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Abstract
The aim of this study was to compare whole body composition, generated by air displacement plethysmography (ADP) and dual-
energy X-ray absorptiometry (DXA), and to evaluate the potential predictive value of the sum of skinfolds (3SFT) for whole
body composition, in preterm infants at term equivalent age. A convenience sample of sixty-five preterm infants with a mean
(SD) gestational age of 29 (1.6) weeks was studied at term equivalent age. Fat mass measured by DXA and ADP were compared
and the ability of the ) SFT to predict whole body fat mass was investigated. There was poor agreement between fat mass
percentage measured with ADP compared with DXA (limits of agreement: — 4.8% and 13.7%). A previously modeled predictive
equation with the Y'SFT as a predictor for absolute fat mass could not be validated. Corrected for confounders, the > SFT
explained 42% (ADP, p = 0.001) and 75% (DXA, p = 0.001) of the variance in fat mass percentage.
Conclusions: The Y SFT was not able to accurately predict fat mass and ADP and DXA did not show comparable results. It remains
to be elucidated whether or not DXA provides more accurate assessment of whole body fat mass than ADP in preterm infants.
Trial registration: NTR5311

What is Known:
* Diverse methods are used to assess fat mass in preterm infants.

What is New:

* This study showed that there is poor agreement between dual-energy X-ray absorptiometry, air displacement plethysmography, and skinfold thickness
measurements.

* Our results affirm the need for consensus guidelines on how to measure fat mass in preterm infants, to improve the assimilation of data from different
studies and the implementation of the findings from those studies.

Communicated by Daniele De Luca

< DanaF. J. Yumani
d.yumani @amsterdamumec.nl

Dide de Jongh
Dide_dejongh@hotmail.com

Harrie N. Lafeber
Hn.lafeber@amsterdamumc.nl

Mirjam M. van Weissenbruch
M.vanweissenbruch @amsterdamumc.nl

Department of Pediatrics, Amsterdam UMC, Location VU
University Medical Center, De Boelelaan 1117, 1081, HV
Amsterdam, The Netherlands

Faculty of Science, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00431-020-03812-3&domain=pdf
http://orcid.org/0000-0002-7914-3332
mailto:d.yumani@amsterdamumc.nl

920

Eur J Pediatr (2021) 180:919-927

Keywords Fat mass - Dual-energy X-ray absorptiometry - Air displacement plethysmography - Skinfold thickness - Premature

infants

Abbreviations

ADP  Air displacement plethysmography
DXA Dual-energy X-ray

PMA Postmenstrual age

SDS  Standard deviation score

SGA  Small for gestational age
Introduction

Preterm infants are prone to develop risk factors for the met-
abolic syndrome in later life [1]. Adolescents and adults born
preterm have been shown to have a higher fat mass, a higher
blood pressure, and an increased risk of dysglycemia com-
pared with adolescents and adults born at term [2, 3]. While
some report no differences in fat distribution at younger ages
[4], others did find difference in infancy when comparing the
body composition of infants born preterm with that of those
born at term [5]. For instance, at term equivalent age, prema-
ture infants have been reported to have an increased fat mass
compared with term infants [5]. Term equivalent age is an
important benchmark for the development of the preterm in-
fant: a point to evaluate whether any disparities in extra-
uterine development and normal fetal development bear
short- or long-term consequences. Since in adulthood the fat
mass percentage and the fat mass index have been related to
the occurrence of metabolic syndrome components [6, 7],
monitoring body composition in infancy and childhood could
help to signal early signs of increased disease risk. Therefore,
to ensure the timely implementation of preventive measures, it
is pertinent to have a validated method to assess body com-
position, in particular fat mass.

