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Abstract

Aberrant activation of PI3K/AKT signalling represents one of the most common molecular alterations in lung cancer, though
the relative contribution of the single components of the cascade to the NSCLC development is still poorly defined. In this
manuscript we have investigated the relationship between expression and genetic alterations of the components of the
PI3K/AKT pathway [KRAS, the catalytic subunit of PI3K (p110a), PTEN, AKT1 and AKT2] and the activation of AKT in 107
surgically resected NSCLCs and have analyzed the existing relationships with clinico-pathologic features. Expression analysis
was performed by immunohistochemistry on Tissue Micro Arrays (TMA); mutation analysis was performed by DNA
sequencing; copy number variation was determined by FISH. We report that activation of PI3K/AKT pathway in Italian
NSCLC patients is associated with high grade (G3–G4 compared with G1–G2; n = 83; p,0.05) and more advanced disease
(TNM stage III vs. stages I and II; n = 26; p,0.05). In addition, we found that PTEN loss (41/104, 39%) and the overexpression
of p110a (27/92, 29%) represent the most frequent aberration observed in NSCLCs. Less frequent molecular lesions
comprised the overexpression of AKT2 (18/83, 22%) or AKT1 (17/96, 18%), and KRAS mutation (7/63, 11%). Our results
indicate that, among all genes, only p110a overexpression was significantly associated to AKT activation in NSCLCs
(p = 0.02). Manipulation of p110a expression in lung cancer cells carrying an active PI3K allele (NCI-H460) efficiently reduced
proliferation of NSCLC cells in vitro and tumour growth in vivo. Finally, RNA profiling of lung epithelial cells (BEAS-2B)
expressing a mutant allele of PIK3 (E545K) identified a network of transcription factors such as MYC, FOS and HMGA1, not
previously recognised to be associated with aberrant PI3K signalling in lung cancer.
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contract n.er LSHM-CT-2005-018652), Ministero dell’Università e della Ricerca (PRIN, Grant n.er 2008CJ4SYW_004) to A.W. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: viglietto@unicz.it

Introduction

Lung cancer is the leading cause of cancer deaths worldwide

[1,2]. Epithelial lung cancer is classified into two main groups:

small-cell lung cancer (SCLC) (about 15% of all lung cancers) and

non–small-cell lung cancer (NSCLC) (about 85% of all lung

cancers) [3]. NSCLC comprises squamous-cell carcinoma (SCC),

adenocarcinoma (ADC), and large-cell lung cancer (LCC) [3].

Despite advances in early detection and standard treatment,

NSCLC is often diagnosed at an advanced stage and patients often

have poor prognosis, with five-year survival rate less than 15%

[4,5]. For this reason a better understanding of the molecular

origins of the disease will contribute to improve therapeutic

treatment of lung cancer patients.

Recent studies have shown that the phosphatidylinositol 3-

kinase (PI3K) signalling cascade is frequently overactivated in

human cancer [6–8] playing a critical role both in the initiation

and progression of NSCLC [9,10]. The PI3K pathway regulates

cellular functions such as proliferation, survival, motility and

angiogenesis that are critical to the growth and/or maintenance of

tumours [11,12]. The end-point of the PI3K pathway is AKT, a

serine/threonine protein kinase that mediates most signals

funnelled through the PI3K pathway. AKT is activated by

recruitment to cell membrane via binding of its PH domain to 39-

phosphorylated phosphatidylinositols generated by PI3K and

subsequent phosphorylation at T308 and S473 [12,13]. Con-

versely, the lipid phosphatase PTEN attenuates AKT activation by

dephosphorylating the 39 position of phosphatidylinositols [14].

Aberrant AKT activation contributes to lung carcinogenesis

[9,10]. Hyperactivation of AKT is detected in most NSCLC cell

lines [15–17], and in 30–75% NSCLCs [18–22] and promotes

resistance to chemotherapy and radiation therapy [16]. AKT

activation in cancer is currently evaluated using phospho-specific

antibodies against S473 in immunohistochemical analyses of
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tumour specimens. Although phosphorylation of AKT at S473 has

been correlated with poor clinical outcomes in many tumour

types, results in lung cancer are apparently inconsistent [7–10]

having been associated with either poor or good prognosis [20–

22]. AKT can be activated through several mechanisms, which

result from distinct and often mutually exclusive events that

include activating mutations (KRAS, PIK3CA or AKT1),

increased expression (PIK3CA, AKT1, AKT2) or loss of PTEN

[10]. However, the relative contribution of the single components

within the PI3K pathway to AKT activation in NSCLCs is still

unclear. In this manuscript we have investigated the relationship

between the genetic alterations present in these genes and the

activation of AKT in NSCLC.

Materials and Methods

Ethics Statement
Patient accrual was conducted according to internal Review

Board of the INT Fondazione Pascale (Naples, Italy) (CEI 556/10

of 12/3/2010). The study was approved by the internal Review

Board of the AOU Mater Domini/University Magna Graecia

(Catanzaro, Italy) in the meeting of 16/3/2011. Written informed

consent was obtained from all participants to the study. All animal

work was conducted according to the relevant Italian guidelines

and was approved by the Internal Committee for Animal Study

(CESA) of the Institute for Genetic Research ‘‘Gaetano Salvatore

on April 7th 2008 (CESA 10-08).

Patients
Archive material from 107 patients diagnosed of NSCLC [3]

was obtained from INT Fondazione Pascale (Naples, Italy).

Median age was 64 year old (range 28–82). Among patients with

clinical data available, women were 18 and males 83. Stage was

known for 81 patients: 67 patients had stage I–II disease and 14

had stage III–IV disease. Grade was known for 83 patients: 35

cases were G1–G2 and 48 were G3–G4. See Table S1, Table S2

and Table S3 for more detailed clinical characteristics of all

patients.

TMA slides were deparaffinized, heated in a pressure cooker

with 1 mM EDTA, pH 8.0 for 10 min, and incubated with pepsin

at 37uC for 30 min. The slides were then dehydrated in increasing

ethanol concentrations, and then air-dried. The probes were

denatured at 96uC for 5 min, and hybridization solution was

applied on each slide and incubated at 75uC for 1 min. After

overnight incubation at 37uC in a humid chamber, slides were

washed with 0.46 SSC and 0.3% NP40 for 2 min at 75uC, air-

dried in darkness, counterstained with DAPI, and a coverslip was

applied.

Tissue Microarray (TMA) and Immunohistochemistry
TMAs were constructed in collaboration with the Unit of

Immunostaining at the Centro Nacional de Investigaciones

Oncologicas (Madrid, Spain) according to established methods

[23] using a Tissue Arrayer (Beecher Instruments, Gene Micro-

Array Technologies, Silver Spring, MD). Immunostaining was

performed using the avidin-biotin-peroxidase method (LSAB kit;

DAKO, Glostrup, Denmark) as described previously [24].

Antibodies used for immunostaining were selected according to

previously published work [25–29]. Anti-pS473 (#9277), anti-

AKT1 (#2938), anti-AKT2 (#4057), anti-PIK3CA (#4249), anti-

PTEN (#9559) were all from Cell Signaling Technology (Danvers,

MA, USA).

