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Abstract

Congenital heart disease (CHD) is the leading cause of mortality from birth defects. Exome 

sequencing of a single cohort of 2,871 CHD probands including 2,645 parent-offspring trios 

implicated rare inherited mutations in 1.8%, including a recessive founder mutation in GDF1 
accounting for ~5% of severe CHD in Ashkenazim, recessive genotypes in MYH6 accounting for 

~11% of Shone complex, and dominant FLT4 mutations accounting for 2.3% of Tetralogy of 

Fallot. De novo mutations (DNMs) accounted for 8% of cases, including ~3% of isolated CHD 

patients and ~28% with both neurodevelopmental and extra-cardiac congenital anomalies. Seven 

genes surpassed thresholds for genome-wide significance and 12 genes not previously implicated 

in CHD had > 70% probability of being disease-related; DNMs in ~440 genes are inferred to 

contribute to CHD. There was striking overlap between genes with damaging DNMs in probands 

with CHD and autism.

INTRODUCTION

Congenital heart disease (CHD) affects ~1% of live births and remains the leading cause of 

mortality from birth defects1. After surgical repair, patients remain at risk of cardiac 

arrhythmias, heart failure, neurodevelopmental deficits and other congenital anomalies2, 3. 

While aneuploidies and copy number variations (CNVs) account for ~23% of CHD 

patients4–6, these have yielded few individual causal genes. While genes causing rare 

Mendelian syndromic forms of CHD have been identified, genes underlying the large 

majority of sporadic CHD remain unknown.

To this end, the NHLBI Pediatric Cardiac Genomics Consortium (PCGC) has collected 

>10,000 CHD probands, including >5,000 parent-offspring trios7. Whole exome sequencing 

(WES) of 1,213 trios from this cohort showed that ~10% of cases are attributable to de novo 
mutations (DNMs) in >400 target genes, including dramatic enrichment for damaging 

mutations in genes encoding chromatin modifiers8, 9. Moreover, these studies demonstrated 

a striking shared genetic etiology between CHD and neurodevelopmental disorders 

(NDD)6, 9.

Genetic studies of humans and mice predict a role for inherited variants with large 

effect10, 11. Analysis of rare multigenerational CHD families has identified mutations in 

cardiac transcription factors, signaling molecules and structural components12. Inherited 

heterozygous protein-truncating variants have been implicated in non-syndromic CHD and 

have suggested distinct genetic architectures for syndromic and non-syndormic CHD9, 13. To 

date, the roles of recessive inheritance and novel genes operating via dominant transmission 

have not been systematically studied. Discovery of additional large-effect mutations requires 

large cohorts, comprehensive genomic data and robust statistical methods.

Here, we analyze the impact of rare inherited recessive and dominant variants, and of DNMs 

on CHD via WES of a single large CHD cohort.
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RESULTS

Cohort Characteristics and Sequencing

We studied 2,871 CHD probands comprising 2,645 parent-offspring trios and 226 singletons 

recruited to the PCGC and the Pediatric Heart Network (PHN) programs (Supplementary 

Data Set 1). These include 1,204 previously reported trios9. The ethnicities, gender and 

clinical features of probands are shown in Supplementary Table 2 and Supplementary Tables 

3a–c. Patients with known trisomies and CHD-associated CNVs were prospectively 

excluded from analysis.

Genomic DNAs underwent WES (see Online Methods). In parallel, WES from 1,789 control 

trios comprising parents and unaffected siblings of autism probands was analyzed14. Cases 

and controls showed similar sequencing metrics (Supplementary Table 4). Variants were 

called and annotated as described in methods.

Recessive Genotypes Enriched in CHD

Principal component analysis (PCA) from WES genotypes showed that CHD cases were 

more frequently of non-European ancestry than controls. The inbreeding coefficient of 

probands was higher than controls (Supplementary Figure 1). These differences complicate 

direct comparison recessive genoytpes (RGs) in cases and controls. Accordingly, we 

implemented a binomial test to quantify the enrichment of damaging RGs in genes or gene 

sets in cases, independent of controls. This method compares the observed number of rare 

damaging RGs to the expected frequency, estimated from from the de novo probability, 

adjusting for inbreeding, using the polynomial model (see Online Methods and 

Supplementary Figures 2–6).

