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Abstract

Background—Acute kidney injury (AKI) is common in pediatric inpatients and associated with 

increased morbidity, mortality, and length of stay. Early identification can reduce severity.

Methods—To create and validate an electronic health record (EHR)-based AKI screening tool, 

we generated temporally distinct development and validation cohorts using retrospective data from 

our tertiary care children’s hospital, including children 28 days through 21 years old with 

sufficient serum creatinine measurements to determine AKI status. AKI was defined as 1.5-fold or 

0.3 mg/dL increase in serum creatinine. Age, medication exposures, platelet count, red blood cell 

distribution width, serum phosphorus, serum transaminases, hypotension (ICU only), and pH (ICU 

only) were included in AKI risk prediction models.

Results—For ICU patients, 791/1332 (59%) of the development cohort and 470/866 (54%) of 

the validation cohort had AKI. In external validation, the ICU prediction model had C-

statistic=0.74 (95% confidence interval 0.71–0.77). For non-ICU patients, 722/2337 (31%) and 

469/1474 (32%) had AKI, and the prediction model had C-statistic=0.69 (0.66–0.72).
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Conclusions—AKI screening can be performed using EHR data. The AKI screening tool can be 

incorporated into EHR systems to identify high risk patients without serum creatinine data, 

enabling targeted laboratory testing, early AKI identification, and modification of care.

Introduction

Acute kidney injury (AKI) occurs in approximately 25% of children admitted to intensive 

care units (ICUs) and 5% of those admitted to non-ICU pediatric wards, although 

application of different diagnostic criteria results in broad incidence estimates.(1–10) 

Among pediatric ICU patients, AKI is associated with increased length of stay and 

demonstrates odds ratios >3 for mortality.(1,2,8,9,11,12) Seminal efforts to identify children 

with AKI through screening of at-risk populations have reduced AKI severity, likely due to 

early identification and modification of AKI risk factors.(13,14) Recently, the Acute 

Dialysis Quality Initiative Consensus Conference identified AKI as a target for risk 

prediction and recommended development of AKI alert systems that will “continuously and 

automatically monitor and assess a patient’s risk for developing AKI.”(15,16)

The primary goal of this study was to develop and validate AKI risk prediction models in 

pediatric ICU and non-ICU patients that use data from electronic health records (EHR) to 

identify patients in whom laboratory testing, namely measurement of serum creatinine to 

assess renal function, is indicated. Prediction models that can be calculated in real time in 

the EHR and do not rely upon prior serum creatinine values will enable AKI risk prediction 

across a broad pediatric population, including those not in well-described high risk 

populations and for whom no serum creatinine data are available.

Methods

Population and EHR Data Extraction

This study was reviewed and approved by the Vanderbilt institutional review board who 

granted a waiver of the informed consent process. Inclusion criteria for the development 

cohort were age 28 days through 21 years, measurement of baseline and an additional 

inpatient serum creatinine as defined below, and admission between 1/1/2011 and 

12/31/2012. Exclusion criteria were Neonatal ICU admission (based on location codes) and 

chronic kidney disease (CKD, based on ICD-9 and CPT codes, Supplemental Table S1 

(online)), both of which can be applied prospectively in EHR systems.(17) In addition, those 

not meeting the AKI definition but with persistent serum creatinine measurements above the 

normal range for age and sex were excluded, as it is unclear whether they represent AKI 

without a measured baseline or no-AKI controls. Admissions were assigned to the ICU 

cohort if the patient received ICU care at any time during the hospitalization; thus, a patient 

cared for in the ICU who subsequently was transferred to the floor was included in the ICU 

cohort for both the development and validation cohorts. Validation cohorts used admissions 

from 1/1/2013 to 12/31/2013 with identical inclusion and exclusion criteria. All study data, 

including demographic, laboratory, medication administration, and administrative data, were 

extracted from EHR data sources using Vanderbilt’s research data warehouse and managed 

using REDCap (Research Electronic Data Capture).(18,19) Medications were categorized as 

high risk nephrotoxins if they are highly associated with renal injury (e.g. aminoglycosides, 
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tacrolimus), moderate risk nephrotoxins if they are associated with renal injury in some 

circumstances, (e.g. loop diuretics, enalapril), or non-nephrotoxins (Supplemental Table S2 

(online)). For each individual, the number of unique medications in each category was 

tallied, and three medication-related continuous variables were analyzed (high risk 

nephrotoxins, moderate risk nephrotoxins, and total medications). Peri-admission data 

included all data available from the 24 hours before the inpatient admission order through 48 

hours after admission. For model development, covariate data were ascertained from the 72 

hours before the serum creatinine measurement that defined AKI status. Further details are 

available in the Supplemental Materials (online).