The anti-Akt1 and anti-Akt2 have been shown to be isoform-

specific antibodies in previous work [25]. In addition, by using

NCI-H460 cells interfered for Akt1 or Akt2, respectively, we

confirmed that the anti-Akt1 antibody recognizes only the Akt1

isoform and the anti-Akt2 antibody recognizes only the Akt2

isoform (Figure S1A).

The immunohistochemical score of pAKT and PTEN used in

this work was selected on the basis of the widely established criteria

existing in the literature [28,30,31]: pAKT was scored as positive

when .10% of tumour cells were positive with strong or diffuse

immunopositivity. PTEN expression was classified as (+) when

staining was detected in .50% of the cells, (+/2) when staining

was detected in 25–50% of cells and (2) when staining was

detected in 0–25% of cells. For statistical analysis PTEN

expression was considered lost when samples were classified as (2).

Also for the immunostaining scores of AKT1, AKT2 and

PIK3CA, we selected criteria described in previous reports

[27,28,32]. Tumor specimens were divided into four groups

according to the percentage of positive cells: (2) comprised

completely negative samples; (+) comprised samples with up to

10% of positive cells; (++) comprised samples with 11–50% of

positive cells; and (+++) comprised samples with .50% of positive

cells, respectively. For statistical reasons, tumours were classified

into a low expression group comprising (2) and (+) and a high

expression group that comprises (++) and (+++).

For each one immunohistochemical round a negative control

has been included, by replacing the primary antibody with solvent

at the same volume of that with the primary antibody resuspended

in it. All controls gave satisfactory results. Stained TMA sections

were evaluated by two expert pathologists (RF, GB) using uniform

criteria. Discrepancies were resolved through simultaneous

inspection and discussion of the results. Discrepancies between

two cores from the same case were resolved through a joint

analysis of the two cores.

Fluorescence In Situ Hybridization (FISH)
FISH analysis was performed on TMAs. BAC clones were

designed according to the Ensembl database (www.ensembl.org).

BAC clones covering the AKT1 gene were RP11-982M15, RP11-

477I4 and RP11-556J09. Control BAC probes covering chromo-

some region 14q11 was RP11-324B11. BAC clones covering the

AKT2 gene were RP11-36B02, RP11-688J23, RP11-725P04.

Control BAC probes covering chromosome region 19p13.1 were

RP11-737I1, RP11-520G3. BAC clones covering the PIK3CA

gene were RP11-360P21 and RP11-245C23. Control BAC probes

covering chromosome region 3p14.1 were RP11-175F9 and

RP11-15B21. All BAC clones were labelled with dUTP-Sprectrum

Orange (Vysis Inc., DownersGrove, IL; USA). All Control probes

were labelled with dUTP-Sprectrum Green (Vysis Inc., Down-

ersGrove, IL; USA).

Two different investigators that had no previous knowledge of

the genetic, clinical and IHC results evaluated FISH analysis. All

FISH were scored in an average of 130 (60–210) nuclei.

For evaluation of copy number of the genes encoding AKT1,

AKT2 and PIK3CA, a gene-to-control ratio of 1.0 was classified

as disomy; ratios between 1.0 and 2.0 were considered gene low-

level gains; ratios .2.0 were considered as high polysomy and/or

gene amplification [33,34].

Accordingly, tumours were divided into different classes:

disomy, trisomy (3 copies of chromosomes in .40% of cells),

low polysomy ($3 copies of chromosomes in .40% of cells), high

polysomy ($4 copies of chromosomes in $40% of cells), and gene

amplification (presence of gene clusters with a ratio of gene-to-

chromosome of $2 per cell in $40% of cells or presence of small

or nonenumerable clusters of the gene signal). This allowed the

classification of patients into two groups: FISH-negative (disomy
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and gains) and FISH-positive (high polysomy and/or gene

amplification).

PCR, RT-PCR and mutation analysis
Total RNA and genomic DNA were prepared as described

[35,36]. Q-RT-PCR and Q-PCR were performed using the Power

SYBR Green PCR Master Mix in an ABI Prism 7300

thermocycler (Applied Biosystems, Foster City, CA, USA). cDNAs

were synthesized from 1 mg of total RNA using QuantiTect

Reverse Trascription (Qiagen, The Netherlands, Venlo). Normal-

ization was performed to GAPDH mRNA content. The relative

amounts of mRNA or DNA were calculated by the comparative

cycle threshold (CT) method by Livak and Schmittgen [37].

Mutation analysis for PIK3CA using LightCycler was performed

with DNA Master/Hybridization probes kit (Roche Molecular

Biochemicals, Mannheim, Germany). Direct sequencing was

performed using the BigDye v3.03 cycle sequencing kit (Applied

Biosystems) in a capillary automatic sequencer (ABI PRISM 3100

Genetic Analyzer; Applied Biosystems). Protocols and primers for

Q-PCR, Q-RT-PCR and sequencing KRAS (exons 2 and 3) and

PIK3CA (exons 9 and 20) are reported in Appendix S1.

Antibodies and Western Blot
Western blot analysis was carried out by standard methods [38].

Whole cell extracts were prepared by homogenizing cells in NP-40

lysis buffer (10 mM Tris–HCl (pH 7.5), 150 mM NaCl, 1% NP-

40) containing protease inhibitors. Lysates were cleared by

centrifugation and proteins were separated by SDS-PAGE.

Antibodies used were from Cell Signaling Technology: anti-

AKT1 (#2938); anti-S473 (#9277), anti-PIK3CA (#4249).

Cell lines
NCI-H460 was purchased from ATCC-LGC Promochem

(South West London, UK) and maintained in RPMI1640

(Gibco-Invitrogen, Carlsbad, CA, USA), supplemented with

10% of fetal bovine serum and 100 U/ml penicillin-streptomycin

(Invitrogen, Carlsbad, CA, USA). BEAS-2B cells were purchased

from Cambrex (Milan, Italy) and grown as suggested by the

manufacturer [39].

Virus generation and Infection
To generate p110a encoding lentivirus, the cDNA encoding

human p110a (Addgene, Cambridge, MA, USA) was cloned in

pENTR1A vector (Invitrogen) and recombined in pLenti6.2/C-

LumioTM/V5-DEST Vector by making use of the Gateway

Technology (Invitrogen). pLenti vector was used to generate

lentiviral particles in HEK293T packaging cells as described [40].

Transduced BEAS-2B cells underwent three rounds of infection

and were selected in medium containing 5 mg/ml blasticidin

(Invitrogen). The Human PIK3CA (NM_006218), AKT1

(NM_005163) and AKT2 (NM_001626) MISSION shRNA set

(Sigma-Aldrich, St.Luis, MO) and the Mission non-target control

transduction viruses (SHC002V) were used to generate lentiviral

particles in HEK293T packaging cells [40]. After transfection,

supernatants were collected at 8-hour intervals, filtered and used

for three rounds of transduction of NCI-H460 cells in the presence

of 8 mg/ml of polybrene (Sigma).

In Vitro Proliferation Assay
Cells proliferation was assayed by MTT [3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide; Sigma] reduction. Cells

were plated in 96-well flat-bottomed microtiter plates (200 ml cell

suspensions, 26103/well for NCI-H460) and incubated with MTT

substrate (5 mg/ml) for 4 h. Every 24 hours, the culture medium

was removed and anhydrous 2-propanol was added. The optical

density was measured at 570 nm.