We curated a set of 212 human CHD genes (H-CHD genes) from the Online Mendelian 

Inheritance in Man (OMIM) and published data13, and human orthologs of 61 mouse CHD 

genes (M-CHD genes) identified in a recessive screen for CHD (Supplementary Data Set 2 

and Supplementary Note)11. The H-CHD set comprised 104 dominant genes, 85 recessive 

genes, 12 X-linked genes, and 11 genes showing both dominant and recessive transmission. 

Accounting for 20 genes identified in both human and mouse, the combined set comprised 

253 human genes (Supplementary Data Set 2).

We identified rare (minor allele frequency [MAF] < 0.001) likely loss-of-function (LoF; 

frameshift, nonsense, canonical splice site, and start loss), likely damaging missense variants 

(by MetaSVM; D-Mis), and non-frameshift insertion/deletion variants, and identified 

homozygous or compound heterozygous genotypes comprising these alleles. This identified 

467 damaging RGs in CHD cases (Supplementary Data Set 3) and 165 in controls 

(Supplementary Data Set 4).

We used the one-tailed binomial test to determine whether damaging RGs were enriched 

among 96 genes implicated in recessive human CHD (Table 1a). This gene set had 29 

damaging RGs vs. 6.7 expected (enrichment = 4.4, P = 8.0×10−11; Table 1, Supplementary 

Figure 5b, Supplementary Table 5). This set showed zero RGs in controls (Table 1). Adding 

41 recessive mouse genes, there were 34 damaging RGs compared to 11.1 expected 
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(enrichment = 3.1, P = 1.4×10−8; Table 1). Adding 116 dominant CHD genes added 17 

damaging RGs in 9 genes (cumulative total, observed 51 vs. expected 25.2, enrichment = 

2.0, P = 1.8×10−6; Table 1). Similar results were obtained from independently modeling 

homozygous and compound heterozygous genotypes (see Online Methods, Supplementary 

Table 6, and Supplementary Figures 7–8) and further corroborated using a burden test-based 

approach15, 16 that also integrates proband phenotype17 (see Online Methods and 

Supplementary Figure 9). These findings implicate RGs in known CHD genes in 0.9% of 

these CHD cases.

For previously identified recessive genes, the observed and previously reported cardiac 

phenotypes were concordant in 22 of 31 cases, suggesting variable expressivity of RGs. For 

previously identified dominant genes, observed cardiac phenotypes matched those 

previously reported in only 3 of 17 probands. Of these, phenotypes seen with RGs were 

more severe than previously described dominant phenotypes (COL1A1, COL5A2, FBN2, 
MYH6, NSD1, and TSC2), or at the severe end of the described spectrum (CHD7 and 

NOTCH1; Supplementary Table 5).

We examined the contribution of consanguinity to RGs. 161 probands (5.6%) had 

homozygous segments implying parental relationships of 3rd cousins or closer (see 

Supplementary Note). This group included 81 of 84 probands with reported consanguinity. 

Thirteen (8.1%) of these probands had damaging RGs in recessive H-CHD genes (2.4 

expected, 5.4-fold enrichment, P = 1.3×10−6; Supplementary Table 7); all but one genotype 

was homozygous. Among the remaining 2710 probands, RGs were also enriched (3.9-fold, 

16 observed vs. 4.1 expected, P = 5.3×10−6), however RG’s comprised only 0.6% of this 

group (Supplementary Table 7). Among the seven homozygotes in this group, five probands 

had inbreeding coefficients between 0.0015 and 0.0035, implying distant parental 

relatedness, whereas two homozygotes and all nine compound heterozygotes had inbreeding 

coefficients of zero. Thus, cryptic or overt parental consanguinity was a strong driver of 

recessive CHD in this cohort. Importantly, 38% of RGs in recessive CHD genes were 

attributable to a single GDF1 founder mutation (see below). Significant enrichment for RGs 

in known CHD genes persists after removal of GDF1 homozygotes (Supplementary Table 

8).