Outcome Definition

Although serum creatinine is not a covariate in the risk prediction models, the AKI outcome 

is defined by change in creatinine (Supplemental Figure S1 (online)). Baseline creatinine 

was defined as the lowest measurement obtained 90 days before through the first week of 

admission. Inpatient creatinine was defined as any obtained in the 24 hours prior to the 

admission order through discharge. AKI was defined solely using the creatinine criteria, as 

reliable urine output data were not available for all pediatric inpatients,(15) and accurate 

height measurements were not consistently available for estimated glomerular filtration rate. 

Patients were classified as having AKI using the Kidney Disease Improving Global 

Outcomes (KDIGO) serum creatinine criteria if any inpatient creatinine measurement was 

≥0.3 mg/dL above the baseline or ≥1.5-fold more than the baseline, without the restriction 

that the increase in serum creatinine occur within 48 hours or 7 days, respectively, as defined 

in the guidelines.(7) Those not meeting these criteria were classified as no-AKI controls.

Covariate Selection and Statistical Analysis

Predictor variables were selected from candidate variables to balance the following goals: 1) 

Real-time availability; 2) Correlation to AKI; 3) Limited collinearity; 4) Either low 

missingness or ability to transform to a categorical variable. For ICU patients, predictor 

variables were age at admission, high risk nephrotoxins, moderate risk nephrotoxins, total 

medications, minimum platelet count, median red cell distribution width (RDW), 

phosphorus, serum transaminases, minimum pH, and hypotension. The same predictors were 

used for non-ICU patients, excluding pH and hypotension. Further details on the candidate 

and final variables are available in the Supplemental Materials (online).

The ICU and non-ICU cohorts were analyzed in parallel, generating two distinct AKI 

prediction models. Descriptive statistics were presented as median [interquartile range 

(IQR)] or frequency (%). Continuous variables were compared using Wilcoxon rank-sum 

test and categorical variables using Pearson chi-square test. We analyzed the association 

between AKI and the a priori selected covariates using multivariable logistic regression for 

ICU and non-ICU admissions. We internally validated and calibrated the models using 

bootstrapping.(20) External validation of each model was performed by evaluating model 

performance in the temporally distinct validation cohorts. All analyses were performed with 

R, version 2.14.1 (R Development Core Team, Vienna, Austria). The level of statistical 

significance was set at p <0.05. Further details are available in the Supplemental Methods 

(online).
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Results

Model Development and Internal Validation for ICU Patients

The ICU development cohort included 1332 admissions (Figure 1 a) of patients with care in 

the ICU during any portion of the hospitalization and creatinine measurements available for 

outcome determination. Median age was 4.4 (IQR 0.9–12.0) years, and the majority of 

patients were male (N=724, 54%) and White (N=1025, 77%, Table 1). In this critically ill 

cohort, 791 (59%, Figure 1 a) met criteria for AKI, defined as a serum creatinine increase of 

≥0.3 mg/dL or an increase of ≥1.5-fold from baseline.(7) Of the 791 patients with AKI, 351 

(44%) had Stage 1, 299 (38%) Stage 2, and 141 (18%) Stage 3. The evaluated serum 

creatinine was obtained 0.3 (IQR 0.0–0.9) days after admission order for AKI cases and 0.9 

(0.4–1.5) days in no-AKI controls (p<0.001). In the 72 hours prior to the evaluated 

creatinine, those with AKI had lower minimum platelet counts, higher median RDW, lower 

minimum pH, and younger ages (Table 2). Those with AKI also had fewer total medication 

exposures and fewer high risk nephrotoxic medication exposures, but more moderate risk 

nephrotoxins during that time.

The odds ratios and 95% confidence intervals for the selected predictors for AKI are shown 

in Figure 2 a. Figure 3 a shows the calibration plot from the development cohort, which 

demonstrates minimal overfitting and good calibration. Additional details including variable 

selection, the prediction rule as a linear predictor, and model performance and 

discrimination metrics from internal validation are in the Supplemental Results, Tables S3–

S5, Figure S2, and Supplemental File 1 (online).

