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Antimicrobial resistance (AMR) genes are often carried on broad host range plasmids,
and the spread of AMR within microbial communities will therefore depend on the
structure of bacteria–plasmid networks. Empirical and theoretical studies of ecological
interaction networks suggest that network structure differs between communities that
are predominantly mutualistic versus antagonistic, with the former showing more gener-
alized interactions (i.e., species interact with many others to a similar extent). This sug-
gests that mutualistic bacteria–plasmid networks—where antibiotics are present and
plasmids carry AMR genes—will be more generalized than antagonistic interactions,
where plasmids do not confer benefits to their hosts. We first develop a simple theory to
explain this link: fitness benefits of harboring a mutualistic symbiont promote the spread
of the symbiont to other species. We find support for this theory using an experimental
bacteria–symbiont (plasmid) community, where the same plasmid can be mutualistic or
antagonistic depending on the presence of antibiotics. This short-term and parsimonious
mechanism complements a longer-term mechanism (coevolution and stability) explaining
the link between mutualistic and antagonistic interactions and network structure.
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The widespread occurrence of antimicrobial resistance (AMR) is a looming crisis for medi-
cine (1). Mobile genetic elements (MGEs), such as plasmids, are important vectors of anti-
biotic resistance genes in the natural environment and in hospitals (2–4). To predict and
control the spread of AMR-carrying plasmids, we need to understand the ecology of host
bacteria and their plasmid symbionts (5, 6). Plasmids carrying AMR genes are often very
abundant in microbial communities and shared by many hosts (7, 8), suggesting that plas-
mids that can confer net fitness advantages to their hosts are likely to have a higher ecologi-
cal generality (the property of interacting with many species) in microbial communities
than plasmids that impose net fitness costs (9). This pattern fits with predictions and obser-
vations from ecological network theory: mutualistic (both parties benefit from each other)
interactions lead to better connected interaction networks with a larger proportion of gener-
alist species than networks where interactions are antagonistic (10–14). Current understand-
ing of the mechanisms shaping such differences in network structure has focused on two
nonmutually exclusive hypotheses. First, coevolution can lead to the observed patterns under
the assumption that trait matching (e.g., a virus’ receptor protein must match a host recep-
tor) determines the strength of antagonistic interactions, while exploitation barriers (e.g., a
pollinator’s mouthparts must be at least as long as a given flower’s corolla tube) determine
mutualistic interactions (15–17). Second, greater generality can foster stability (notably,
greater robustness against extinctions and population fluctuations) in mutualistic networks
but potentially destabilize antagonistic networks (14, 18–20). Note that these mechanisms
linking interaction type and network properties have yet to be experimentally demonstrated.
Here, we demonstrate with mathematical modeling and experimental microbial

communities that the degree to which a plasmid spreads through a host community
(both the number of host species in which it is found and the evenness of its prevalence
between host species) can be simply explained as a direct result of the affect the plasmid
has on its hosts’ population growth rate. Beneficial plasmids, carrying AMR genes,
have a higher ecological generality, leading to a more connected network structure.
The model used makes no assumptions specific to bacteria or plasmid biology, and
hence our predictions should be broadly applicable to any host–symbiont system with
both vertical and horizontal transmission.

Results

Theory. First, we modeled the change in prevalence of a symbiont within a host popu-
lation. Symbionts transmit horizontally (between free-living hosts), vertically (parent to
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offspring), or, in many cases, via both modes (21, 22). We
assume the latter here. The spread of a symbiont through a
population of potential hosts owing to vertical transmission
depends on the infected hosts’ reproduction and death rates rel-
ative to the rest of the population. Thus, if we combine repro-
duction and death into a growth term ωA for infected hosts
and ωB for uninfected hosts, we can model the change in fre-
quency of infected hosts from one generation to the next using
a discrete time haploid selection model (23)

Δp ¼ p 1� pð Þ ωA�wB
pωA þ 1� pð ÞωB ,

where p is the frequency of infected hosts. Here, if wB > ωA,
the symbiont will eventually be lost from the population as the
right-hand side of the equation becomes negative. However, to
account for horizontal transmission, we include the transmis-
sion coefficient β from susceptible-infected (SI) models to
account for both the encounter rate and the frequency of trans-
mission given an encounter between an infected and uninfected
host, resulting in a change in infection frequency of βpð1� pÞ
in a single generation (24), giving

Δp ¼ pð1� pÞ ωA�wB
pωA þ ð1� pÞωB þ β

� �
: [1]

The same phenomena can be modeled in continuous time.
Here, the horizontal transmission term remains the same, as
this takes the same form in continuous time SI models (23).
The continuous time haploid selection model takes the form
dp=dt ¼ pð1� pÞ rA� rBð Þ (23). Here, rA and rB are the
growth rates of infected and uninfected hosts, respectively.
Thus, the change in the frequency of infected hosts over time is
given by the ordinary differential equation (ODE)

dp
dt

¼ pð1� pÞðrA–rB þ βÞ: [2]