We observed 44 genes with > 1 damaging RG compared to 26.4 expected (enrichment = 1.7; 

P = 8.9×10−5 by permutation; see Online Methods); synonymous RGs were not significantly 

enriched (167 observed, 156.7 expected, P = 0.15 by permutation). This excess persisted 

after removal of 5 known recessive genes (GDF1, ATIC, DNAH5, DAW1, LRP1; 

enrichment = 1.6; P = 10−3 by permutation). GO ontology of the novel gene set revealed 

enrichment of genes involved in muscle cell development (GO:0055001, enrichment = 29.5, 

FDR = 3.2×10−3), including KEL, MYH6, MYH11, NOTCH1, and RYR1 (Supplementary 

Data Sets 3,5).

Founder Mutation in GDF1 in Ashkenazim

Q-Q plots comparing the observed and expected damaging RGs in each gene using the 

binomial test showed that two genes, GDF1 and MYH6, had more RGs than expected 

(genome-wide threshold, P < 2.6×10−6, Figure 1a; Supplementary Table 9); modeling 
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homozygotes and compound heterozygotes separately yielded similar results 

(Supplementary Table 10). No genes approached genome-wide significance in controls 

(Figure 1b).

GDF1 had 11 damaging RGs in apparently unrelated subjects compared with 0.016 expected 

(enrichment = 692.6, one-tailed binomial P = 3.6×10−28; Supplementary Table 9); all were 

confirmed by Sanger sequencing (Supplementary Figure 10). Ten RGs were homozygous for 

a p.Met364Thr (c.1091T>C) variant, suggesting a founder mutation; the other was 

p.Met364del (c.1090_1092delATG)/p.Cys227* (c.681C>A). Consistent with a founder 

mutation, PCA showed that all p.Met364Thr homozygotes clustered with Ashkenazim 

(Supplementary Figure 11).

Additional evidence supports homozygosity for p.Met364Thr in CHD risk among 

Ashkenazim. p.Met364Thr shows remarkable violation of Hardy Weinberg equilibrium 

among Ashkenazi CHD cases, with 10 homozygotes and only 1 heterozygote among 204 

Ashkenazi cases defined by PCA (P = 5.5×10−38, 1-df chi-square test with Yate’s correction; 

Supplementary Table 11a). In contrast, among 302 Ashkenazi autism parental controls and 

926 additional Ashkenazi adults from an independent cohort without CHD, there were no 

homozygotes and 12 heterozygotes (carrier frequency = 1.0%), providing strong association 

of p.Met364Thr homozygosity with CHD among Ashkenazim (two-sided Fisher’s Exact P = 

2.8×10−9, Supplementary Table S11b). Moreover, this allele was absent among African, 

Asian, and Finnish European populations in ExAC.

Lastly, all homozygotes shared p.Met364Thr on a common haplotype background, 

indicating identity by descent (Figure 2a). The length of the shared haplotype varied widely 

(0.4–5.9 Mb; Figure 2a), indicating remote shared ancestry. The inferred coalescent time for 

the last shared ancestor, using DMLE+2.3 software18, is 50 generations (95% CI: 45 to 63 

generations; Supplementary Figure 12).

Consistent with this RG causing CHD and not merely being in linkage disequilibrium with 

the causal variant, the phenotype of p.Met364Thr homozygotes is shared by previously 

described cases with different recessive GDF1 mutations19. Like prior cases, all GDF1 
p.Met364Thr homozygotes had D- or L-transposition of the great arteries, pulmonary 

stenosis/atresia or both (Figure 2b). GDF1 belongs to the transforming growth factor-beta 

(TGF-β) superfamily. Studies in mouse implicated Gdf1 in establishment of left-right 

asymmetry and neural development20–22. GDF1 functions as a homodimer with two-fold 

inverted symmetry (Figure 2c and Supplementary Figure 13). The interaction surface 

between monomers comprises a hydrophophic α-helix in one monomer and a hydrophobic 

cavity in the other; this interaction occurs reciprocally. Met364 lies in the hydrophobic cavity 

(Figure 2d–e). p.Met364Thr substitutes the polar threonine in the hydrophobic cavity; we 

infer that this variant impairs dimer formation and downstream signaling (Figure 2c), 

consistent with recessive transmission.