The most frequently used methods to estimate fat mass are
air displacement plethysmography (ADP) and dual-energy X-
ray absorptiometry (DXA). There is no consensus on which
reference method should preferentially be used and at the
same time studies in term infants show poor agreement be-
tween fat mass measured with ADP compared with DXA
[8-10]. To our knowledge, there is no published data on the
comparison of ADP and DXA in preterm infants. Therefore,
the purpose of the present study was to compare DXA-
generated and ADP-generated whole body composition in
preterm infants at term equivalent age. Even so, ADP and
DXA are both expensive and immobile instruments.
Therefore, it would be valuable to have a reliable and low-
cost point-of-care instrument. Skinfold measurements have
been suggested as a low budget tool for measuring fat mass
in infants, in particular in low-income countries [11, 12].
Nevertheless, there are questions about the reliability and
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reproducibility of skinfold measurements. Moreover, despite
several studies assessing predictive equations including
skinfolds or the sum of skinfolds (3.SFT) to estimate fat mass,
to our knowledge, only a few included preterm infants
[12—15]. In addition, the limited publications on the predictive
value of SFT for fat mass percentage in preterm infants in-
cluded mainly late preterm infants [16]. All in all, at this time,
there are no validated predictive equations including SFT for
extremely and very preterm infants. Therefore, this study
assessed the potential predictive value of the Y SFT for fat
mass and fat mass percentage in preterm infants. In conclu-
sion, the aim of this study was to assess the agreement be-
tween fat and fat-free mass measured with ADP and DXA and
estimated by the sum of skinfolds, in preterm born infants at
term equivalent age.

Methods
Study cohort

The study cohort consisted of a convenience sample of
65 preterm infants born between 2015 and 2018, with a
gestational age of 24 to 32 weeks, admitted to the neo-
natal intensive care unit of the Amsterdam University
Medical Centers, location Vrije Universiteit University
Medical Center. The preterm infants were part of the
NUTRIE study, a longitudinal observational study on
nutrition in relation to the endocrine regulation of pre-
term growth and body composition. The NUTRIE study
was powered to detect a medium size effect (r = 0.35)
of insulin-like growth factor 1 on fat mass percentage.
No power calculations were done for the primary out-
comes presented in this paper. To demonstrate that the
maximum allowed difference in fat mass measured by
two different methods is < 200 g, 10 pairs would be
needed based on a mean difference in the population of
100 g (+ 25) [8].

Informed consent was obtained in the first week of life and
participants were followed up from birth to 2 years corrected
age. Infants with substantial congenital anomalies based on a
chromosomal disorder or syndrome were excluded.

The study was approved by the medical research ethics
committee of the Vrije Universiteit University Medical
Center and was conducted according to the good clinical prac-
tice guidelines and in line with the Declaration of Helsinki.
The study was registered at the Dutch Trial Register where an
audit trail of changes to the design was kept (www.
trialregister.nl; NTR5311).
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Assessment of growth and body composition

Growth and body composition were assessed on the same day
in the same order in all participants. Follow-up at term equiv-
alent age was planned between 38 and 46 weeks
postmenstrual age (mean 43.8 + 1.9 weeks). SFT were mea-
sured first, followed by ADP and finally DXA. Infants were
fed before the DXA in case the child was too agitated.

Growth was assessed from birth until 36 weeks
postmenstrual age and at term equivalent age. Measurements
of weight, length, and head circumference were taken by two
investigators. Infants were weighed nude on an electronic
scale to the nearest 5 g and length was measured with a length
board to the nearest 0.5 cm. Occipital-frontal head circumfer-
ence was measured to the nearest 0.1 cm with a non-
stretchable measuring tape. Standard deviation scores (SDS)
of weight, length, and head circumferences were calculated
according to Fenton [17]. Small for gestational age (SGA)
was defined as a birth weight below the tenth percentile (—
1.3 SD) and postnatal growth restriction was assumed if, at 36
weeks postmenstrual age, there was a decrease in weight z-
score of more than 1 SD compared with the birth weight z-
score [18].

Skinfolds were measured (to the nearest millimeter) at bi-
ceps, triceps, subscapular, and supra-iliac positions with a
Harpenden® skinfold caliper by two investigators. One mea-
surement was taken bilaterally for every position. The bilateral
measurements were averaged to come to one skinfold thick-
ness for every position. According to previous studies, the
intraobserver coefficient of variation is below 3%; however,
the inter-observer coefficient is up to 10% [15].