Model External Validation for ICU Patients

The ICU external validation cohort included 866 patient admissions during the subsequent 

year, and 470 (54%) met criteria for AKI (Figure 1 b). This cohort was similar at admission 

to the development cohort with respect to demographics and AKI risk factors (Table 1). For 

external validation, the predictive rule derived from the development cohort was applied to 

the validation cohort to calculate predicted probabilities, which were then validated against 

true patient outcomes by fitting a logistic model. The calibration plot for the external 

validation data (Figure 3 b) indicated good model fit.

The frequency distributions of model calculated AKI risk among ICU admissions with and 

without AKI in the validation cohort are shown in Figure 4 a as an indication of model 

discrimination. Note the overlapping distributions, with those in the ICU who developed 

AKI with a tendency toward higher predicted probability scores. The receiver operating 

characteristic (ROC) curve for the ICU model in the validation cohort is shown in Figure 4 

b; the C-statistic, which measures the area under the ROC curve, was 0.74 (95% confidence 

interval 0.71–0.77). The model performance varied by severity of AKI, with a C-Statistic of 

0.72 (0.68–0.76) for stage 1 AKI, and increased to 0.76 (0.72–0.8) for stage 2 or 3 AKI. 

Additional details of the external validation are included in the Supplemental Results and 

Tables S5–S6 (online).
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Model Development and Internal Validation for Non-ICU Population

The non-ICU development cohort included 2337 admissions with creatinine measurements 

available for outcome determination, of which 722 (31%) met AKI criteria (Figure 1). Of the 

722 with AKI, 443 (61%) had Stage 1, 199 (28%) Stage 2, and 80 (11%) Stage 3. Median 

age was 8.9 (IQR 2.6–14.8) years, and the majority of patients were male (N=1264, 54%) 

and White (N=1804, 77%, Table 1). The evaluated serum creatinine was obtained 0.0 (IQR 

−0.1–0.3) days after admission order for AKI cases and 0.6 (0.1–1.6) days in no-AKI 

controls (p<0.001). Similar to the ICU cohort, non-ICU patients with AKI were younger, 

had lower minimum platelet counts, and higher median RDW than those who did not 

develop AKI. Non-ICU patients with AKI had fewer total, high risk, and moderate risk 

nephrotoxic medications in the 72 hours preceding their evaluated creatinine measurements 

as compared to no-AKI controls (Table 2).

The odds ratios and 95% confidence intervals for the selected AKI predictors are shown in 

Figure 2 b. The internal calibration plot is shown in Figure 3 c, which demonstrated minimal 

overfitting and good calibration. Additional results from the internal validation are presented 

in Supplemental Results, Tables S3–S5, Figure S2, and Supplemental File 1 (online).

Model External Validation for Non-ICU Population

The non-ICU validation cohort included 1474 admissions during the subsequent year of 

which 469 (32%) met criteria for AKI (Figure 1 b). This cohort was similar at admission to 

the development cohort (Table 1). The calibration plot for the external validation data 

(Figure 3 d) again indicated good model fit. The frequency distributions of model calculated 

AKI risk among those with and without AKI in the non-ICU validation cohort is shown in 

Figure 4 c. The ROC for the non-ICU model in the validation cohort is shown in Figure 4 d; 

the C-statistic was 0.69 (95% confidence interval 0.66–0.72). Again, the model performance 

varied by disease severity, with a C-statistic for patients in the validation cohort for those 

with Stage 1 AKI of 0.66 (0.63–0.7), and 0.74 (0.7–0.77) for those with more severe Stage 2 

or 3 AKI. Additional results from external validation are included in the Supplemental 

Results and Tables S5–S6 (online).

Discussion

We present the development of accurate and reliable risk prediction models that can be used 

to screen for pediatric AKI in ICU and non-ICU patients based on variables readily available 

in the EHR. These models will be incorporated into the EHR as part of a randomized trial 

testing targeted AKI surveillance, a strategy that has been demonstrated to reduce AKI 

severity in other settings.(13,14) Given the frequency of AKI in children and the associated 

increases in length of stay, morbidity, and mortality, this work has the potential to save 

health care dollars and improve clinical outcomes for children. Furthermore, this approach 

demonstrates a strategy for utilizing EHR data to generate clinically-implementable risk 

prediction rules which can be employed for alternative clinical outcomes.