Homozygosity for GDF1 p.Met364Thr accounts for ~5% of severe CHD among 

Ashkenazim, including 18% of those with TGA (7 of 38), and 31% with TGA plus PS/PA (5 

of 16). This finding has clinical implications for assessing risk of CHD among Ashkenazim.
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Recessive MYH6 Genotypes in Shone Complex

MYH6 encodes the cardiac alpha myosin heavy chain, which is highly expressed in 

embryonic heart. Dominant MYH6 mutations are implicated in atrial septal defect23 and 

cardiomyopathy24, 25. We identified seven rare damaging RGs in MYH6 versus 0.482 

expected (enrichment = 14.5, P = 7.6×10−7; Supplementary Table 9). These included diverse 

LoF alleles and D-Mis variants, all validated by Sanger sequencing (Table 2, Supplementary 

Table 9, and Supplementary Figure 14). Five probands had left ventricular obstruction, 

including four with Shone complex26, having mitral valve and aortic valve obstruction plus 

aortic arch obstruction (Table 2). Echocardiography revealed abnormal ventricular function 

in 4 of 7 probands, consistent with a previous report of two patients with RGs in MYH6 who 

had decreased ventricular function27. RGs in MYH6 accounted for 11% of the 37 sequenced 

patients with Shone complex (enrichment = 57.45, two-sided Fisher’s exact P = 6.7×10−5).

Recessive Genotypes Enriched in Patients with Laterality Defects

Among the major CHD subgroups (laterality defects, left ventricular obstruction, 

conotruncal defects and others; Supplementary Table 3a), only laterality defects (heterotaxy 

and D-TGA) were significantly enriched for damaging RGs in known CHD genes (21 

damaging RGs in 13 genes vs. 4.8 expected; enrichment = 4.4, P = 8.5×10−9; Supplementary 

Table 12). Significant enrichment persisted after removing GDF1 RGs (enrichment = 3.2, P 

= 1.2×10−4). These RGs occurred in eight genes previously implicated in laterality defects 

(ARMC4, BBS10, DAW1, DNAAF1, DNAH5, DYNC2H1, GDF1, and PKD1L1) and five 

not previously implicated (ATIC, COL1A1, COL5A2, DGCR2, and MYH6).

We also performed GO ontology analysis of all 82 genes with LoF RGs. This identified 

significant terms related to cilia structure/regulation, a predominant mechanism in laterality 

determination (Supplementary Data Set 6). Genes in these GO terms included DNAI2, 
ARMC4, DNAH5, and DNAAF1 (proband phenotypes in Supplementary Data Set 3). 

Although all these genes have been associated with human primary ciliary dyskinesia and 

situs inversus totalis, only DNAH5 has been previously associated with human CHD28.

Heterozygous LoF Mutations in FLT4 in Tetralogy of Fallot

We compared the observed and expected frequency of rare (MAF ≤ 10−5) heterozygous LoF 

variants in 115 known dominant CHD genes in cases and controls using the binomial test 

and found no significant enrichment in either group (Supplementary Data Sets 7–8; 

Supplementary Table 13a,b). Analysis of heterozygous LoF variants in all 212 known human 

CHD genes also showed no enrichment.

To search for novel haploinsufficient CHD genes, we compared the observed and expected 

distribution of rare heterozygous LoFs in each gene (see Online Methods). Q-Q plots 

(Supplementary Figure 15) showed that FLT4, with eight different inherited LoFs, 

significantly departed from expectation (enrichment = 15.5, P = 7.6×10−8, Supplementary 

Table 14). Moreover, there were two de novo FLT4 LoF mutations, yielding a combined p-

value of 9.8×10−10 (p-values combined by Fisher’s method, Figure 3). LoF variants were 

distributed throughout the encoded protein; all were confirmed by Sanger sequencing 

(Supplementary Figure 16).
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FLT4 was highly intolerant to LoF variation in ExAC (pLI = 1) and only one LoF allele was 

identified among 3,578 parental controls. Pedigrees of FLT4 probands revealed four family 

members with CHD; all shared the proband’s FLT4 mutation (Figure 3a). However, only 4 

of 10 FLT4 mutation carriers reported CHD, indicating incomplete penetrance.