The anthropometric formula which was used to estimate fat
mass at term equivalent age was that of Schmelzle and Fusch
[12]. This formula was originally modeled to predict fat mass,
measured with DXA, in infants 34 weeks gestational age and
older, using Y'SFT (mm) and length (cm): fat mass (g) = 68.2
x Y'SFT ~ (0.0162 x length) — 172.8. Skinfolds were mea-
sured at the same site as our study. This formula was selected
because it was the only predictive equation based on a popu-
lation that included preterm infants and gave a high explana-
tion of the variance in fat mass [12, 14].

The Pea Pod® (PEA POD Infant Body Composition
System, Cosmed Ltd, Concord, CA, USA) was used to assess
whole body fat mass and fat-free mass through ADP. The
measurements were performed by two investigators. Infants
were measured naked and hair was flattened using hair oil.
Infants were allowed to move during the measurement. In case
of excessive crying, the measurement was stopped.
Measurements were done briefly before feeding time, i.e.,
approximately 3 h after the last feeding. In line with the man-
ufacturer’s guideline, daily quality control checks were done
which included chamber calibration. Every 2 weeks, the scale
was calibrated. A detailed description of the Pea Pod®

measurement is described elsewhere [19]. As previously re-
ported, the coefficient of variation for repeated volume mea-
surements lies between 0.02 and 0.09% [19]. Fat mass and fat-
free mass were calculated using gender-specific equations de-
veloped by Fomon and colleagues [20].

The Hologic QDR 4500 A, using Infant Whole Body
Software version 13.5.3:3 (Hologic Inc., Bedford, MA,
USA), was used to assess whole body fat mass and fat-free
mass through dual-energy X-ray absorptiometry. During the
procedure, the infants were required not to move. The infants
were swaddled in a blanket of the same size and type supplied
by the investigators, without any clothing or diapers. Infants
were swaddled in supine position with the soles of the feet
together and knees bent (frog-leg-position) and the arms
stretched beside the body. Infants were positioned in the cen-
ter of the scanning bed with their head near the head end of the
bed. The measurement was done after feeding. Typically in-
fants remained awake, but lights were dimmed and a video
was played from a mobile device outside of the scanning field.
The preparation and positioning of the infants were performed
by two experienced investigators. Calibration was done daily
using an anthropomorphic spine phantom and a geometric
block phantom. In addition, a radiographic uniformity test
was done once a week and software was regularly updated.
All images were analyzed by one radiologist. Images with
excessive movement artifacts were excluded at the judgment
of the radiologist.

Potential confounders

The following factors are known to relate to body composition
and were assessed as potential confounders: gestational age,
gender, ethnicity, type of nutrition: human milk (60% or more
of total diet) vs formula (60% or more of total diet), waist
circumference and absolute weight, length and head circum-
ference at birth and term age, and their corresponding z-scores
[15].

The statistical analysis

Characteristics of the study group were first summarized using
descriptive statistics, stratified by sex. Mean and standard de-
viations (SD) were calculated for all continuous variables and
presented as mean + SD. Percentages were reported for di-
chotomous variables. The median and the interquartile range
were reported if the variable was not normally distributed.
The level of agreement and potential bias between fat mass
percentage obtained via ADP and DXA was examined using
the Bland-Altman analysis [12]. Agreement between the for-
mula of Schmelzle et al. [12] and fat mass was also examined
using Bland-Altman plots. Based on the normal variation in
fat mass, the maximum allowed difference was set at 200 g for
absolute fat mass and at 2% for fat mass percentage [21-23].
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Table 1  Baseline characteristics

Total, n = 65 Male, n =35 Female, n = 30 p value®
Characteristics at birth

Gestational age (weeks), mean = SD 29.0+1.6 293=+1.6 287+1.6 0.132
Race, n (%)