In Eq. 2, the equilibria at P = 1 or 0 are clearly stable, unsta-
ble, or neutral depending on the sign of the second term
(rA–rB þ β). Additionally, all values of p are neutral equilibria
when the symbiont is parasitic (rA < rB) and horizontal trans-
mission rate is equal to the absolute difference between rA and
rB. Conversely, in the discrete time model (Eq. 1), unique, sta-
ble, internal equilibria occur at P ¼ 1–1=R– 1=β, if and only
if 1� R < β < 1=R � 1, where R ¼ ωA=ωB is the fitness of
infected relative to uninfected hosts (Fig. 1A; Materials and
Methods). In either case (discrete or continuous time), the sym-
biont will always go to fixation when it is mutualistic (i.e.,
ωA > ωB or rA > rB, respectively).
Expanding the model to account for multiple hosts, while

still assuming the total population size of each species remains
constant, gives

Δpi ¼ pi 1� pið Þ ωAi � wBi

piωAi þ 1� pið ÞωBi

� �
þ 1� pið Þ∑

βij

βij pj
[3]

and

dpi
dt

¼ pið1� piÞðrAi – rBiÞ þ 1� pið Þ∑
βij

βij pj [4]

for discrete and continuous time, respectively, where βij is the
horizontal transmission rate from species j to species i. With
multiple host species, small changes in fitness effects of the

symbiont or transmission rates in one species can have a large
impact on the infection frequency of other host species (Fig. 1
B–D). Expanding the scope of the multihost continuous time
model to allow for fitness differences between species and inter-
specific interactions to affect host population densities, we
assume that the strength of selection within a population is
independent of population size, but horizontal transmission
will depend on the density of both the donor and recipient
population. The change in abundance of infected hosts in the
ith species due to horizontal transmission is then
xi 1� pið Þ∑βij

βij pj xj , where xi is the population size of the ith

species. Dividing through by xi to get the proportionate
change, we model the change in population densities and the
change in the frequency of infected hosts within populations as

dxi
dt

¼ rixi 1�
∑jαij xj

Ki

 !
[5.1]

dpi
dt

¼ pið1� piÞðrAi – rBiÞ þ 1� pið Þ∑
βij

βij pj xj , [5.2]

where xi is the density of the ith host species, ri = rAi(pi) +
rBi(1�pi), Ki is the carrying capacity of species i, and αij is the
effect species j has on the population of species i. Thus, the first
equation is a Lotka–Volterra competition equation (25), where
growth rates depend on infection frequencies, and the fitness
effects of the symbiont and population growth is reduced
(potentially becoming negative) with the increase in size of all
competing populations. Additionally, horizontal transmission
to, from, and within species with small population sizes will
be reduced. For each of the multihost models (Eqs. 3 to 5),
we simulated the dynamics of a 10-host–species community
100,000 times for 1,000 generations, varying all applicable
parameters. Both connectance (the number of species the sym-
biont infects) and symbiont generality (connectance weighted
by the evenness of infection, measured as Shannon’s diversity
index of infected hosts) in the network increase with horizontal
transmission rate and the number of host species that derive a
benefit from the symbiont (i.e., the number of mutualistic
interactions; Fig. 1 E–J). Even a single mutualistic interaction
has a large impact on the number of links and generality. This
is because the symbiont goes to fixation in its mutualistic host’s
population, and this host species then acts as a hub, continually
transmitting (parasitic) symbionts horizontally to the rest of the
community. Despite differences in the modeling approaches
(e.g., the differences in internal equilibria between continuous
and discrete single-host models (Eqs. 1 and 2) and the fact that
with variable population densities (Eqs. 5.1 and 5.2), a parasite
(R < 1) can slow its own transmission by reducing its hosts
population size), the results of the multihost simulations are all
very similar. Thus, we show how a change between positive
and negative fitness effects is sufficient for the establishment of
different network characteristics.

Experiments. We experimentally test our predictions using a five-
isolate (Achromobacter sp., Stenotrophomonas sp., Ochrobactrum
sp., Pseudomonas sp., and Variovorax sp.) community of soil
bacteria (26) and a conjugative plasmid (pKJK5::gfp) as the
symbiont, modifying the abiotic context in order to alter the
interaction sign between the plasmid and its bacterial hosts.
The five bacterial species can coexist for longer periods than
our experimental duration, each species can invade each other
from rare, and most pairwise interactions are competitive,
with the exception that Variovorax sp. which benefits from
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both Ochrobactrum sp. and Pseudomonas sp. (26). Conjugative
plasmids are MGEs that rely on reproduction of and conjuga-
tion between bacteria for propagation (22). Due to metabolic
costs they confer upon their bacterial hosts (27), plasmids are
typically parasitic (28). However, like many plasmids,
pKJK5::gfp (29) confers antibiotic (tetracycline) resistance.
Consequently, the bacterial species have a mutualistic rela-
tionship with the plasmid in the presence of tetracycline, with
the plasmid conferring resistance, and the bacteria facilitating
plasmid reproduction (SI Appendix, Fig. S1). We cultured the
experimental bacterial communities and plasmid pKJK5::gfp
for 5 wk in the presence and absence of tetracycline. pKJK5::
gfp was introduced by a single donor strain (Ochrobactrum sp.
, Pseudomonas sp., or Variovorax sp.). To control for the effect
of plasmid prevalence in the initial hosts on subsequent inter-
specific conjugation rates, plasmid prevalence in the donor
strain was initially 100%.
After 1 wk, there was little difference in the network proper-