The goal of this study was to build predictive models for pediatric AKI. Model covariates 

are only required to be informative in the model, and are not required to independently 
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predict AKI or have a role in the pathogenesis of the outcome. Each covariate in the model 

was selected from an a priori set of candidate covariates, and for many the association and 

odds ratios were as expected. Lower platelet count, lower pH, RDW, and hypotension are 

known risk factors for AKI.(1,4,6,21,22) One prior study found that younger patients 

experienced more AKI,(6) while other studies have indicated higher risk in older patients;

(1,4) associations of young age to AKI are potentially confounded by the low baseline 

creatinine in the youngest pediatric patients, leading to AKI diagnosis via 1.5-fold creatinine 

increase without clinically meaningful reduction in renal function. Other results were 

unexpected, such as the stronger association of moderate risk nephrotoxins than high risk 

nephrotoxins to AKI, which may be due to clinicians avoiding known nephrotoxic 

medications in children with suspected renal insufficiency. Fewer high risk nephrotoxins and 

total medications may result from the very early presentation of many cases of AKI (e.g. on 

admission) prior to medication administration and the earlier measurement of creatinine in 

AKI cases vs. no-AKI controls; however, ICU patients with AKI had increased rate of 

exposure to moderate risk nephrotoxins, indicating that we are capturing medication 

exposures. We also found that for the categorical variables (phosphorus and transaminases), 

unchecked or missing values were associated with an increased risk of AKI vs. normal/low 

values. This indicates that AKI was overrepresented in patients where these laboratory 

measurements were not performed as part of clinical care, relative to those with measured 

values within normal limits. This may indicate that patients with normal values are at lower 

risk for AKI due to more benign presentation of disease. Patients in whom these laboratory 

measurements are not routinely performed may be a group with relatively high incidence of 

AKI. However, these statistical correlations do not imply causation, and our study was not 

designed to identify independent risk factors or etiologies for pediatric AKI. Importantly, 

changes in clinical practice (e.g. a sharp increase in testing of transaminases or phosphorus) 

would require recalibration of the model, as calculated (but not true) AKI risk would be 

affected. A demonstration calculator incorporating model covariates is available 

(Supplemental File 2 (online)) and can be used to show the relative impact of changes in 

each predictor.

While the AKI outcome is defined by change in creatinine, we intentionally designed these 

risk prediction models for AKI to perform well prior to ascertainment of creatinine and 

associated results such as blood urea nitrogen (BUN), potassium, and calcium. Notably, a 

risk prediction model for early AKI in a pediatric ICU including BUN, pH, platelet count, 

total bilirubin, age, post-operative status, and pre-admission cardiac arrest had a C-statistic 

of 0.76–0.86 in validation sets, similar to performance of our models.(21) At our institution, 

pre-admission cardiac arrest and post-operative status are not available for incorporation into 

real-time prediction in our EHR, so these were not included. Furthermore, we developed a 

parallel predictive model for non-critically ill patients, an important advancement as these 

patients have less frequent laboratory monitoring and less rigorous assessment of urine 

output making early clinical detection of AKI more difficult.

Given the goal of early AKI detection, Stage 1 AKI criteria was used, defined using the 

KDIGO creatinine criteria, the current clinical standard.(23) The KDIGO criteria also 

include time windows for the increase in creatinine (i.e., increase by 0.3 mg/dL or more 

within 48 hours or 1.5-fold increase in 7 days), which were not enforced in our cohort, as 
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this restriction could introduce significant bias as only those with suspected renal injury 

would have frequent monitoring. In all, 187 of the 939 patients with AKI in the validation 

cohort had an increase of 0.3 mg/dL within 48 hours, and 617 had 1.5-fold increase of 

creatinine within 7 days of the baseline, indicating that a majority of the cohort satisfied 

these criteria; however, the inclusion of patients who did not meet the time window 

requirements may impact the validity of our models in detecting AKI meeting formal 

KDIGO criteria.

Our development cohorts included data from the most recent admission for every patient 

hospitalized over a two-year period in our tertiary referral children’s hospital pediatric ICU 

and non-ICU with baseline and an additional inpatient creatinine measurement. Since 

creatinine is measured as part of a panel obtained for a wide variety of reasons and not only 

due to suspicion of AKI, this cohort remains adequate to represent the patient population as 

a whole. However, patients with no creatinine measurements likely have systematically 

lower AKI risk, resulting in over-estimation of AKI risk. Given our goal of using the EHR-

based models as a screening tool to identify those at-risk for follow up testing via serum 

creatinine measurement, risk over-estimation is preferred. However, the generalizability of 

our model cannot be proven without serial prospective assessment of serum creatinine in a 

representative cohort of pediatric patients.