White 52 (80.0) 27 (77.1) 25 (83.3) 0.534

Non-white 13 (20.0) 8(22.9) 5(16.7)
Birth weight (g), mean + SD 1170 £ 316 1347 £295 1108 +293 0.002
Birth length (cm), mean + SD 37.0+32 38.6+3.0 36.3+3.0 0.004
Birth head circ. (cm), mean = SD 263+£2.2 274+23 26119 0.016
Birth weight SDS, median (IQR) 02 (—0.31t00.6) 0.3(—0.1t00.9) —0.1 (-04100.5) 0.065
Birth length SDS, median (IQR) 03 (—0.51t00.6) 0.3 (—0.3100.6) 0.1 (—0.61t00.5) 0.229
Birth head circ. SDS, median (IQR) 04(—0.2t01.0) 03(-02to1.2) 04 (-031t01.0) 0.246
Small for gestational age (< pl10), n (%) 3 (4.6) 1(2.9) 2 (6.7) 0.782

Characteristics at term age visit

PMA at term age visit (weeks), mean + SD 438+19 438 +2.1 438+ 1.6 0.962
Weight at term age visit (g), mean + SD 4078 + 662 4320 £+ 683 3795 £ 517 0.001
Length at term age visit (cm), mean + SD 52.8+2.7 539+24 51.5£25 0.000
Head circ. at term age visit (cm), mean + SD 374+1.6 37.8+1.6 370+ 14 0.040
Weight SDS at term age visit, median (IQR) -0.5(-131t0.1) -02(-111t0.3) -0.7(-1.510.0) 0.104
Length SDS at term age visit, median (IQR) -04(-1.1t00.1) -02(-=0.7t00.3) -1.0(-17t0-0.2) 0.003
Head circ. SDS at term age visit, median (IQR) 0.5(=0.1to01.3) 0.7 (0.0 to 1.6) 03(-0.1t01.2) 0.272
Postnatal growth restriction®, n (%) 18 (27.7) 7 (20.0) 11 (36.7) 0.134
Type of nutrition

Human milk 29 (44.6) 18 (51.4) 11 (36.7)

Formula 36 (55.4) 17 (48.6) 19 (63.3)

2 p value for females compared with males based on t test for normal distributions, Mann-Whitney U test for non-parametric variables, and Pearson chi-

square or Fisher’s exact test for categorical variables

® Postnatal growth restriction was assumed if, at 36 weeks postmenstrual age, there was a decrease in weight z-score of more than 1 SD compared with

the birth weight z-score

IOR interquartile range, PMA postmenstrual age, SD standard deviation, SDS standard deviation score

Prediction models were developed for predicting the vari-
able Y SFT and absolute fat mass and fat mass percentage
measured with ADP at term equivalent age. Potential con-
founders which showed significant correlations with fat mass
(percentage) in univariate analysis were added together in a
multivariate model. The final model was determined through a
backward stepwise regression analysis. The removal criterion
was F-to-remove > 0.10.

All statistical analyses were conducted using IBM®
SPSS® Statistics 22 for Windows (IBM Corp., Armonk,
NY, USA). Two-sided statistical significance was assumed
at p values less than 0.05 with a 95% confidence interval.

Results

Sixty-five infants were assessed for growth and body compo-
sition at term age. Baseline characteristics are shown in
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Table 1. Measurements of skinfolds were successfully com-
pleted in 63 infants; ADP was successful in 58 infants and
DXA in 32 infants (see Fig. 1).