Tumourigenic assays
Cells (16106) were suspended in 100 ml 10% FBS and 100 ml

Matrigel (BD Biosciences, NJ, USA) and subcutaneously injected

into the right flank of 6-week-old athymic nude mice (Charles

River, West Germany) in triplicates. Every 7 days tumour size was

measured with a caliper.

RNA profiling analysis
RNA concentration was determined with a Nanodrop (Nano-

Drop, Wilmington, Delaware, USA) spectrophotometer and its

quality was assessed with an Agilent 2100 Bioanalyzer (Agilent

Technologies, Milano, Italy). For each sample, 500 ng of total

RNA were synthesized to biotinylated cRNA using the Illumina

RNA Amplification Kit (Ambion, Inc., Austin, TX). Synthesis was

carried out according to the manufacturers’ instructions. cRNA

concentration and the quality were assessed out as described

above. From each sample, technical replicates were produced and

750 ng cRNA were hybridized for 18 hrs to Human HT-

12_V3_0_R1 Expression BeadChips (Illumina Inc., San Diego,

CA, USA) according to the protocol provided by the manufac-

turer. Hybridized chips were washed and stained with streptavi-

din-conjugated Cy3 (GE Healthcare Milano, Italy). BeadChips

were dried and scanned with an Illumina BeadArray Reader

(Illumina Inc.).

Microarrays data analysis: RNA profiling, genes’
characterization, enriched pathways and bibliographic
networks discovery

Expression files were normalized and analyzed using Gene-

Spring 10.1 (Agilent Technologies, Santa Clara, CA). Differen-

tially expressed (DEGs) genes between BEAS-2B and BEAS-PI3K-

CA cells were selected on the basis of the fold change (the ratio

between the expression levels in the two conditions) and the

statistical significance. We filtered the lists using fold change 1.5

and T-test (p-value (0.01) as threshold. The DEGs list (composed

by 2126 probesets) was used to evaluate the functional behavior in

terms of Biological Processes and Molecular Function, Develop-

ment Function and Disease and Disorder terms. The degree of

enrichment was statistically evaluated to determine whether an

observed level of annotation for a group of genes is significant. In

particular, for each term, a q-value was computed by the

Hypergeometric test (p#0.05) and corrected using False Discovery

Rate (FDR) [41]. The terms with a q-value exceeding the

significance threshold were then selected as representative.

Pathway and network analysis were performed using Ingenuity

Pathway Analysis (IPA, Ingenuity Systems).

The dataset was mined for significant pathways with the IPA

library of canonical pathways, and networks were generated by

using IPA as graphical representation of the molecular relation-

ships between genes and gene products. The significance of the

association between the list of DEGs and the Canonical Pathway

was measured using a Fisher’s exact test to calculate a p-value

(p#0.05). Fisher’s exact test results were also corrected for multiple

testing using FDR.

In networks, genes or gene products are represented as nodes,

and the biological relationship between two nodes is represented as

an edge (line). All edges are supported by at least one reference

from the literature, from a textbook, or from canonical

information stored in the IPA Knowledge Base. Human, mouse,
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and rat orthologs of a gene are stored as separate objects, but are

represented as a single node in the network. The network

building’s algorithm determines a statistical score for each

network. This is done by comparing the number of focus genes

that contribute to a given network relative to the total number of

occurrences of those genes in all networks or pathways stored in

the IPA Knowledge Base. The intensity of genes (node) colour in

the networks indicates the degree of downregulation (green) or

upregulation (red) of gene expression. Nodes are displayed using

various shapes that represent the functional class of gene products.

Results

AKT activation in NSCLCs
As a read-out of PI3K/AKT signalling in NSCLC we

determined the phosphorylation status of residue S473 of AKT1

(pAKT). pAKT was evaluated on TMAs containing duplicated

core biopsies of 107 NSCLCs. As controls 45 matched normal

samples were used. Patients’ clinico-pathological characteristics

are described in Materials and Methods and summarized in

Tables S1, S2 and S3. The results obtained from pAKT staining in

NSCLC are summarized in Table 1. pAKT staining was barely

detectable in the epithelial cells from normal alveolar epithelium

and from upper airways (39 out of 45 samples) (See Figure S1). In

contrast, AKT activation was observed in 60 out of 97 of NSCLC

analysed (Table 1). Positive pAKT staining was significantly higher

in the carcinoma samples than either normal alveolar or bronchial

epithelium (P,0.001; Chi square test). pAKT staining was

observed in 23/37 SCCs and 30/44 ADCs (Figure 1A and B,

respectively). We found a significant association between pAKT

staining and the grade or the stage of the disease (Table 2): pAKT

staining was significantly more represented in patients with grades

G3–G4 compared with patients with grades G1–G2 (p,0.05) and

in patients with TNM stage III compared with patients with stage

II disease (p,0.05). See Tables S4 and S5 for distribution of

patients into SCCs and ADCs. These results demonstrate that, in

agreement with work in other populations, in Italian NSCLC

patients AKT activation occurs in tumour tissue and correlates

with a more advanced stage of disease [20–22]. See also Table S9

and S10 for a detailed, patient-by-patient, list of pAKT positivity.

Mechanisms of AKT activation in NSCLCs:
immunohistochemistry

To investigate the molecular mechanisms leading to AKT

activation in Italian patients affected by NSCLC we performed a

comprehensive analysis of the expression and/or the genetic status

of AKT1 and AKT2 and their closest regulators (KRAS, PIK3CA

and PTEN). Of the 107 cases present on the TMAs 96 could be

properly analysed for AKT1, 83 for AKT2, 104 for PTEN and 92

for PIK3CA.

See Materials and Methods for the evaluation criteria used for

AKT1. Briefly, samples defined (2) were completely negative for

AKT1; samples defined (+) contained up to 10% of positive cells;

samples defined (++) comprised 11–50% of positive cells; samples

Table 1. AKT activation in NSCLCs.

AKT activation (pS473)a

HISTOLOGY SAMPLE NUMBER LOW HIGH

NORMAL 45 39 6

ADC 44 14 30

SCC 37 14 23

ASQ 7 4 3

LCC 6 3 3

CAR 3 2 1

Total 97 37 60

aAKT activation was evaluated with phospho-specific antibodies (pS473) and
scored as negative (,10% of the tumour cells with weak, focal
immunopositivity or absence of staining) and high (.10% of tumour cells with
strong or diffuse immunopositivity).

ADC (adenocarcinoma), SCC (squamous cell carcinoma), ASQ (adenosquamous
carcinoma), LCC (large cell carcinoma) CAR (carcinoid tumour).
doi:10.1371/journal.pone.0030427.t001

Figure 1. pS473 AKT immunostaining (IHC) in NSCLCs. A, left:
SCC negative for pAKT phosphorylation; right: SCC positive for pS473
phosphorylation. B, left: ADC negative for pAKT phosphorylation; right:
ADC positive for pS473 phosphorylation. Magnification 106 and 406,
respectively.
doi:10.1371/journal.pone.0030427.g001
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defined (+++) comprised .50% of positive cells, respectively.