Strongly supporting a pathogenic role for the FLT4 LoFs, the phenotype of 9 of 10 probands 

and 3 of 4 affected relatives was tetralogy of Fallot (TOF) (Figure 3a); mutation carriers had 

no extracardiac malformations, growth abnormalities or NDD. Among 426 probands with 

TOF in our cohort, 2.3% had FLT4 LoF mutations (95.2-fold enrichment, P = 1.9×10−12; 

Supplementary Table 15).

FLT4 encodes a VEGF receptor expressed in lymphatics and the vasculature. Interestingly, 

diverse missense mutations that cluster in the kinase domain and impair enzymatic activity 

cause hereditary lymphedema (Figure 3b)29.

De Novo Damaging Mutations Enriched in Isolated CHD Cases

The number of observed DNMs in cases and controls closely fit the Poisson distribution 

(Supplementary Figure 17; Supplementary Data Sets 9–10). Damaging DNMs were 

enriched in cases (1.4-fold, P = 2.4×10−17, Supplementary Table 16) but not controls. We 

inferred that damaging DNMs contribute to ~8.3% of cases. Additionally, we found 89 

damaging DNMs in 46 chromatin modifiers accounting for 2.3% of cases (enrichment = 3.1, 

P = 8.7×10−20; Figure 4a; Supplementary Tables 17–18), including seventeen chromatin 

modifier genes not previously implicated in CHD.

There were 66 genes with two or more damaging DNMs compared to 21 previously8, 9 

(Figure 4b, Supplementary Tables 19–20). Interestingly, 108 damaging DNMs affecting 39 

of 104 known dominant H-CHD genes accounted for 3.7% of cases (enrichment = 9.3, P = 

5.5×10−65; Supplementary Table 21). An orthogonal analytic approach yielded similar 

results (see Supplementary Note and Supplementary Figure 18).

Unlike prior studies8, 9, 13, we found that damaging DNMs were enriched in isolated CHD 

cases (CHD without extracardiac congenital anomaly, clinically diagnosed syndrome or 

neurodevelopmental abnormality, and limited to patients over age 1 at enrollment); these 

mutations contributed to ~3.1% of cases (1.5-fold enrichment, P = 8.5×10−4; Supplementary 

Table 22a). Damaging DNMs in known CHD genes accounted for ~50% (13/26) of the 

excess mutation burden in isolated CHD. DNMs contributed to 6%–8% of probands with 

any extracardiac features (EA alone or NDD alone), and to 28% of cases with both EA and 

NDD (Supplementary Tables 22a–d and 23).

De novo mutations are Enriched in Autism-Associated Genes

We previously showed unexpected overlap of genes harboring damaging DNMs in CHD and 

neurodevelopmental disorders8, 9. We compared the genes harboring damaging DNMs in our 

CHD cohort and in 4,778 probands with autism30, 31, focusing on genes in the upper quartile 

of brain and heart expression. Nineteen such genes had de novo LoF mutations in both 

cohorts (enrichment 5.2, P < 10−6) and 48 had damaging mutations in both (enrichment 2.8, 

P < 10−6; Supplementary Table 24). Notably, among CHD patients with neurodevelopmental 
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phenotyping, 67% (21/31) of those with LoF DNMs in the overlapping gene set had NDD, 

compared to 32.8% in the total cohort with neurodevelopmental phenotyping (OR = 4.3; 

two-sided Fisher’s P = 1.4 ×10−4; Supplementary Table 25). Notably, 14/35 of all genes with 

LoF DNMs in both the CHD and autism cohorts are chromatin modifiers (enrichment = 

14.7, P < 10−6 by permutation; Supplementary Table 25). Most strikingly, 87% of patients 

who had LoF DNMs in chromatin modifiers had NDD at enrollment.

Meta-Analysis of Damaging De Novo and Loss-of-function Heterozygous Variants

We tested each gene for an excess of de novo and rare inherited heterozygous variants. 

Seven genes (CHD7, KMT2D, PTPN11, RBFOX2, FLT4, SMAD6, and NOTCH1) 

surpassed genome wide significance (Table 3) compared to four previously9, 13. Among the 

remaining top 25 genes, KDM5B had strong prior statistical support, ELN, NSD1, NODAL, 
RPL5, and SOS1 have previously been found associated with syndromic CHD; GATA6, 
FRYL, and TBX18 were identified in case reports with a phenotype that included CHD. Our 

findings strengthen the evidence supporting a role for these genes.