DXA compared with ADP

Compared with ADP, fat mass measured with DXA was
higher (254.7 g, 165.7-343.9). Likewise, fat mass per-
centage measured with DXA was 4.5% (2.7-6.2) higher
than ADP (Table 2). There was no agreement between
fat mass measured with DXA compared with ADP. The
mean difference was 255 + 234 g with a lower limit of
agreement of — 212 g and an upper limit of agreement
of 723 g. For fat mass percentage, the mean difference
between DXA and ADP was 4.5 + 4.7%, with a lower
limit of — 4.8% and an upper limit of 13.7%. The
Bland-Altman plot showed a proportional bias: as the
mean fat mass percentage increased, the absolute
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Assessed for eligibility (n=237)
(Aug 15 — Aug '18)

Excluded (n=148)
+ Not meeting inclusion criteria (n=32)

+ Declined to participate (n=97)
+ Other reasons: (n=19)

Enrolled (n=89)

+ Deceased (n=2)

Discontinued study participation prior to term age visit (n=8)

+ Withdrew consent (study burden too high) (n=5)
+ Lost to follow-up (not responsive) (n=1)

+ Hospitalized (n=5)
+ No show (n=6)
+ Logistic reasons (n=4)

Not assessed at term age (n=16)

+ Parents declined due to too many concurrent hospital visits (n=1)

Assessed at term age (n=65)

SSF (n=63)

+ Incomplete: not all sites measured
(n=1)

+ Not done: infant too agitated (n=1)

ADP (n=58)

+ Not done: MRSA (n=2)
+ Not done: parents (n=3)
+ Failed: infant too agitated (n=2)

DXA (n=32)

+ Not done: DXA not available (n=19)
+ Failed: excessive movement (n=8)
+ Not done: parents (n=6)

Fig. 1 NUTRIE study flow diagram

difference in fat mass percentage between the two
methods increased. Based on a maximum allowed dif-
ference of 2%, no agreement was found (Fig. 2). For
both ADP and DXA, fat mass and fat mass percentage
at term age did not differ significantly between gender,
ethnicity, or type of nutrition at term age.

DXA compared with skinfolds

The difference between fat mass estimated through the model
of Schmelzle and Fusch and the fat mass measured with DXA
exceeded the limits of agreement. The mean difference was
272 +240 g, with a lower limit of agreement of — 742 g and an
upper limit of agreement of 199 g. Fat mass percentage de-
rived from skinfolds did not agree with fat mass percentage
measured with DXA and showed a proportional bias with a

larger difference in fat mass percentage with increasing mean
fat mass percentage (Fig. 3).

Predictive model for fat mass measured with DXA

Within our cohort, fat mass, measured with DXA, could be
estimated with gestational age, waist circumference, length,
and the Y SFT: fat mass (g) = — 4649.1 + 23.5%YSFT +
64.4*length + 77.6*waist circumference — 33.7*gestational
age (3SFT in mm, length and waist circumference in cm,
and gestational age in weeks). These factors explained 89%
of the variance (R* = 0.893, S.E. of the estimate 146 g, p <
0.001). In addition, 75% of the variance in fat mass percent-
age, measured with DXA, could be explained by waist cir-
cumference, head circumference, and the > SFT (R2 =0.753,
S.E. of the estimate 3.5%, p < 0.001).
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Table2 Body composition at term equivalent age

Total, N = 65 Male, N =35 Female, N = 30 p value®
Sum of skinfolds (mm)®, mean = SD 224+£42 224+44 225+4.1 0.872
Waist circumference (mm)°, median (IQR) 36.0 (34.0-37.5) 36.5 (34.5-37.8) 35.4 (33.3-37.0) 0.167
ADP fat mass (g)®, mean + SD 864 + 253 910 +280 799 + 198 0.100
DXA fat mass (g)°, mean + SD 1078 £417 1187 £475 1012 £ 376 0.258
ADP fat mass percentage, median (IQR) 20.7 (18.4-23.0) 21.2 (18.4-23.4) 20.4 (18.1-22.6) 0.594
DXA fat mass percentage, median (IQR) 25.0 (21.5-30.5) 25.1 (22.4-31.8) 24.8 (19.8-29.5) 0.684
ADP fat-free mass (g), mean + SD 3309 £ 462 3447 £ 430 3114 £442 0.006
DXA fat-free mass (g), mean + SD 3138 £ 400 3316 £422 3032 + 356 0.051
ADP fat-free mass percentage, median (IQR) 79.3 (77.1-81.6) 78.8 (76.6-81.7) 79.7 (70.5-81.9) 0.594
DXA fat-free mass percentage, median (IQR) 75.1 (69.6-78.5) 74.9 (68.2-77.7) 75.2 (70.5-80.2) 0.686