ties between mutualistic and antagonistic networks, and the
plasmid spread from the donor species to a small fraction of
one to three other bacterial species in the community (Fig. 2A).
After 5 wk, the plasmid was present in four to five species in
the mutualistic networks, while it was only present in two spe-
cies in the antagonistic networks (Fig. 2A). Consequently, both
network connectance and plasmid generality significantly

increased between weeks 1 and 5 in the mutualistic networks,
while both decreased in the antagonistic networks (Fig. 2B and
Table 1). Donor species-specific effects on network metrics in
week 1 disappeared largely by week 5 (Table 1), resulting in
consistent patterns within each treatment (Fig. 2 B and C).
Our experiments match our theoretical predictions in that
mutualistic symbionts reach higher prevalence, and this leads to
more connected and generalized networks.

The experimental results are also consistent with the pre-
dicted mechanism driving this pattern: the frequency of a host
species infected with a symbiont within a community is deter-
mined by the relative impact the symbiont has on host fitness.
When measured in monoculture, all isolates exhibited reduced
growth rates when grown with pKJK5 in the absence of tetracy-
cline (SI Appendix, Fig. S1). All three hosts reached lower fre-
quencies in the community when they were the initial plasmid
donors than when they were not (Fig. 3). In the presence of tet-
racycline, all but Variovorax sp., which showed the greatest
constitutive resistance to tetracycline, benefitted from the plas-
mid (SI Appendix, Fig. S1). In the community context, both
Ochrobactrum sp. and Pseudomonas sp. (but not Variovorax sp.)
reach higher densities in week 1 when they were the plasmid
donor than when they were not.

While our results fit our predictions, we conducted addi-
tional experiments to investigate other possible explanations for

A E F

G H

I J

B

C

D

Fig. 1. Numerical simulations show the power of symbiont-mediated host fitness effects to alter symbiont prevalence and host–symbiont networks. (A) The
value of the stable fixed point in a single host species discrete time model. Equilibrium symbiont frequency is a function of transmission rate β and relative
fitness of hosts R ¼ ωA=ωB, where ωA and ωB are the fitness of the host with and without the symbiont, respectively. Internal equilibria always and only
exist when 1� R < β < 1=R� 1 (drawn in black) and are unique and globally stable when they do exist. Otherwise, there is a globally stable fixed point at 1 or
0 when β > 1=R� 1 or β < 1� R, respectively. When R > 1 (i.e., mutualism) and when R = 1 and β > 0, the symbiont will always go to fixation. (B–D) Example
trajectories of infection frequency in a two-host discrete time model. Each axis represents the infection frequency of a single host and is labeled with that
host species R, followed by their intraspecific and interspecific transmission rates in that order. Brighter, yellow hues denote a faster rate of change. In B,
with some intraspecific and no interspecific horizontal transmission, both host species lose the parasitic symbiont. The addition of a small amount of inter-
specific transmission leads to an internal equilibrium in C, with both host species having intermediate infection frequencies. In D, one host species derives a
slight benefit from the symbiont, which then goes to fixation in both host species. (E–J) Results from numerical simulations, with communities of 10 host spe-
cies and a single symbiont, in discrete time (E and F), continuous time (G and H), and continuous time with the addition of competitive interactions between
host species (showing those instances where all host species survived; see SI Appendix, Fig. S6 for results with extinctions) (I and J). In each case, there is a
large increase in connectance (proportion of species with prevalence > 0.005) when at least one host–symbiont interaction is mutualistic (R > 1), but
symbiont generality increases more gradually with the number of mutualistic interactions.
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the observed patterns. In particular, it is possible that tetracy-
cline had a direct impact on plasmid conjugation rates (for
example, by altering patterns of gene expression [30]) or an
indirect effect by altering total cell density and hence contact
rate. To determine whether the concentration of tetracycline
used in our experiment altered conjugation rates, we performed
filter mating assays (Materials and Methods) with and without
tetracycline. We detected a lower frequency of conjugation
events in the presence of tetracycline (SI Appendix, Fig. S2),

suggesting that direct effects of tetracycline on conjugation
rates, if anything, caused a reduction in symbiont generality
and connectance in mutualistic bacteria–plasmid networks.
Additionally, we found no evidence of a positive or negative
impact of cell density on either connectance or generality (SI
Appendix, Fig. S5).