SMAD6, an inhibitor of BMP signaling, had 8 inherited and one de novo LoF mutation 

(Meta P = 1.3×10−6; Table 3). Phenotypes included TOF, hypoplastic left heart syndrome, 

coarctation and D-TGA. Only two probands had extracardiac abnormalities. Zero LoFs were 

found among 7,156 parental control alleles, and LoFs were markedly enriched among 

European probands compared to non-Finnish European controls in ExAC (OR = 20.5, two-

sided Fisher’s P = 2.7×10−6). SMAD6 missense variants, but not LoFs, have been previously 

identified in three sporadic cases with bicuspid aortic valve and mitral valve disease32. 

Among parents transmitting SMAD6 LOFs, only one had a CHD diagnosis, BAV. 

Interestingly, SMAD6 LoFs showing incomplete penetrance have also been implicated in 

midline craniosynostosis, with a common variant near BMP2 modifying penetrance33. Our 

findings suggest that SMAD6 LoFs produce variable phenotypes, dependent on additional 

genetic or environmental factors.

DISCUSSION

This study represents the largest genetic investigation of a single CHD cohort, and the first 

comprehensive analysis of recessive and dominant inherited variants in CHD. Our search for 

disease-associated transmitted variants and pathways was enhanced by comparing observed 

and expected numbers of recessive or dominant genotypes independent of control subjects, 

accommodating for variation in inbreeding and ethnic background. While extension of the 

expected frequency of DNMs to standing variation is confounded by the impact of selection 

and drift on allele frequencies over subsequent generations, our analysis demonstrates that 

this approach is robust for estimating the expected frequency of rare inherited variants, 

which are likely to be recently introduced into the population. We anticipate this approach 

will be broadly relevant.

Rare inherited genotypes in known CHD genes, and genome-wide significant new CHD 

candidate genes accounted for 1.8% of CHD in this cohort. The excess of genes with RGs 

suggests that more genes await discovery. A recessive founder mutation in GDF1 accounted 

a large fraction of severe CHD among Ashkenazim. Genotyping this specific variant, which 
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has a minor allele frequency of ~0.5% in Ashkenazim, can immediately be used for 

diagnosis and population-based risk assessment.

Enrichment of damaging RGs was particularly marked in probands with laterality defects. 

This is consistent with epidemiology showing that laterality defects have the highest 

recurrence risk of any CHD10, are more prevalent in populations with high consanguinity34, 

and conversely show no enrichment for damaging DNMs8, 9.

We also found new phenotypes arising from recessive mutations in genes previously 

implicated in CHD caused by monoallelic mutations, including RGs in MYH6 in Shone 

complex, a disease of previously unknown cause. The finding of abnormal ventricular 

function in several of these patients, as well as in other patients with monoallelic MYH6 
mutation, suggests that patients with Shone complex and biallelic MYH6 mutations may be 

at particular risk for ventricular dysfunction, potentially allowing early identification and 

intervention. Other genes without previously described recessive phenotypes included 

CHD7, COL1A1, COL5A2, FBN2, NOTCH1, NSD1, and TSC2, as well as genes 

previously implicated only in mouse CHD (DGCR2, and DAW1, LRP1, and MYH10).

Ten probands had rare LoFs in FLT4 and predominantly had TOF. None had NDD and only 

1 had EA, unlike 25% of all TOF probands in this study. FLT4 LoFs resulted in phenotypes 

distinct from heterozygous missense mutations in the kinase domain that cause defective 

lymphatic development35. Further studies of the expression and role of FLT4 in the 

developing heart will be of interest.

Doubling the size of our sequenced cohort more than doubled the identified CHD risk genes. 