2 p value for females compared with males based on t test for normal distributions, Mann-Whitney U test for non-parametric variables, and Pearson chi-

square or Fisher’s exact test for categorical variables

® Sum of skinfolds measured at biceps, triceps, subscapular, and supra-iliac positions, n = 63 (34 males, 39 females)

€ Waist circumference, n = 63 (34 males, 39 females)
4 ADP, n =58 (34 males, 24 females)
°*DXA, n =32 (12 males, 24 females)

ADP air displacement plethysmography, DXA dual-energy X-ray, /OR interquartile range, SD standard deviation

Predictive model for fat mass measured with ADP

Within our cohort, fat mass, measured with ADP, could be
estimated with gestational age, waist circumference, head cir-
cumference, weight SDS, head circumference SDS, and the
>'SFT: fat mass (g) = — 3013.0 — 9.4*gestational age +
39.1*waist circumference + 65.9*head circumference +
67.6*weight SDS — 59.3*head circumference SDS +
15.1%Y'SFT (gestational age in weeks, waist and head circum-
ference in mm, and Y SFT in mm). These factors explained
72% of the variance (R2 =0.716, S.E. of the estimate 138.4 g,
p <0.001).

Forty-two percent of the fat mass percentage measured
with ADP could be explained by the ¥SFT and waist circum-
ference (R? = 0.426, S.E. of the estimate 3.1%, p < 0.001)

In multivariate analysis, other potential confounders were
found to not be significant.

Discussion

This study showed that there is poor agreement between body
composition measured with ADP and body composition mea-
sured with DXA in preterm born infants at term equivalent
age. Compared with ADP, DXA showed higher fat mass per-
centages. Furthermore, estimations of fat mass based on the
> SFT showed poor agreement with the actual fat mass mea-
sured with DXA.

Various studies in term infants report high correlations be-
tween fat mass measured with ADP and fat mass measured

Upper 95% limit of agreement: 13.7%

mean bias: 4.5%

Lower 95% limit of agreement: -4.8%
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Fig. 2 Fat mass percentage obtained via DXA compared with fat mass
percentage obtained via ADP. ADP air displacement plethysmography,
DXA dual-energy X-ray. Bland-Altman plot of fat mass percentage mea-
sured by DXA compared with ADP. Average of fat mass measured with
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DXA and ADP is depicted on the x-axis and the difference between the
fat mass percentage measured with DXA and ADP is depicted on the y-
axis. Mean difference: 4.5 + 4.7%, lower limit of agreement: — 4.8%,
upper limit of agreement: 13.7%, maximum allowed difference: 2%
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Upper 95% limit of agreement: 15.5%

mean bias: 4.9%

Lower 95% limit of agreement: -5.6%
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Fig. 3 Fat mass percentage obtained via DXA compared with the
estimated fat mass percentage based on XSFT. Bland-Altman plot of fat
mass percentage measured by DXA compared with fat mass percentage
estimated based on the formula by Schmelzle and Fusch [18]. Average of
fat mass percentage measured with DXA and estimated with the formula