The next step in translating this work is clinical implementation of the model to determine 

the impact of real-time AKI risk prediction. Previous prediction strategies have 

demonstrated benefits of early AKI detection. EHR-based screening for nephrotoxic 

medication exposures in pediatric inpatients at a tertiary pediatric hospital resulted in a 42% 

reduction in AKI intensity.(13) In further work targeting cystic fibrosis patients exposed to 

aminoglycosides, daily serum creatinine measurement was associated with shorter 

aminoglycoside courses, fewer concomitant aminoglycosides, and earlier detection of AKI.

(14) In a randomized trial in adults, text paging providers and pharmacists if their patient 

met AKI criteria failed to demonstrate efficacy in improving the clinical outcomes of 

maximum change in serum creatinine, dialysis use, or mortality.(24) These limited data 

indicate that early detection of AKI through targeted screening, not just clinician notification 

of AKI status, may be required to improve patient outcomes. Our risk prediction model can 

enable such early detection across all admitted pediatric patients, including those who are 

not exposed to nephrotoxic drugs or do not belong to a specific high-risk subset of patients. 

Given the early diagnosis of AKI in our cohort (often on admission), the risk prediction 

models may be most useful in identifying at-risk patients very early in their hospital course, 

providing the opportunity for early detection and intervention.

Our development of risk prediction models for incorporation into EHRs has several 

limitations. In building predictive models, covariates are not required to be independent or 

causative, so any associations with the outcome do not inform mechanistic insights into 

pediatric AKI. As discussed above, our defined outcome of AKI is limited to changes in 

creatinine measurement. This restricts our retrospective cohort to those patients with 

sufficient creatinine data available for assigning AKI status. Due to the sparse availability of 

baseline creatinine measurement preceding the inpatient admission for pediatric patients, the 

KDIGO time windows for change in creatinine were not enforced, and the baseline 
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measurement may have been measured after the AKI event (indicating return to normal renal 

function). This strategy was employed to reduce the potential bias from including only those 

individuals with serum creatinine measurement available prior to any injury. Furthermore, 

we did not differentiate between community-acquired and hospital-acquired AKI; indeed, 

many of our AKI cases were detected upon admission, and it is difficult to assess risk factors 

prior to admission. These issues may affect the validity of the models and the ability to 

accurately predict AKI that develops later in the hospital admission. Future work that 

includes more sensitive or specific biomarkers for renal injury, assayed across a broad 

spectrum of patients, may improve the precision and accuracy of AKI risk prediction 

modeling, as will sub-phenotyping the outcome (e.g. AKI on admission vs. early-AKI vs. 

late-AKI). We pre-specified that patients admitted to the ICU during their admission would 

remain in the ICU cohort, but these patients’ AKI risk may be better predicted using the 

floor model after transfer; additional data collection will enable testing of this hypothesis. 

Our external validation was performed using a distinct set of admissions (temporal 

validation), but did not assess model performance in another pediatric institution 

(geographic validation). Implementation in a different population should be preceded by 

validation and calibration in the target population. Finally, performance metrics indicate that 

while our model is stable across internal and external validation, model discrimination is 

modest. Cut points with high sensitivity for AKI have low specificity, especially for the non-

ICU model (e.g., at 30% AKI risk, the non-ICU model is 74% sensitive but only 58% 

specific, Table S6 (online)). To be an effective screening tool for AKI, high sensitivity is 

required, and low specificity is acceptable since a low-risk follow up test is available. In this 

scenario, modest AKI risk prediction can trigger advice to check creatinine, the current 

diagnostic test for AKI.