Our results can be readily explained by ecological dynamics.
However, it is likely that some (co)evolutionary changes occurred
in bacteria and plasmids, given that bacteria underwent in the

A B

C

Fig. 2. Experimental host–plasmid networks under mutualistic and parasitic interactions. (A) Bacteria–plasmid interaction networks in weeks 1 and 5 for
the six treatments where Ochrobactrum sp. (Oc), Pseudomonas sp. (Ps), and Variovorax sp. (Va) serve as initial plasmid donor either with the plasmid as para-
site (without tetracycline) or mutualist (with tetracycline). For each host species (lower bar labeled with the first two letters of their genus name), the propor-
tion of plasmid-carrying cells is presented in black, and plasmid-free cells are in gray. Presented is the mean for abundance and interaction frequency per
treatment (n = 6). The size of the bars indicates relative abundance within each week compared to the community with the highest abundance; Ac, Achromo-
bacter sp.; St, Stenotrophomonas sp. (B and C) The change in network metrics for communities from week 1 to week 5 are presented with median, interquar-
tile ranges, and single values for the different single treatments and overall parasitic and mutualistic treatments with connectance (B; realized number of
links divided by the number of possible links) and plasmid generality (C; Table 1; SI Appendix, Fig. S3).

Table 1. Response of network metrics to experimental treatments

Connectance Plasmid generality

numDF denDF F P value F P value

Intercept 1 30 564.9051 <0.0001 1627.4368 <0.0001
Tet 1 30 47.4675 <0.0001 42.6037 <0.0001
Donor 2 30 2.5486 0.095 5.4224 0.0098
Week 1 28 1.1134 0.3004 0.0002 0.9887
Tet × donor 2 30 5.1161 0.0123 1.307 0.2856
Tet × week 1 28 42.7726 <0.0001 40.8071 <0.0001
Donor × week 2 28 0.5232 0.5983 6.5773 0.0046
Tet × donor × week 2 28 0.1938 0.8249 3.5081 0.0437

Results from linear mixed effects models testing for treatment × time interaction on the network metrics connectance and plasmid generality. Tet, tetracycline.
Test statistic and P value in bold where P < 0.05. numDF, degrees of freedom in the numerator; denDF, degrees of freedom in the denominator.
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region of 50 generations. We investigated the possibility that this
may have contributed to the observed patterns. In particular, we
considered whether increased conjugation rates may have evolved
in mutualistic treatments. To this end, we investigated evolution-
ary changes in the community replicates that showed the greatest
increase and decrease in connectance over time (a Pseudomonas sp.
donor in an antagonistic treatment and an Ochrobactrum sp.
donor in a mutualistic treatment, respectively). We measured the
spread of the plasmid to the rest of community from the donor
isolated at week 5 and ancestral donors over 1 wk in the absence
of tetracycline. We found nonsignificant increases in connectance
and generality in evolved (versus ancestral) Pseudomonas spp. and
nonsignificant decreases for Ochrobactrum spp. These patterns are
the opposite of those expected if (co)evolution contributed to the
ecological patterns. That said, there was clear evidence of evolu-
tion. While all Ochrobactrum spp. were fully infected whether
evolved or ancestral, the evolved Pseudomonas sp. had lower plas-
mid prevalence than the ancestor (5% versus 39%; quasibinomial
general linear model [GLM; χ21 = 267.21, P < 0.001]). The evo-
lution of rapid loss of the plasmid may explain why Pseudomonas
sp. was the only donor species that tended to reach higher relative
density in the presence of the parasitic plasmid by week 5 (Fig. 3).

Discussion

Given the propensity for plasmids to encode AMR genes, our
results suggest that exposure of microbial communities—including
human microbiomes—to antibiotics may increase plasmid–host
network connectance and generality. This may not only alter the
stability and composition of microbial communities but also result
in network structures that facilitate the spread of other plasmid-
encoded genes, including AMR genes and virulence factors, not
under positive selection. Previous work using emulsion, paired iso-
lation, and concatenation PCR (epicPCR) (31) to detect the pres-
ence/absence of bacteria–plasmid associations (at the strain level)
reveals that the number of bacterial species that take up a
resistance-conferring plasmid can be positively impacted by low
concentrations of antibiotics (5, 9). We extend this by using a
fluorescent marker to identify plasmid hosts at the individual
colony-forming unit level and quantify the extent of plasmid
spread throughout each species, providing a simple, parsimoni-
ous model and explicitly testing for effects not included in our
model (antibiotics increasing conjugation rate and/or reducing
total cell density) to show that differences in growth rate due to
plasmid carriage lead to more generalist and better connected
bacteria–plasmid networks (SI Appendix, Figs. S1 and S5). While
we certainly expect total cell density to impact conjugation
frequency and hence plasmid spread in general, the resistance
conferred by the plasmid lead to similar cell densities across
treatments. This is likely why we did not detect an effect of
density on either connectance of generality.

