current work also
supports the use of bibliometric analysis as an unbiased tool for discovering potential protein
networks. In particular, we found PDIA3 and CHG60 to be key nodes associated with
differences in muscle aerobic capacity and our data further highlight STAT3 and NDRG2 as
novel candidate mechanisms, which may underly the differences in muscle insulin
sensitivity.

A reference 2D gel image is available at the World 2D-PAGE repository (http://
world-2dpage.expasy.org/repository/), accession number 0069. Spot numbers used
throughout this manuscript are consistent with the World-2DPAGE reference map and each
spot coordinate is linked to the mass spectrometry protein identification. The associated CID
and ETD MS/MS ions data in Mascot generic format are available upon request.
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jprot.
2014.04.015.
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Biological significance

Quantitative proteome profiling revealed that there is little or no sexual dimorphism in
the skeletal muscle response to artificial selection on running capacity. Instead we found
that noncanonical STAT3 signalling may be associated with low exercise capacity and
skeletal muscle insulin resistance. Importantly, this discovery was made using
unsupervised multivariate association mapping and bibliometric network analyses. This
allowed our interpretation of the findings to be guided by patterns within the data rather
than our preconceptions about which proteins or processes are of greatest interest.
Moreover, we demonstrate that this novel approach can be applied to 2D gel analysis,
which is unsurpassed in its ability to profile protein species but currently has few
dedicated bioinformatic tools.
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Fig. 1.

DIQGE reference map. Reference 2D gel map of rat soleus muscle. Annotations show the
reference numbers of spots that were significantly different between either male vs females
(Table 3) or high-capacity runners (HCR) vs low-capacity runners (LCR; Table 4). An
interactive version of the gel map is available at the World-2DPAGE repository, accession
number 0069.
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Metabolic maps. The metabolic pathways of glycolysis, fatty acid -oxidation and the
tricarboxylic acid cycle are redrawn from the Kyoto Encyclopedia of Genes and Genomes
(KEGGQG). For clarity the respiratory chain is not shown in its entirety, instead only subunits
detected by DIGE are highlighted. Orange boxes display the common name of each enzyme,
the adjacent boxes detail protein spots matched to this UniProt Rattus ID by LC-MS/MS
analysis. A ‘heat map’ colouring system is used to display proteins that were significantly
more abundant in HCR (green) or LCR (red) groups (Table 4).
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Fig. 3.

anditional independence maps of tercile and quintile associations. Conditional
independence mapping was used to find multivariate association networks within the protein
spots differentially expressed between HCR and LCR muscle (Table 4). Log-transformed
continuous data of spot expression were converted to categorical terciles (A) or quintiles (B)
to assess course- and fine-grain associations, respectively. To construct the tercile map a was
set at 0.05, whereas more stringent (c = 0.01) testing was used in the construction of the
quintile map. Post-hoc pair-wise testing was used to approximate the relative strength of
associations between vertices in order to dictate edge length (shorter edge = stronger
association) during the construction of each map. Spot numbers and protein names
correspond with Fig. 1, Table 4 and the World-2DPAGE database (accession #0069).
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Bibliometric network of PDIA3. A gene model representing the bibliometric network of

PDIA3 was constructed by automated text-mining (data redrawn from iHOP; information
hyperlinked over proteins; www.ihop-net. org). Nodes (genes) are connected by edges,
which represent co-occurrence within sentences of peer-reviewed published literature. Edge
thickness approximates the number of supporting sentences. The majority of associations
(CANX, calnexin; CALR, calreticulin, TAPBP, tapsin; HLA-E/HLA-C, major
histocompatibility complex IE/C; HSPAS, glucose regulated protein 78; PAHB, prolyl-4-
hydroxylase beta) were related to protein folding or assembly of protein complexes within
the endoplasmic reticulum. PDIA3 was also reported to interact (TUBB3, class Il beta
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tubulin) or be co-expressed with mitogen activated protein kinase kinase kinase 5
(MAP3KS5) and gene differentially expressed in prostate (GDEP) in malignant stages of
prostate cancer. Fourteen sentences reported interaction or colocalisation of PDIA3 with
STATS.
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Fig. 5.
STAT3 phosphorylation in male and female HCR/LCR muscle. STAT3 protein abundance

and relative phosphorylation of either tyrosine (Y705) or serine (S727) residues was
measured in the solei of male and female, HCR and LCR animals (A). Two-way analysis of
variance found no significant difference in the abundance of STAT3 (B) or in the relative
amount of Y705 phosphorylation (C). In contrast, a significant (*P < 0.05) main effect of
‘strain’ (i.e. HCR vs LCR) was evident for S727 phosphorylation. On average, the extent of
S727 phosphorylation was 1.54-fold greater in LCR soleus (D).
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