Conclusions

Through analysis of admissions to this pediatric hospital, we generated and validated 

statistical predictive models for AKI using data routinely collected and available from 

EHRs. These risk prediction models can be incorporated into clinical practice from within 

EHRs as a screening tool to alert providers of increased risk for AKI among children in ICU 

and non-ICU cohorts, especially at the time of admission. Our approach demonstrates use of 

the EHR to promote a learning healthcare system by using EHR data in generating clinically 

implementable risk prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Identification of cases and controls for development and validation cohorts. a) Patient 

encounters including intensive care (ICU patients) and without intensive care (non-ICU 

patients) identified for inclusion in the development cohort. b) Patient encounters including 

intensive care (ICU patients) and without intensive care (non-ICU patients) identified for 

inclusion in the validation cohort. AKI – acute kidney injury; CKD – chronic kidney disease; 

ICU – intensive care unit; SCr – serum creatinine.
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Figure 2. 
Odds Ratios for individual factors included in the acute kidney injury risk prediction for ICU 

(a) and non-ICU (b) patients. Odds ratios depicted are for age (15 vs. 3 years at admission), 

increase in 1 high risk nephrotoxin, increase in 1 moderate risk nephrotoxin, additional 1 

total medication, minimum platelet count (278 vs. 206 × 103/μL), median RDW (13.5% vs. 

13.2%), highest phosphorus (none checked vs. normal and one or more high value vs. all 

normal), transaminases (none checked vs. normal and one or more high value vs. all 

normal), minimum pH (7.3 vs. 7.2, ICU only), and presence vs. absence of hypotension 

(ICU only). Point estimates and 95% confidence intervals for each odds ratio are shown to 

the right of each plot. ICU – Intensive care unit; RDW – red cell distribution width.
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Figure 3. 
Calibration curves for internal and external validation of acute kidney injury (AKI) models, 

with predicted probability based on the AKI model on the X-axis, and actual observed 

probability on the Y-axis. a) Internal calibration curve for intensive care unit (ICU) patients, 

generated via bootstrapping. b) External calibration curve for ICU patients. c) Internal 

calibration curve for non-ICU patients, generated via bootstrapping. d) External calibration 

curve for non-ICU patients.
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Figure 4. 
Discrimination of acute kidney injury (AKI) models in the validation cohort. a) Frequency 

distribution of calculated probabilities of AKI in the ICU validation cohort for those with 

(top panel) and without (bottom panel) AKI. b) Receiver operating characteristic (ROC) 

curve for the ICU validation cohort, with risk prediction model sensitivity on the Y-axis and 

1-specificity on the X-axis. The area under the curve (AUC), or C-statistic, indicating model 

discrimination, is 0.74 (95% confidence interval 0.71–0.77). c) Frequency distribution of 

calculated probabilities of AKI in the non-ICU validation cohort for those with (top panel) 

and without (bottom panel) AKI. d) ROC curve for the non-ICU validation cohort, with risk 

prediction model sensitivity on the Y-axis and 1-specificity on the X-axis. The AUC (C-

statistic) is 0.69 (95% confidence interval 0.66–0.72). ICU – intensive care unit.
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Table 1

Patient demographic and predictive model variables in the 24 hours prior to and 48 hours after admission.

ICU Non-ICU

Development (1332) Validation (866) Development (2337) Validation (1474)

Age (years)a 4.4 (0.9–12.0) 5.2 (0.9–12.5) 8.9 (2.6–14.8) 9.7 (3.0–14.6)

Maleb 724 (54) 495 (57) 1264 (54) 750 (51)

Raceb,c

 White 1025 (77) 667 (77) 1804 (77) 1115 (76)

 Black 205 (15) 130 (15) 391 (17) 249 (17)

 Other/Unknown 102 (8) 69 (8) 142 (6) 110 (7)

Hispanic/Latino Ethnicityb 109 (8) 65 (8) 163 (7) 122 (8)

Number of Inpatient Serum Creatinine 
Measurementsb 4 (2–7) 4 (2–8) 2 (1–3) 2 (1–3)

Baseline Serum Creatinine (mg/dL)a 0.29 (0.21–0.46) 0.35 (0.24–0.49) 0.37 (0.24–0.54) 0.41 (0.28–0.56)

Peak Serum Creatinine (mg/dL)a 0.51 (0.37–0.77) 0.55 (0.42–0.77) 0.50 (0.35–0.70) 0.56 (0.41–0.71)

Median White Blood Cell Count (×103/μL)a 11.0 (7.8–15.2) 10.1 (7.2–14.0) 9.2 (6.1–13.3) 9.3 (5.9–13.1)

Hematocrit (%)a 30 (26–36) 34 (29–39) 33 (29–38) 36 (29–41)

a
Median (interquartile range);

b
Number, (%);

c
Other includes Asian, American Indian/Alaska Native, Native Hawaiian or Other Pacific Islander, and Unknown. ICU – Intensive care unit.
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