The current data set includes 66 genes with two or more damaging DNMs compared to 21 

previously, and 19 with two or more LoF DNMs compared to five previously9. Highly 

enriched gene sets, in which 72%–85% of genes are expected to confer risk, include 12 

genes (AKAP12, ANK3, CLUH, CTNNB1, KDM5A, KMT2C, MINK1, MYRF, PRRC2B, 
RYR3, U2SURP, and WHSC1) not previously implicated in CHD9, and have increased the 

strength supporting a role for 6 additional genes which as yet do not reach thresholds for 

significance (CAD, FRYL, GANAB, KDM5B, NAA15, and POGZ). DNMs are highly 

enriched in cases with neurodevelopmental abnormalities or extra-cardiac structural 

manifestations, or both. Importantly, we report for the first time a significant contribution of 

DNMs to 3.1% of isolated CHD. From the distribution of genes with multiple damaging 

DNMs, the estimated number of genes in which DNMs contribute to CHD in this cohort is 

443 (95% CI = [154.1, 731.9]; Supplementary Figure 19; see Supplementary Note).

Pathway analysis identifies DNMs, predominantly LoFs, in chromatin modifiers as a major 

contributor to CHD, accounting for 2.3% of probands (Figure 4). Eleven chromatin 

modifiers have two or more damaging DNMs, and we estimate that mutations in at least ~38 

(95% CI = [7, 69]) chromatin modifier genes contribute to CHD using a maximum 

likelihood approach (Supplementary Figure 20). The implication of LoF DNMs in writers, 

erasers and readers of many different specific chromatin marks in CHD underscores the 

dosage sensitivity of these genes, which is supported by their general intolerance to LoF 

mutation. Together these findings suggest that heart development depends on precise control 
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of transcription mediated by changes in chromatin state in response to developmental 

signals36–38.

After removing chromatin modifiers from GO term enrichment analysis (for GO enrichment 

analysis with chromatin modifiers see Supplementary Data Set 11), several terms involved in 

developmental processes show enrichment (Supplementary Data Set 12). Extension of 

pathway analysis to genes with damaging RGs demonstrated enrichment of genes involved 

in cilia formation and function. These genes have long been known to play a critical role in 

establishment of the left-right body axis, and cilia gene mutations frequently contribute to 

heterotaxy. Understanding the mechanisms underlying the effects of these mutations will be 

of great interest in determining mechanisms of normal and abnormal human development.

It is important to link the genetic causes of CHD to patient outcomes. There is striking 

overlap of genes mutated in CHD and autism. In particular, patients in our cohort with LoF 

mutations in chromatin modifiers are at very high risk of NDD (87%). Conversely, virtually 

all patients with LoF mutations in chromatin modifiers who have been ascertained for autism 

studies in the Simons Collection do not have CHD31, indicating variable expressivity of 

CHD. We have noted previously that patients with DNMs in chromatin modifiers have high 

risk of NDD9, suggesting that mutations in these genes may identify CHD patients at high 

risk of autism and intellectual disability who may benefit from early neurodevelopmental 

intervention39.

By combining inherited and de novo variant analysis, we identified a genetic contribution to 

10.1% of CHD. Despite these advances, the pathogenesis of a large fraction of CHD cases 

remains unknown. Potential explanations include contributions from more common variants, 

structural variants that have eluded detection by WES, variants in non-coding regions, 

polygenic inheritance, epistasis and gene-environment interactions6, 33, 40, 41.

A recent study estimated that WES of 10,000 trios will yield 80% saturation for identifying 

genes contributing to syndromic CHD cases13. Our Monte Carlo simulations suggest that 

two or more damaging DNMs have now been identified in ~10.5% of risk loci, and that 

sequencing 10,000 trios will yield 170.1 risk genes, predicting 38% saturation of all CHD 

risk genes, comprising both syndromic and non-syndromic CHD acting via DNMs 

(Supplementary Figure 21). It is clear that loci suggested from human studies can be further 

substantiated at low cost by orthogonal approaches engineering mutations into model 

organisms and cells42. This study indicates that continued sequencing of large, well-

phenotyped cohorts will provide an increasingly complete picture of the genetic 

underpinnings of CHD, allowing new insight into mechanisms governing human 

development, improved prediction of clinical outcome, and the opportunity to mitigate these 

risks.