with DXA [9, 10]. Nevertheless, a high correlation does not
imply both methods found the same value and does not pro-
vide information about the test quality [24]. Similar to studies
performed in full-term infants, DXA gave higher estimates of
fat mass in our cohort compared with ADP [10, 9]. In agree-
ment with that, early animal studies showed that DXA seems
to overestimate fat mass [25, 26]. To our knowledge, no data
has been published on the comparison of DXA and ADP in
extremely preterm infants. Nevertheless, one recent study in
South-African term infants also showed higher estimates of fat
mass by ADP compared with DXA [8]. Moreover, several
reviews have highlighted that both DXA and ADP have rea-
sonable reproducibility, but only modest accuracy. According
to these reviews, ADP actually seems to underestimate fat-free
mass percentage or fat-free mass expressed in grams per liter
(fat-free mass density). Especially, when the fat-free mass
percentage or density gets higher, the underestimation be-
comes larger [27, 15]. In actual fact, the fat-free mass percent-
age or density may be a more relevant parameter to assess, as
in practice it may be more insightful to properly predict fat
mass and fat-free mass percentage than it is to predict absolute
fat and fat-free mass. Nonetheless, in all these studies, it is to
be questioned whether an appropriate reference method for
body composition has been used. In practice, both DXA and
ADP, as well as deuterated water, have been deemed as reli-
able methods; however, there seems to be no universally ac-
cepted preferential reference method in living infants.

In contrast to DXA, ADP takes into account that hydration
status is different in infants as compared with that in adults.
Particularly during the first week of life, infants’ fat-free mass
hydration is higher, and therefore, DXA estimations of fat and
fat-free mass may not be as accurate as ADP estimations in
this period [28]. Moreover, the algorithms used in DXA soft-
ware are not open for critical analysis. In addition, DXA qual-
ity is negatively influenced by movement, while moderate
movement does not affect body composition measurements
taken using ADP. Moreover, infants are exposed to a low dose

is depicted on the x-axis and the difference between the fat mass percent-
age measured with DXA and estimated by the formula is depicted on the
y-axis. Mean difference: 4.9 + 5.4%, lower limit of agreement — 5.6%,
upper limit of agreement 15.5%, maximum allowed difference 2%

ofradiation. Therefore, in this study, and presumably in others
as well, ADP measurements may have been more reliable.

In line with others, we could not externally validate the
model by Schmelzle et al. for fat mass prediction [29]. To
date, predictive models for the estimation of fat mass using
the SFT have only been validated in term and late preterm
infants and the predictive value of SFT alone was generally
low [16, 30]. Moreover, these models were mostly only inter-
nally validated and looked at the prediction of absolute fat
mass and not fat mass percentage [13, 12, 29]. However, in
our cohort, it seems that the Y SFT could also explain an im-
portant part of the variance in fat mass percentage. Even
though the prediction model yielded a lower R? than the model
for the prediction of fat mass, fat mass percentage may be a
more generalizable factor and worth further exploration for
external validation. Especially, in the light of resource poor
settings, the > SFT might still be useful as an indicator of fat
mass percentage.

Our study was limited by the small sample size, which
reduces the generalizability of the prediction models.
Moreover, body composition was measured between 38 and
46 weeks postmenstrual age, a period in which body compo-
sition alters [31]. In addition, the low number of successful
DXA scans, with 1 in 4 scans not completed because of excess
movement or too much agitation prior to the measurement,
limited the assessment of agreement between different
methods. Recent studies in term infants have shown that plac-
ing infants in a vacuum cushion limits movement artifacts and
leads to more comparable results between DXA and ADP
[32].

This study has not been able to robustly show that skinfold
measurements qualify as a reliable, low-cost point-of-care in-
strument. However, it remains desirable to find an easily ac-
cessible and reliable way of monitoring fat mass in light of
possible adverse cardiometabolic outcomes in later life [1-3].
Nevertheless, currently available methods for bedside assess-
ment of body composition, such as bioelectrical impedance
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analysis and body proportionality measures, have a question-
able accuracy and accurate, low-cost bedside methods are
limited [30]. To the best of our knowledge, other predictive
equations including weight and length indices and easily mea-
sured clinical parameters are yet to be externally validated
[33-35]. It would be of interest to further investigate the po-
tential of these predictive equations. Taking previous findings
into account, ADP seems to be more practical to assess body
composition, in particular fat mass, in preterm infants in early
life. Nevertheless, it remains to be elucidated whether or not a
DXA without movement artifacts provides a more accurate
assessment of whole body composition than ADP in preterm
infants.
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