Our results are relevant to host–symbiont interactions in gen-
eral, especially under temporally or spatially varying environmen-
tal conditions that move a symbiont along the mutualist–parasite
continuum (32). For example, warming ocean temperatures lead
to a shift from mutualism to parasitism in coral symbiont sys-
tems (32), and in many insect–symbiont systems, regional varia-
tion in the presence of natural enemies (to which symbionts
confer protection) (33) and abiotic factors such as temperature
(34) lead to a geographic mosaic of interaction types within the
same species pair. The simple mechanisms described here also
likely apply to free-living species in mutualistic and antagonistic
networks. An initially specialized mutualist will increase the pop-
ulation size of the species they interact with. This will in turn
increase the population size of the mutualist they are interacting
with, increasing exposure to other host species.

Here, we add an ecological mechanism leading to the con-
trasted network structure observed in mutualistic and antago-
nistic communities. We demonstrate that the fitness differences
induced by mutualistic and antagonistic interactions during the
early stages of network formation are enough to shape networks
in contrasted ways. These short-term dynamics create the con-
text for longer-term ecological and evolutionary dynamics (i.e.,
coevolution and stability) identified as mechanisms linking
interaction type and network properties.

Materials and Methods

All supporting data are available at https://zenodo.org/record/5342448, and asso-
ciated analysis code is available at https://github.com/EvoArt/PlasmidNetworks.

Model.
Stability of a single host species discrete time model. In Eq. 1 the system is
at equilibrium when selection balances transmission, that is, when

p ¼ ωB
ωB� ωA

� 1
β
:

Feasible internal equilibria (i.e., where 0 < P< 1) exist only when infected hosts
have lower fitness than uninfected hosts (i.e., when the symbiont is parasitic)
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Fig. 3. Fitness effect on the plasmid donor species. Relative abundances
of the three plasmid donor species, Ochrobactrum sp., Pseudomonas sp.,
and Variovorax sp. (identified by abbreviated genus name) in treatments
without plasmid (gray), when another species is the donor (light color), and
when the focal species is the donor (dark color), in the presence (red) and
absence (blue) of tetracycline. Bars show the mean ± 95% credible intervals
extracted from the posterior distribution of glmer models (Materials and
Methods). For statistical tests, see Table 1, and relative abundance of the
whole community is in SI Appendix, Fig. S4.
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and

0 <
ωB

ωB� ωA
� 1
β
< 1:

Making use of the fact that all variables in the inequalities must be positive (we
assume hosts are always capable of reproduction at some rate, and note that
when β = 0, Eq. 1 is simply a haploid selection model), we can rearrange them
to get

ωB� ωAð Þ=ωB < β < ωB� ωAð Þ=ωA:
Substituting R for ωA/ωB gives

1� R < β < 1=R� 1:
We use linear stability analysis to show that whenever internal equilibria exist,
they are stable because both exterior equilibria will be unstable. First, adding p
to Eq. 1, taking the first derivative with respect to p, and substituting P= 0 gives
R + β, which is > 1 when 1� R < β. Substituting P = 1 gives 1/R – β, which
is >1 whenβ < 1=R� 1. Thus, wherever internal equilibria exist, both exterior
equilibria are unstable, and the internal equilibrium is globally stable.
Numerically solving multiple host species models. To predict the effects of
interaction sign and transmission rate on symbiont generality, we implemented
100,000 numerical simulations of each of the multispecies equations (Eqs. 3 to
5) in Julia (35) using DifferentialEquations.jl, with the continuous time ODEs
(4, 5) solved by the fifth-order explicit Runge–Kutta method (36). In each simula-
tion, 10 host species were assigned ωA and ωB from a random uniform distri-
bution between 0 and 1. β values were drawn from truncated (0, Infinity) normal
distributions, with different locations and scales for interspecific and intraspecific
transmission (the latter always greater than the former) in each simulation run.
For the competing species model, all K values and all self-competition values αi
= j were set to 1. Additionally, a host–host interaction network value c was drawn
from a uniform distribution between 0 and 1. Then, each species pair with
probability c had α values drawn from a uniform distribution between 0 and 1,
otherwise they were set to 0. The number of mutualistic interactions in each sim-
ulation run is defined as the number of host species for which the growth rate of
infected individuals is greater than uninfected individuals. After 1,000 genera-
tions, connectance as the proportion of realized host–plasmid links was calcu-
lated as the number of host populations with a symbiont prevalence of at least
0.005. This was an arbitrarily chosen cutoff for biologically significant links, as
the presence of even one mutualist prohibits any species from reaching 0 symbi-
ont prevalence due to constant interspecific transmission. Symbiont generality
was calculated as G = 2H, with H being the Shannon diversity of symbiont preva-
lence across hosts

H¼�∑n
i¼1pi ln pi,

where n is the number of links, and pi is the proportion of total community infec-
tion frequency attributable to species i (from the pool of species with a symbiont
prevalence of at least 0.005).