Figure S2 shows representative stainings of (+), (++) or (+++)

AKT1 expression in SCCs and ADCs. Tumours were classified

into a low expression group comprising (2) and (+) and a high

expression group that comprises (++) and (+++). Analysis of TMAs

258.1 and 258.2 showed that AKT1 was over-expressed in 17/96

NSCLC cases (,19%) (Figure 2), with SCCs and ADCs showing

similar results: 7/37 AKT1 positive tumors were SCCs (19%) and

7/44 AKT1 positive tumours were ADCs (16%). See Figure 2A

and B, respectively. Nine out of 15 (60%) NSCLCs overexpressing

AKT1 showed AKT activation (Table 3).

We then analysed the expression of AKT2 in NSCLCs. See

Materials and Methods for the evaluation of AKT2 staining.

Samples defined (2) were completely negative for AKT2; samples

defined (+) were with up to 10% of positive cells; samples defined

(++) comprised 11–50% of positive cells; and samples defined

(+++) comprised .50% of positive cells, respectively. Figure S3

shows representative stainings of (+), (++) or (+++) AKT2

expression in SCCs and ADCs. Tumours were classified into a

low expression group comprising (2) and (+) and a high expression

group that comprises (++) and (+++). AKT2 was overexpressed in

18/83 NSCLCs (,22%) (Figure 3). At difference with AKT1,

AKT2 overexpression was observed more frequently in SCCs (10/

31 SCCs, 32%; 4/33 ADCs, 12%). See Figure 3A and B,

respectively. In addition, most AKT2 positive tumours (12/17,

71%) showed AKT activation (Table 3).

Patients accrued for this study had already been characterised

for PTEN expression [38]: complete loss occurred in 41 of 104

(39%) NSCLCs and partial down-regulation was observed in 41

additional cases. PTEN loss was more frequently observed in

SCCs (22/40, 55%) than in ADCs (14/51, 27%) (See Figure S5).

However, when correlated with AKT activation, the loss or the

reduction of the levels of PTEN protein was not associated with

AKT activation (n = 95; p = 0.832) (Table 3).

Finally, we analysed the expression of the catalytic subunit of

PI3K, p110a. Evaluation criteria are reported in Materials and

Methods. Samples defined (2) were completely negative for

p110a; samples defined (+) contained up to 10% of p110a positive

cells; samples defined (++) comprised 11–50% of p110a positive

cells; and samples defined (+++) comprised .50% of p110a
positive cells. Figure S4 shows representative stainings of (+), (++)

or (+++) AKT1 expression in SCCs and ADCs. Tumours were

classified into a low expression group comprising (2) and (+) and a

high expression group that comprises (++) and (+++). We observed

p110a overexpression in ,29% of NSCLCs (27/92): 12 out of 34

were SCCs (35%) and 12 out of 43 were ADCs (28%) (Figure 4A

and 4B). At difference with other genes within the pathway that

have been analysed, we found that NSCLCs with overexpressed

p110a presented significantly activated AKT (18 out of 26;

p = 0.02) (Table 3).

Notably, from the integrated analysis of the TMAs we found

that AKT activation was more frequently observed in tumours

showing aberrant expression of more than a single gene within the

PI3K pathway (PTEN loss, or overexpression of AKT1, AKT2,

p110a respectively). In fact, AKT activation was detected in 15–

64% of tumours showing aberration in a single gene, 44–89% of

tumours with aberrant expression of two genes, 67–100% of

Table 2. Correlation between AKT activation and clinico-
pathological features of NSCLC patients.

Akt activation (pS473)a

Low (n) High (n) P value

Gender

Male 27 49

Female 9 9

Grade

G1–G2 19 16 0.0351

G3–G4 15 33

TNM stage

Stages I 20 35 0.049*

Stage II 6 6

Stage III 2 12

aAKT activation was evaluated with phospho-specific antibodies (pS473) and
scored as negative (,10% of the tumour cells with weak, focal
immunopositivity or absence of staining) and high (.10% of tumour cells with
strong or diffuse immunopositivity).

1G1–G2 vs G3–G4.
*Stage II vs Stage III.
doi:10.1371/journal.pone.0030427.t002

Figure 2. IHC and FISH analysis of AKT1 in NSCLCs. A, left: SCC
negative for AKT1 expression; right: SCC positive for AKT1 expression. B,
left: ADC negative for AKT1 expression; right: ADC positive for AKT1
expression. Magnification 106 and 406, respectively. C. Dual-colour
fluorescence in situ hybridization analysis of AKT1 gene copy number.
FISH analysis of AKT1 (red signals) and centromere of chromosome 14
(green signals). Left, NSCLC sample with diploid cells; right, NSCLC
sample with multiple clustered spots of red signals of AKT1 with 2
centromere signals (gene amplification). Original magnification 1006.
doi:10.1371/journal.pone.0030427.g002
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tumours with aberrant expression of three genes and 100% of

tumours with aberrant expression of all four genes. Conversely,

aberrant expression of the members of PI3K pathway was less

common in tumours showing no activation of AKT signalling (see

Table 4).

Mechanisms of protein overexpression: FISH analysis
FISH analysis in NSCLCs was performed for AKT1, AKT2

and PIK3CA to determine the molecular mechanisms of the

overexpression of the corresponding proteins. See Materials and

Methods for classification of tumours by FISH. We found 20/82

NSCLC (24%) with copy number gain of the AKT1 gene at

chromosome 14, of which 16 were high polysomy (.4 copies) and

4 focal amplification (SCC-11, SCC-12, SCC-14 and SCC-21)

(Figure 2C). Expectedly, several AKT1 FISH-positive NSCLCs

(12 out of 20 cases, 60%) showed moderate or high AKT1

expression. See Tables S9 and S10 for a detailed list of genetic

alterations detected in single SCC and ADC patients. In the case

of AKT2, we observed 24/73 NSCLCs (31%) with copy number

gain of the gene at chromosome 19, of which 23 patients had high

polysomy and 1 patient had focal amplification (SCC-11). See

Figure 3C for a representative example. However, the significance

of AKT2 amplification in lung cancer remains unclear, since 13/

24 (54%) cases of AKT2 FISH-positive tumours did not show

increased expression of the corresponding protein.

FISH analysis with chromosome 3q26.32 probes revealed the

presence of an increase in the PIK3CA gene copy number in 19

cases (,26%), all of which presented high polysomy, with 7 cases

showing also focal amplification (ADC-5, SCC-4, SCC-14, SCC-

16, SCC-19, SCC-30, SCC-34) (Figure 4C). The majority of

NSCLCs with increased copy number of PIK3CA (13 out of 19

cases, 68%) showed moderate or high expression of p110a.

However, not all FISH-positive NSCLCs resulted in the

activation of AKT signalling. As shown in Tables S6, S7 and

S8, 11/18, 10/19 and 14/23 cases that were FISH-positive for

PIK3CA, AKT1 and AKT2 resulted positive for pAKT,

respectively.

Mechanisms of AKT activation: mutation analysis of
PIK3CA and KRAS

Patients accrued for this study had already been analysed for

AKT1 mutations [24]. Patient SCC-29 presented a somatic

mutation in the gene encoding AKT1 resulting in a glutamic acid

to lysine substitution at amino acid 17 (E17K) [24]. The tumour

from this patient showed increased AKT expression and activity.