Bacterial Community. The five bacterial species in our community were
selected for in vitro coexistence from a range of soil isolates from a previous
study (37). Based on 16S rDNA sequences, the isolates were most closely related
to Variovorax sp., Ochrobactrum sp., Pseudomonas sp., Stenotrophomonas sp.,
and Achromobacter sp., respectively. Distinct colony morphologies of the five
strains on King’s medium B (KB) agar allowed for rapid detection and enumera-
tion of the five different species.

Plasmid Introduction. Plasmid donor strains were constructed for use in the
diversity experiment. The self-transmissible, Incp-1ε–type plasmid pKJK5::gfp
confers resistance to tetracycline and has a very broad host range (29). Plasmid-
encoded resistance is mediated through the tetracycline efflux pump TetA with-
out degradation and hence loss of activity of tetracycline. Therefore, no group
protection is afforded to tetracycline-susceptible strains by resistant neighbors.
Plasmid pKJK5 was introduced individually to each of the five species through
conjugation in biparental matings with donor strain Escherichia coli MG1655::la-
cIq-pLpp-mCherry-KmR. Each strain was grown in 5 mL of unshaken lysogeny
broth (LB) in a 1:1 ratio with the E. coli donor strain for 24 h at 28 °C and plated
on solid minimal medium supplemented with 10 mM sodium citrate and 10
μg/mL tetracycline. Citrate as the sole carbon source counterselects against
growth of the E. coli donor strain, while tetracycline selects for those recipient

bacteria carrying the resistance plasmid. Successful conjugation was detected via
expression of plasmid-encoded green fluorescent protein (GFP) via fluorescence
stereomicroscopy. Individual green colonies were transferred to 5 mL of LB sup-
plemented with 10 μg/mL tetracycline, grown for 24 h at 28 °C, and cryogeni-
cally frozen at�80° in 25% glycerol solution. All isolates and constructed strains
used in this study can be found in SI Appendix, Table S1.

Culture Conditions. Bacterial communities were cultured under four growth
conditions to determine the effect of the plasmid on bacterial diversity in the pres-
ence/absence of tetracycline. Communities were separated into four treatment
groups: antibiotic (community plus tetracycline; n = 6), parasite (community plus
plasmid in three different donor species; n = 18), mutualist (community plus
plasmid supplied through one donor species and tetracycline; n = 17), and con-
trol (community without tetracycline or plasmid; n = 6). Communities were set
up with equal densities of each of the five species in 25-mL glass microcosms
containing 10 mL of 1/64th tryptic soy broth (TSB) incubated at 28 °C at 150
rpm. To the antibiotic and mutualist treatments, a final concentration of 0.2 μg/
mL tetracycline was added. For plasmid and mutualist treatments, plasmid pKJK5
was introduced to the community by replacing one of the five original strains
with its plasmid-hosting counterpart Ochrobactrum sp. (n = 6), Pseudomonas sp.
(n = 6), or Variovorax sp. (n = 6). Every 7 d, 100 μL of culture was transferred
into a fresh microcosm for a total of 5 wk. The experiment was limited to four
transfers (∼50 generations) to minimize evolutionary change. After weeks 1, 3,
and 5, the communities were plated onto KB agar for 48 h at 28 °C, and individ-
ual colonies were identified and counted.

Identifying Transconjugants. To build interaction networks for weeks 1 and
5, plasmid hosts were identified via green fluorescence. Colonies of both Pseu-
domonas sp. and Ochrobactrum sp. change visibly with the introduction of the
plasmid. Host colonies were detected for these two species by excitation of agar
plates with royal blue light at 440- to 460-nm wavelength viewed through a
500-nm filter from the NIGHTSEA stereo microscope fluorescence adapter kit
(NIGHTSEA, LLC). Host colonies were not detectable using this method for the
remaining three species. Instead, for each species within each replicate, 12 colo-
nies (or as many as were available if less than 12) were picked and transferred
to individual wells containing 50 μL of full-strength TSB supplemented with 0.2
μg/mL tetracycline in a 96-well plate. After 24 h of growth at 28 °C, green fluo-
rescence was determined using a Synergy 2 microplate reader (Biotek; excitation
filter = 485 to 520 nm and emission filter = 528 to 620 nm). Thus, the ratio of
plasmid host colonies detected to all colonies tested was used to calculate edge
weights in our network analysis.

Network Analysis. To understand how interaction type (mutualistic or para-
sitic) between plasmids and their hosts affect host–symbiont associations over
time, we plotted networks based on mean numbers and mean infection rates
for each plasmid treatment in weeks 1 and 5 of the experiment (SI Appendix,
Fig. S4). Host abundance data were used from colony counts, while infection
rate was estimated via green fluorescence. For plotting the networks, we used
the “plotweb” function from the package “bipartite” (38) in R (39). To test how
treatment impacts the generality of the plasmid, we estimated connectance (as
the number of realized links divided by the number of all possible links) and the
generality of the plasmid per replicate in week 5. For generality, we used
G = 2H, with H being the Shannon diversity of interactions for the plasmid

H ¼ �∑n
i¼1pi ln pi,

where n is the number of links, and pi is the total number of plasmid-hosting
bacteria in the community divided by the number from species i (from the pool
of species with at least a single detected plasmid). We then used connectance
and plasmid generality as response variables to test for the impact of interaction
type (presence of tetracycline) and plasmid donor species over time (weeks 1
and 5) by including the interaction between all three terms in the model. The
network metrics were analyzed with linear mixed effects models based by includ-
ing replicate ID as a random factor provided by the nlme package (40) and
included an autocorrelation term to account for the nonindependence of
repeated measures.

Coevolution. A microcosm from the mutualistic treatment of the main experi-
ment with Ochrobactrum sp. as the donor and one from the parasitic treatment
with Pseudomonas sp. as the donor were identified as the replicates that
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underwent the greatest change in connectance (positive and negative, respec-
tively) between weeks 1 and 5. From each of these replicates and from the
respective ancestral stock, six plasmid-hosting colonies of the donor species were
isolated. The isolated colonies were then inoculated into communities and cul-
tured for 1 wk under identical conditions as the parasitic treatment from the
main experiment. The resulting microcosms were plated on both plain KB agar
and selective KB + tetracycline agar plates. The presence of the plasmid in the
donor species was identified by excitation of agar plates with royal blue light at
440- to 460-nm wavelength viewed through a 500-nm filter from the NIGHTSEA
stereo microscope fluorescence adapter kit (NIGHTSEA, LLC), whereas transconju-
gants from other species were identified by comparing colony counts between
selective and nonselective plates. A quasibinomial GLM was used to compare
the rate of plasmid loss (i.e., the proportion of infected hosts after 1 wk) between
ancestral and evolved Pseudomonas sp. Separate Poisson family GLMs were
used to contrast the number of network links (species in which the plasmid was
detected) between ancestral and evolved for each donor.

Conjugation Assay. To determine whether the concentration of tetracycline
used in our experiment caused an increase in conjugation rates, we performed
filter mating assays with and without tetracycline. This assay makes use of the
GFP tag on pKJK5::GFP, which is suppressed in the plasmid donor E. coli
MG1655. Potential plasmid recipients (the five species from the main experi-
ment) are forced onto a two-dimensional surface surrounded by plasmid donors,
ensuring that any green microcolonies that emerge are due to unique conjuga-
tion events. All ancestral strains were cultured for 48 h in 20 mL of full-strength
TSB at 28 °C.

E. coli MG1655 + pKJK5 was grown under similar conditions with the
addition of 1 μg/mL tetracycline to select against plasmid loss. All cultures
were centrifuged for 30 min and resuspended in 50 mL of M9. Community
strains were mixed and diluted 10-fold. The resulting community mixture
was then mixed in equal volume with the E. coli suspension. Filter mating
proceeded as described in ref. 41. Briefly, 2 mL of the mixed suspension
was pumped through Cytiva Whatman Cyclopore polycarbonate black mem-
brane filters. The filters were transferred to solid agar plates with 1/64th TSB
as nutrient, six of which were supplemented with 0.2 μg/mL tetracycline.
The inoculated plates were incubated at 28 °C for 3 h. Six images were
taken of each filter at 10× magnification and 38.3-ms exposure with 400/
20 excitation 508/20 emission filters.

Image manipulations and statistical analysis were performed in the Julia pro-
gramming environment (35). Following background removal using Images.jl,
microcolonies were counted via the fast scanning image segmentation algorithm
implemented in ImageSegmentation.jl (42). The number of colonies detected
per frame of view was compared using a hierarchical Poisson model as follows:

yijk ∼ Poisson θij
� �

θij ∼ Normalðαþ βxi, σiÞ
α ∼ Normalð500, 500Þ
β ∼ Normalð0, 500Þ

σi ∼ Exponentialð100Þ,
where x is an indicator variable denoting the presence of tetracycline, and yi,k is
the green microcolony count in the kth image of the jth membrane filter in treat-
ment i. The model was implemented in Turing.jl (43) using the No U-Turns
(NUTS) algorithm with four chains of 1,000 iterations each (R\ < 1.01 for all
parameters).