Similarly, missense mutations in PIK3CA have been rarely

Table 3. Correlation between AKT activation and expression
of the different members of the PI3K pathway in NSCLCs.

pAKT
negativea

pAKT
positivea

Total
number P value

PIK3CAb negative 12 5 17 0.021

moderate 13 24 37

high 8 18 26

PTENc positive 9 12 21

reduced 16 22 38

negative 13 23 36

AKT1d negative 21 23 45

moderate 8 27 35

high 6 9 15

AKT2e negative 20 19 39

moderate 5 17 22

high 5 12 17

aAKT activation was evaluated with as pS473 positivity and scored as negative
(,10% of positive tumour cells) and high (.10% of positive tumour cells).

bPIK3CA was graded as positive (.25% of tumour cells showed strong or
diffuse immunopositivity) as moderate (.10% of tumour cells showed
moderate immunopositivity) or negative (0–10% of the tumour cells showed
weak, focal immunopositivity or absence of staining).

cPTEN expression was classified as (+) when staining was detected in .50% of
the cells, (+/2) when staining was detected in 25–50% of cells and (2) when
staining was detected in 0–25% of cells. For statistical analysis PTEN expression
was considered lost when samples were classified as (2).

dAKT1 was graded as positive (.25% of positive tumour cells) as moderate
(.10% of of positive tumour cells) or negative (0–10% of positive tumour
cells).

eAKT2 was graded as positive (.25% of positive tumour cells) as moderate
(.10% of positive tumour cells) or negative (0–10% of positive tumour cells).

1Statistically significant.
doi:10.1371/journal.pone.0030427.t003

Figure 3. IHC and FISH analysis of AKT2 in NSCLCs. A, left: SCC
negative for AKT2 expression; right: SCC positive for AKT2 expression. B,
left: ADC negative for AKT2 expression; right: ADC positive for AKT2
expression. Magnification 106 and 406, respectively. C. Dual-colour
fluorescence in situ hybridization analysis of AKT2 gene copy number.
FISH analysis of AKT2 (red signals) and chromosome region 19p13.1
(green signals). Left, NSCLC sample with diploid cells; right, NSCLC
sample with multiple clustered spots of red signals of AKT2 with 2
chromosome region 19p13.1 signals (gene amplification). Original
magnification 1006.
doi:10.1371/journal.pone.0030427.g003
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reported [42–45]. We found a GAG1633RAAG substitution that

leads to the amino acid change E545K in one SCC (SCC-6)

(Figure 5A and B). Conversely, 7 NSCLCs showed mutations in

KRAS: G12A (GGTRGCT) (n = 1); G12C (GGTRTGT) (n = 4);

G12V (GGTRGTT) (n = 1); G13C (GGCRTGC) (n = 1)

(Figure 5C). KRAS mutations were detected mainly in ADCs (6

of 32; 19%) as described [46,47]. Five out of 7 of cases with

mutations in KRAS showed significant AKT activation

(Figure 5D).

Activated PI3K contributes to cell proliferation and
tumourigenicity of NSCLC cells

Given the importance of PI3K signalling in NSCLCs, we

investigated the role of constitutive PIK3CA activation on the

tumourigenic potential of human lung epithelial cells. To this aim,

we made use of a mutant cell line (NCI-H460) that harbours a

heterozygous activating mutation (E545K) in PIK3CA. Cells were

transduced with a lentivirus expressing shRNA for PIK3CA

(Figure 6A). Silencing of p110a expression was assessed by

immunoblot (Figure 6B). Here we show that suppression of p110a
expression in NCI-H460 cells markedly reduced in vitro anchorage-

dependent and in vivo tumour growth of cells subcutaneously

injected into immunodeficient mice (n = 6/group) (Figure 6C and

D, respectively), indicating that PI3K activation plays a significant

role in the malignant behaviour of NSCLC cells.

Molecular profiling of PI3K activation in lung epithelial
cells

To further characterize the role played by PIK3CA in

development of NSCLC, we performed RNA profiling analysis

of human lung epithelial cells expressing an active PI3KCA

mutant (E545K) to identify cellular targets of constitutive PI3K

signalling. Expression of exogenous PI3KCA allele was deter-

mined by immunoblot (Fig. 7A). Expression values obtained were

filtered for fold change greater than 1.5 and subjected to t-test (p-

value cut-off of 0.01) with Benjamini-Hochberg (B–H) FDR

correction [41], obtaining a total of 2126 differentially expressed

probe sets, of which 1005 were down-regulated and 1121 were up-

regulated. The complete microarray data for all probe sets with

the respective normalised values will be available at ArrayExpress

and are provided in additional files (Table S11).

We used Ingenuity Pathway Analysis (IngenuityHSystems,

http://www.ingenuity.com, IPA) to investigate the biological

relevance of the PI3K-dependent expression changes by catego-

rizing our dataset into biological pathways and/or functions and

diseases (Figure 7B, 7C, 7D, 7E; Figure S6; Table S11). The

function ‘‘Cancer’’ was most frequent and associated with 466

genes, followed by ‘‘Cell Death’’ (392 genes), ‘‘Cellular Growth

and Proliferation’’ (357 genes), ‘‘Cellular Movement’’ (196 genes),

‘‘Cell Cycle’’ (161 genes), ‘‘Cell-to-cell Signalling and Interaction’’

(112 genes), and ‘‘Cellular Morphology’’ (97 genes), respectively.

We found that active PI3K regulates expression of most cell cycle

molecules such as CCND1, CCND2, Cdk6 and Cdk inhibitors as

well as of several apoptosis-related genes such as BAG3, IGFBP7,

IGFBP3, TRADD and TRIB1. As to ‘‘Cell movement’’ function,

Figure 4. IHC and FISH analysis of PI3KCA in NSCLCs. A, left: SCC
negative for PIK3CA expression; right: SCC positive for PIK3CA
expression. B, left: ADC negative for PIK3CA expression; right: ADC
positive for PI3KCA expression. Magnification 106 and 406, respec-
tively. C. Dual-color fluorescence in situ hybridization analysis of PIK3CA
gene copy number. FISH analysis of PIK3CA (red signals) and
chromosome region 3p14.1 (green signals). Left, NSCLC sample with
diploid cells; right, NSCLC sample with multiple clustered spots of red
signals of PIK3CA with 2 chromosome region 3p14.1 signals (gene
amplification). Original magnification 1006.
doi:10.1371/journal.pone.0030427.g004

Table 4. Alteration in the expression of PTEN, PI3K, AKT1 and
AKT2 in pAKT positive NSCLCs.

Alteration pAKT positive pAKT negative

AKT1b 9/59 (15%) 6/35 (17%)

AKT2c 12/48 (25%) 5/30 (17%)

PI3Kd 18/47 (38%) 8/33 (24%)

PTENe 23/36 (64%) 9/38 (24%)

AKT1, PTEN 4/7 (57%) 3/7 (43%)

AKT2, PTEN 8/9 (89%) 1/9 (11%)

PI3K, PTEN 4/9 (44%) 5/9 (56%)

AKT1, AKT2 3/4 (75%) 1/4 (25%)

PI3K, AKT1 3/6 (50%) 3/6 (50%)

PI3K, AKT2 5/8 (62%) 3/8 (37%)

AKT1, AKT2, PTEN 3/3 (100%) 0

AKT1, PI3K, PTEN 2/3 (67%) 1/3 (33%)

AKT2, PI3K, PTEN 3/3 (100%) 0

AKT1, AKT2, PI3K 2/3 (67%) 1/3 (33%)

AKT1, AKT2, PI3K, PTEN 2/2 (100%) 0

bModerate and high AKT1 expression as defined in Table 3.
cModerate and high AKT2 expression as defined in Table 3.
dModerate and high PIK3CA expression as defined in Table 3.
ePTEN loss as defined in Table 3.
doi:10.1371/journal.pone.0030427.t004
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Figure 5. Mutation analysis of PIK3CA and KRAS genes in NSCLCs. A. Mutation detection in the exons 9 and 20 of PIK3CA from NSCLC. The
negative derivative of the fluorescence (2dF/dT) versus temperature graph shows peaks with different Tm. The wild type sample showed a single Tm
at 66uC. The heterozygous mutant sample showed an additional peak at 57uC. B. Point mutation in the PI3KCA gene involving a GAGRAAG
transition in codon 545 of exon 9 inducing the substitution of a glutammic acid with a lysine (E545K). C. Point mutations in the KRAS gene involving a
GGTRGCT, GGTRTGT, GGTRGTT; GGCRTGC transition in codon 12 of exon 2 inducing the substitution of a glycine by an alanine, a cysteine and a
valine (G12A G12C G12V) transition in codon 13 of exon 2 inducing the substitution of a glycine by a cysteine (G13C). D. pAKT staining of sample
ADC-30.
doi:10.1371/journal.pone.0030427.g005
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IPA analysis of PI3K-regulated Functions identified growth factors

(TGFA), cytokines (IL1A, IL1B, IL6 and IL8) and chemokines

(CXCL2) that are involved in stromal-to-epithelial signalling,

invasion, angiogenesis and metastasis. It is of note that IPA

analysis of DEGs in PIK3CA-transduced BEAS-2B cells retrieved

several functions linked to ADCs and SCCs (Figure 7D, 7E),

indicating that the adoptive expression of active PIK3CA elicit a

transcriptional response that is associated to lung cancer.

Activated PI3KCA regulates the expression of the
oncogenic transcription factors HMGA1, FOS and MYC

IPA analysis of DEGs demonstrated that PI3K activation

induced the up-regulation of several oncogenic transcription

factors (i.e. MYC, JUN, JUN-B, FOS, HMGA1, HES1), with

each transcription factor being the node of networks involving 30–

40 down-regulation or up-regulation events (Figures S7A, S7B,

S7C, S7D, S7E, S7F, S7G, S7H).

Figure 6. Interference with PIK3CA decreases growth and tumorigenesis of human NSCLC cells carrying activated p110a. A.
Immunoblot analysis of phosphorylated S473 (pAKT) and total AKT in NSCLC cells. B. Immunoblot analysis of PI3KCA expression in parental (NCI-
H460), scrambled-transduced (SCR) or PI3KCA-specific shRNA-transduced lentiviruses (shPIK3CA). C. NCI-H460 cells transduced with the control
lentivirus (SCR) or with lentivirus carrying shRNA to PIK3CA (shPIK3CA) were seeded in flat-bottom 96-well plates and the relative number of viable
cells was measured by MTT assay. Absorbance was read at 570 nm and the data are mean of triplicates. D. SCR- and shPIK3CA transduced NCI-H460
cells were subcutaneously injected into the flank of athymic nude mice and the growth of xenotransplated tumour was measured as described in
Material and Methods.
doi:10.1371/journal.pone.0030427.g006

Molecular Alterations in NSCLC

PLoS ONE | www.plosone.org 9 February 2012 | Volume 7 | Issue 2 | e30427



Molecular Alterations in NSCLC

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e30427



We confirmed the results obtained from the array analysis by

quantitative RT-PCR on a selected panel of genes (HMGA1,

FOS, MYC) (Figure 8A). Subsequently, we performed Q-RT-

PCR analysis of the mRNA expression of HMGA1, FOS and

MYC genes in ADC- or SCC-derived cell lines (n = 8) and

correlated them with the AKT activation (S473 phosphorylation)

status as a read-out of PI3K activity. The cell lines used were as

follows: ADC-derived cell lines, A549, NCI-H522, NCI-H23,

NCI-H460, NCI-H596; SCC-derived cell lines, NCI-H226,

CALU1, BEN1. Q-RT-PCR analysis demonstrated that

NSCLC-derived cell lines with activated AKT (A549, NCI-

H460, NCI-H596, NCI-H226, CALU1) presented, on average,

increased expression of HMGA1, FOS and MYC compared with

cells with low AKT activation (NCI-H522, NCI-H23, BEN1). For

HMGA1 the average values were: 0.6 in the case of AKT negative

cells and 2 in the case of AKT positive cells; for FOS the average

values were: 0.9 in the case of AKT negative cells and 18 in the

case of AKT positive cells; for MYC the average values were: 2.5

in the case of AKT negative cells and 3.9 in the case of AKT

positive cells (Figure 8B).

Subsequently, we extended the analysis performed in cancer cell

lines to primary NSCLC. To this aim, expression of HMGA1,

FOS and MYC was determined in a representative panel of

NSCLC (n = 14; 4 ADC, 8 SCC and 2 ADS) and correlated with

the status of AKT activation (Figure 9). Primary NSCLC with

activated AKT presented (n = 10), on average, increased expres-

sion of HMGA1, FOS and MYC compared with tumors that

showed low AKT activation (n = 4). For HMGA1 the average

values were: 5.4 in the case of AKT negative cells and 13.5 in the

case of AKT positive cells; for FOS the average values were: 14.1

in the case of AKT negative cells and 30.5 in the case of AKT

positive cells; for MYC the average values were: 3.5 in the case of

AKT negative cells and 6.5 in the case of AKT positive cells

(Figure 8B). However, it is to be noted that in both cell lines and

tumours, data showed a trend that was not statistically significant

given the low number of samples analysed and the huge

heterogeneity of expression shown by HMGA1, FOS and MYC

in tumors.

Discussion

We report a detailed analysis of the contribution of the different

members of PI3K/AKT pathway to AKT deregulation in lung

cancer. The most interesting findings of this study were that in

Italian NSCLC patients activation of AKT was associated with

advanced stage and higher grade and that, in these tumours, the

major determinant of AKT activation was the over-expression of

the catalytic subunit of phosphatidylinositol 3-kinase, p110a.

Experimental evidence obtained by manipulation of PI3K

signalling in NSCLC cells also indicated that p110a is required

for in vitro and in vivo growth and disclosed a network of PI3K-

regulated transcription factors that may be responsible for the

oncogenic effects exerted by aberrant PI3K signalling in cancer

[48].