Growth Rates. To determine the impact of the plasmid on each of the five spe-
cies with and without antibiotics present, we estimated growth rate parameters
for each species in monoculture. Approximately equal densities of each species
were inoculated into 200 μL of 1/64th TSB with or without 0.2 μg/mL tetracy-
cline in a 96-well plate. Cultures were grown for 48 h with optical density at 600
nm readings taken every 15 min. From the resulting data, we estimated r and k
parameters of the logistic growth equation (44) xðtÞ ¼ kix0

x0þðki�x0Þe�ri tj
. We used

only the intrinsic growth rate r as a measure of fitness, since k (and by extension
Vmax) depends heavily on the response to optical density to cell density, which is
affected by the plasmid. Our measurements are to be used as a proxy for individ-
ual fitness, whereas k relates more to the fitness of the population

yij ∼ Normal xij,σ
� �

xij ¼ kix0
x0 þ ðki � x0Þe�ri tj

x0 ∼ Half-laplaceð0, 0:01Þ
ri ∼ Half-normalðR,σrÞ
ki ∼ Half-normalðK,σkÞ
σ ∼ Exponentialð1Þ
σk ∼ Exponentialð1Þ
σr ∼ Exponentialð1Þ
R ∼ Half-normalð0, 1Þ
K ∼ Half-normalð0, 1Þ,

where yij is the jth optical density reading from the ith replicate, and tj is the jth
time point. Separate models (each four chains of 2,000 iterations of the NUTS algo-
rithm) were fit for each species/media/plasmid presence combination. To determine
the effect of the plasmid for each species with and without tetracycline, we sub-
tracted the R value from each posterior sample of growth with the plasmid from the
corresponding sample without the plasmid. Overall, there is a clear benefit to plas-
mid carriage when tetracycline is present and cost when it is not. However, the costs
are likely to be small compared to the benefits, and there is significant variation
between the different species’ responses to the plasmid. In particular, Variovorax sp.
derives little or no benefit from the plasmid, as it has good intrinsic tetracycline
resistance. By contrast, Ochrobactrum sp., Pseudomonas sp., and Stenotrophomonas
sp. receive a very large benefit due to their tetracycline susceptibility.

Relative Abundance. Relative abundance for each of the five bacterial species
across all eight treatments was analyzed using generalized linear mixed models
assuming a binomial error distribution and using the logit link function. As a
response variable, we included a bivariate variable containing “abundance of spe-
cies i” and “sum of abundance of other species” for each species. We further
included treatment with eight levels as fixed factor and week and week squared as
covariates. The quadratic term was added when improving the model fit and sup-
ported by small sample corrected Akaike information criterion (AICc) model selec-
tion (which was not the case for Achromobacter sp.). We further included an
observation-level random factor to account for overdispersion in the data. The inclu-
sion of replicate as random factor was not supported by AICc model selection. Tem-
poral autocorrelation was negligible in this model (all partial autocorrelations
below 0.2) and therefore were not included in the model. We used the function
glmer from the R package lme4 (45) to fit this model.

Plasmid donor fitness was tested as relative abundance in the community over
time. For each donor species, we ran a similar model as above but by including
the factor donor with three levels (none, other, and focal) and the interaction with
tetracycline (presence/absence) and week. As above, we included an observation-
level random factor to account for overdispersion in the data. We also included a
random slope for the week effect per replicate. The inclusion of replicate-specific
slopes was supported by AICc (delta = 9.54). To obtain 95% credible intervals for
the model predictions, we used Bayesian methods provided by the function sim
from the R package arm (46) to draw a random sample of 1,000 values from the
joint posterior distribution of the model parameters. From these 1,000 sets of
model parameters, predicted values were calculated, and their 2.5% and 97.5%
quantiles were used as lower and upper limits of the 95% credible intervals.

Total Abundance and Network Metrics. We analyzed the impact of total cell
density on both connectance and generality separately for week 1 and week 5, as
it is not obvious that the effect (if any) should be the same in the short term as the
long term. We used a hierarchical model structure to determine the effect of cell
density within treatments (antibiotic presence X donor) to remove the confounds
of donor identity and antibiotics. We used the following models for generality:

Gij ∼ Normalðyij, εÞ
yij ¼ αi þ βi xij
αi ∼ Normalð0, 4Þ
βi ∼ Normalðμ, σÞ
μ ∼ Normalð0, 1Þ
ε ∼ Exponentialð1Þ
σ ∼ Exponentialð1Þ,
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where Gij and xij are the network generality and the colony count of the jth repli-
cate of the ith treatment. We used the following model for connectance:

Cij ∼ Binomialð5,pijÞ
pij ¼ logisticðαi þ βi xijÞ

αi ∼ Normalð0, 4Þ
βi ∼ Normalðμ,σÞ
μ ∼ Normalð0, 1Þ
σ ∼ Exponentialð1Þ,

where Cij and xij are the connectance and the colony count of the jth replicate of
the ith treatment. In each case, μ, the hyper-prior over the regression coeffi-
cients, is the parameter used to estimate the size and direction of the impact of
cell density. In each case, we sampled the posterior using the NUTS algorithm,
four chains of 5,000 iterations each.

Data Availability. Data have been deposited in Zenodo at https://zenodo.org/
record/5342448 and all code is available at GitHub (https://github.com/EvoArt/

PlasmidNetworks). All other data are included in the manuscript and/or
SI Appendix.
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