To our knowledge this is the first comprehensive analysis aimed

at determining the role of AKT signalling performed on a cohort

of Italian NSCLC patients. So far, little information concerning

AKT activation in Italian NSCLC patients was available. In the

cohort of NSCLC patients studied here, AKT pathway is activated

in 62% of cases, with significant S473 phosphorylation detected

more frequently in patients with advanced disease (TNM stage III

vs. stage II; n = 26; p,0.05) and higher grade (G3–G4 compared

with G1–G2; n = 83; p,0.05). Several NSCLCs analysed in this

study over-expressed PIK3CA, implying that the deregulated

expression of wild type p110a might represent an oncogenic event

during cancer development in the lung. Conversely, we found

PIK3CA mutation in only one SCC patient, confirming that,

although frequent in breast, gastric and hepatocellular cancers,

PIK3CA mutations are rare in NSCLCs [49]. Other molecular

lesions detected in NSCLC patients comprise PTEN loss (39%)

and AKT1 or AKT2 over-expression (18% and 22%, respective-

ly). It is of note that although PTEN loss in NSCLCs is more

common than overexpression of p110a, our results indicate that

the latter is the unique alteration that is significantly associated to

AKT activation (p = 0.02).

Interestingly, simultaneous aberrant expression of two or more

members within the PI3K pathway was relatively infrequent in

unselected NSCLCs but was significantly more frequent in

NSCLCs with activated AKT (see Table 4 for details). This

observation suggests that p110a over-expression alone is not

sufficient to activate AKT signalling and hence requires other

alterations to be fully oncogenic in NSCLCs. Moreover, at

difference with the significant AKT activation shown by NSCLCs

with mutant KRAS or AKT1, the tumour that harboured mutant

PIK3CA was negative for pAKT, suggesting that the type or the

position of the alteration within the pathway may influence

mechanisms and effects of pathway deregulation [45,49–51].

Accordingly, KRAS mutations were mutually exclusive with other

genetic alterations (except for ADC-23 who presented simulta-

neous presence of KRAS mutation and polysomy of AKT1 and

AKT2) whereas copy number variations of PIK3CA, AKT1 and

AKT2 were not [52]. These findings are reminiscent of breast or

endometrial cancer, in which PIK3CA mutations are frequently

detected in settings of low PTEN expression or mutations [53,54],

and suggest that genetic alterations of the PI3K/AKT pathway in

NSCLCs are not functionally redundant.

In addition, this manuscript provides novel experimental

evidence to the observation that SCCs and ADCs develop by

different genetic alterations: i) mutations in PIK3CA and AKT1

(3% altogether) were detected only in SCCs [this manuscript; 24]

whereas KRAS mutations were observed in ADCs (19%); ii) SCC

patients (85%) presented at least one genetic alteration in

PI3KCA, AKT1, AKT2 or PTEN more frequently than ADC

Figure 7. The top 11 canonical signalling pathways influenced by constitutive PI3K signaling. Active PIK3CA (E545K)-expressing
lentivirus was transduced in non-transformed lung epithelial cells (BEAS-2B). Transduced cells were selected in blasticydin, checked for expression of
the exogenous PIK3CA-E545K, were analysed for their transcriptomes as described in Materials and methods. A. Immunoblot for PIK3CA expression in
transfected BEAS-2B cells. B. Heat map showing fold change patterns of DEGs induced by constitutive PI3K signalling. The heat map was generated in
Matlab (Mathworks), and compares fold change patterns of DEGs in BEAS-2B-PI3K-E545K cells compared to parental BEAS-2B (p,0.01). Red: up-
regulated genes; green: down-regulated genes. Fold changes of all down-regulated DEGs and all but one up-regulated DEG are #8 (central color
spectrum bar). C. The top 11 functional categories determined by IPA, that were significantly up-regulated or down-regulated in BEAS-2B-PI3K-E545K
cells compared to parental BEAS-2B are shown. The 2126 DEGs in BEAS-2B-PI3K-E545K were mapped to the IPA-defined network. The significance p-
values that determine the probability that the association between the genes in the dataset and the canonical pathway is by chance alone were
calculated by Fisher’s exact test, and are expressed as 2log (p-value). D. Bio-functions identified by IPA in the 2126 DEGs from BEAS-2B-PI3K-E545K
compared with BEAS-2B. E. Sub-Categories and Functions identified through IPA showing the genes associated to lung cancer in the 2126 DEGs from
BEAS-2B-PI3K-E545K compared with BEAS-2B.
doi:10.1371/journal.pone.0030427.g007
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patients (50%); iii) PIK3CA copy gains occurred more frequently

in SCCs (25%) than in ADCs (9%) as described previously [15,49];

iv) coexistence of at least two alterations in the members of the

PI3K pathway occurred more frequently in SCC patients (45%)

than in ADC patients (8%).

FISH results indicated that gene amplification of the PIK3CA

gene at 3p21 is responsible for ,20% of cases with enhanced

p110a expression, in agreement with previous reports indicating

that gains of part or of the entire long arm of chromosome 3,

where the PIK3CA gene maps, are recurrent in NSCLCs

[15,55,56]. Yet, since several NSCLCs overexpress p110a in the

absence of gene amplification other mechanisms must be involved

in the dysregulation of PIK3CA expression in NSCLCs.

The functional effects of mutant or amplified PIK3CA in lung

cancer are unclear [49]. Our data indicated that in NSCLC cells,

PIK3 signalling is required in vitro and in vivo since suppression of

p110a expression inhibits the growth of xenografted cells carrying

an activated PIK3CA allele. However, it is likely that PI3K might

act in concert with other oncogenic hits to promote malignant

transformation of lung epithelial cells since several NSCLCs

present aberrant expression of AKT1, AKT2 or loss of PTEN in

addition to PIK3CA overexpression (7%, 10% and 21%,

respectively) and PIK3CA mutations are not mutually exclusive

with EGFR and KRAS mutations in lung cancer [49–51,54].

Finally, RNA profiling experiments led to the identification of

.2000 differentially regulated transcripts that likely contributes to

the oncogenic effects of aberrant PI3K signalling in lung epithelial

cells. Categorization of differentially expressed genes into

biological pathways and/or functions identified gene expression

changes induced by the constitutive activation of PI3K-dependent

Figure 8. Activation of PI3KCA regulates expression of HMGA1, c-Fos, c-MYC in NSCLC cell lines. A. Quantitative RT-PCR analysis of
HMGA1, c-Fos, c-MYC gene expression in control BEAS-2B cells and in the corresponding cells transduced with active PIK3CA. B. Quantitative real-
time RT-PCR analysis of c-Fos, HMGA1, c-Myc gene expression in different NSCLC cell lines.
doi:10.1371/journal.pone.0030427.g008
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signalling in lung epithelial cells. Interestingly, analysis of DEGs

retrieved several functions linked to lung cancer of both ADC and

SCC histotypes, suggesting that the activation of PI3K signalling

induces a transcriptional programme that is characteristic of lung

cancer cells. In this sense, it is worth noting that IPA analysis

identified a network of transcription factors that are linked to PI3K

activation - such as MYC, JUN, JUN-B, FOS, HMGA1 and

HES1- that are the central nodes of multiple molecular networks

up-regulated by constitutive PI3K signalling. These findings

suggest that part of the oncogenic activity exerted by PI3K in

lung epithelial cells is dependent on the ability of PI3K to

reprogram transcription. The existence of a correlation between

PI3K signalling and the expression of oncogenic transcription

factors is confirmed by the finding that cell lines and primary

tumours with high AKT activation present, on average,

consistently higher expression of MYC, FOS and HMGA1 than

cell lines and tumours with low AKT activation.

It is of note that in agreement with its role in promoting cells

cycle progression, active PI3K up-regulates the expression of

several cell cycle promoting molecules – CCND1, CCND2, Cdk6

– as well as down-regulates Cdk inhibitors. To this regard, it is

worth noting that PI3K-dependent regulation of CCND2

expression may occur indirectly through MYC [57].

In conclusion, the results reported in this manuscript indicate

that PI3KCA over-expression occur at a much higher frequency in

lung cancers than do activating mutations, apparently representing

the major determinant of AKT activation in NSCLC. PI3KCA

overexpression in NSCLCs occurs, at least in part, through gene

copy gains, which occur more often in SCCs than in ADCs.

Finally, it is of particular interest the identification of a network of

transcription factors that are upregulated by constitutive PI3K

signalling and may represent critical mediators of the oncogenic

effects exerted by aberrant PI3K.

Supporting Information

Figure S1 IHC for pAKT, AKT1, AKT2 and PI3KCA in
normal lung. A. Immunoblot for anti-AKT1 and anti-AKT2

antibodies in NCI-H460 cells interfered for AKT1 and AKT2,

respectively. B. Top left: normal lung negative for pAKT pS473

phosphorylation; top right: normal lung negative for AKT1.

Bottom left: normal lung negative for AKT2; bottom right: normal

lung negative for PIK3CA. Magnification 106.

(TIF)

Figure S2 Immunostaining analysis of AKT1 in
NSCLCs. A. AKT1 expression in SCCs: from left to right,

negative, (+), (++), (+++). SCC positive for AKT1 expression. B.
AKT1 expression in ADCs: from left to right, negative, (+), (++),

(+++). Magnification 106 and 406, respectively.

(TIFF)

Figure S3 Immunostaining analysis of AKT2 in
NSCLCs. A. AKT2 expression in SCCs: from left to right,

negative, (+), (++), (+++). SCC positive for AKT1 expression. B.
AKT2 expression in ADCs: from left to right, negative, (+), (++),

(+++). Magnification 106 and 406, respectively.

(TIFF)

Figure S4 Immunostaining analysis of PIK3CA in
NSCLCs. A. PIK3CA expression in SCCs: from left to right,

negative, (+), (++), (+++). SCC positive for AKT1 expression. B.
PIK3CA expression in ADCs: from left to right, negative, (+), (++),

(+++). Magnification 106 and 406, respectively.

(TIFF)

Figure S5 PTEN expression in NSCLCs. A. PTEN

expression in normal lung tissue. B. Left, SCC negative for

PTEN expression; right: ADC positive for PTEN expression.

Magnification 106and 406, respectively. C. Q-reverse transcrip-

tase PCR analysis of PTEN mRNA expression in normal lung

tissues and NSCLC. D. Q-PCR analysis of PTEN gene number in

normal lung tissues and NSCLC. DNA from peripheral blood

leukocytes (PBL) was used as control. PTEN copy number in PBL

was set arbitrarily as 2. The average value of the PTEN gene in

normal tissues was similar to the PBL value (2).

(TIFF)

Figure 9. Activation of PI3KCA regulates expression of HMGA1,
c-Fos, c-MYC in primary NSCLC. Quantitative real-time RT-PCR
analysis of c-Fos, HMGA1, c-Myc gene expression in primary NSCLCs.
doi:10.1371/journal.pone.0030427.g009
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Figure S6 Top Bio-functions identified by IPA in the 2122

DEGs from BEAS-2B-PI3K-E545K compared with BEAS-2B.

(TIFF)

Figure S7 Network analysis was performed to provide a
graphical representation of genes having known biolog-
ical relationships. Green icons indicate down-regulated genes

and red icons indicates up-regulated genes.

(PDF)

Table S1 Clinico-pathological features of NSCLC pa-
tients.
(DOCX)

Table S2 Clinico-pathological features of SCC patients.
(DOCX)

Table S3 Clinico-pathological features of ADC patients.
(DOCX)

Table S4 Correlation between AKT activation (pS473
AKT positivity) and clinico-pathological features of SCC
patients.
(DOCX)

Table S5 Correlation between AKT activation (pS473
AKT positivity) and clinico-pathological features of ADC
patients.
(DOCX)

Table S6 Correlation between AKT activation and the
presence of genetic alterations in PI3K, AKT1 and AKT2
in NSCLCs.
(DOCX)

Table S7 Correlation between AKT activation and the
presence of genetic alterations of PI3K, AKT1 and AKT2
in SCCs.
(DOCX)

Table S8 Correlation between AKT activation and the
presence of genetic alterations in PI3K, AKT1 and AKT2
in ADCs.
(DOCX)

Table S9 Summary of the genetic alterations in the
PI3K/AKT pathway in SCC patients. Copy number gains in

AKT1, AKT2, PI3KCa genes were determined by FISH: high

polysomy (HP) and gene amplification (A). Mutation analysis

identified activating mutations of PI3KCA (E545K), KRAS

(G12C, G12V, G12A, G13C) and AKT1(E17K). PTEN expres-

sion was classified as (+) when staining was detected in .50% of

the cells, (+/2) when staining was detected in 25–50% of cells and

(2) when staining was detected in 0–25% of cells. AKT activation

was evaluated with phospho-specific antibodies (pS473), scored as

negative (,10% of the tumour cells with weak, focal immunopo-

sitivity or absence of staining) and high (.10% of tumour cells

with strong or diffuse immunopositivity).

(DOCX)

Table S10 Summary of the genetic alterations in the
PI3K/AKT pathway in ADC patients. Copy number gains in

AKT1, AKT2, PI3KCa genes were determined by FISH: high

polysomy (HP) and gene amplification (A). Mutation analysis

identified activating mutation of PI3KCA (E545K), KRAS (G12C,

G12V, G12A, G13C) and AKT1(E17K). PTEN expression was

classified as (+) when staining was detected in .50% of the cells,

(+/2) when staining was detected in 25–50% of cells and (2)

when staining was detected in 0–25% of cells. AKT activation was

evaluated with phospho-specific antibodies (pS473), scored as

negative (,10% of the tumour cells with weak, focal immunopo-

sitivity or absence of staining) and high (.10% of tumour cells

with strong or diffuse immunopositivity.

(DOCX)

Table S11 Genes significantly increased or decreased in
BEAS-2B vs BEAS-PI3KCA-E545K. Expression microarray

(HT-12_V3_0_R1) data were prefiltered to remove genes

changing less than 1.5 fold, and a t-test was run to determine

significant (p,0.01) changers. A multiple testing correction using

the algorithm of Benjamini and Hochberg was used to reduce the

false discovery rate. See file attached.

(XLS)

Appendix S1 Protocols and primers for Q-PCR (PTEN), Q-RT-

PCR (PTEN, c-Fos, HMGA-1, c-Myc, Jun-B) and sequencing

KRAS (exons 2 and 3) and PIK3CA (exons 9 and 20).

(DOC)
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