ONLINE METHODS

Patient Subjects

Pediatric Cardiac Genomics Consortium (PCGC)—CHD subjects were recruited to 

the Congenital Heart Disease Network Study of the Pediatric Cardiac Genomics Consortium 
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(CHD GENES: ClinicalTrials.gov identifier NCT01196182)7. The institutional Review 

Boards of Boston’s Children’s Hospital, Brigham and Women’s Hospital, Great Ormond 

Street Hospital, Children’s Hospital of Los Angeles, Children’s Hospital of Philadelphia, 

Columbia University Medical Center, Icahn School of Medicine at Mount Sinai, Rochester 

School of Medicine and Dentistry, Steven and Alexandra Cohen Children’s Medical Center 

of New York, and Yale School of Medicine approved the protocols. All subjects or their 

parents provided informed consent. Subjects were selected for structural CHD (excluding 

PDA associated with prematurity, and pulmonic stenosis associated with twin-twin 

transfusion). Individuals with either an identified chromosomal aneuploidy or a CNV that is 

known to be associated with CHD were not included. For all subjects, cardiac diagnoses 

were obtained from review of all imaging and operative reports and entered as Fyler codes 

based on the International Paediatric and Congenital Cardiac Codes (http://www.ipccc.net/). 

All patients were evaluated at study entry using a standardized protocol consisting of an 

interview that includes maternal, paternal and birth history and whether the patient has been 

examined by a geneticist. A comprehensive review of the proband’s medical record was 

performed that included height and weight data, along with presence or absence of a broad 

range of reported extracardiac malformations, the availability and results of genetic testing 

and the presence or absence of a clinical genetic diagnosis. For probands under age 1, 

specialty (other than cardiology) services obtained in the course of clinical care were 

documented. For probands over age 1, parents were asked if their child was diagnosed with 

developmental delay and whether educational supports were obtained. Each patient has a 3-

generation pedigree. For the current study, assessment of neurodevelopmental outcome was 

based on parental report when the subject was at least 12 months old and classified as having 

NDD if they answered “Yes” to the presence of at least one of the following conditions: 

developmental delay, learning disability, mental retardation, or autism. A total of 1,027 cases 

could not be evaluated for neurodevelopmental outcome because the age at interview was < 

1 year.

Pediatric Heart Network (PHN)—CHD subjects were chosen from the DNA 

biorepository of the Single Ventricle Reconstruction trial43. Subjects underwent in-person 

neurodevelopment evaluation at 14 months old with the Psychomotor Developmental Index 

(PDI) and Mental Development Index (MDI) of the Bayley Scales of Infant Development-

II44. Subjects were further assessed with the Ages and Stages Questionnaire (ASQ) from 

which the scores at 3 year of age were analyzed. Subjects were classified as having NDD if 

PDI or MDI score < 70 or a risk score in at least one of the five domains of the ASQ at 3 

year of age. DNA from blood or sputum was collected from trios follow-up visits at or after 

3 years.

Controls—Controls included 1,789 previously analyzed families which include one 

offspring with autism, one unaffected sibling, and unaffected parents14. The permission to 

access to the genomic data in the Simons Simplex Collection (SSC) on the National Institute 

of Mental Health Data Repository was obtained. Written informed consent for all 

participants was provided by the Simons Foundation Autism Research Initiative45. Only the 

unaffected sibling and parents were analyzed in this study. Controls were designated as 

unaffected by the SSC14.
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Cardiac Phenotyping—Cardiac phenotypes were divided into 5 major categories 

(Supplementary Table 3a) on the basis of the major cardiac lesion: conotruncal defects 

(CTD, N=872), D-transposition of the great arteries (D-TGA, N=251), heterotaxy (HTX, 

N=272), left ventricular outflow tract obstruction (LVO, N=797), or Other (N=679). CTD 

phenotypes include Tetralogy of Fallot (TOF), double-outlet right ventricle (DORV), truncus 

arteriosus, membranous ventricular septal defects (VSD), and aortic arch abnormalities. 

LVO phenotypes include hypoplastic left heart syndrome (HLHS), coarctation of the aorta 

(CoA), and aortic stenosis/bicuspid aortic valve (AS/BAV). HTX syndromes include situs 

abnormalities such as dextrocardia, left or right isomerism (LAI, RAI) as the major 

malformation, and may include other defects such as L-transposition of the great arteries (L-

TGA), atrioventricular canal defects (AVC), anomalous pulmonary venous drainage 

(TAPVR, PAPVR), and double outlet right ventricle. Isomerism of other organs was not 

considered a separate extra-cardiac malformation for this study. Lesions in the “Other” 

category include pulmonary valve abnormalities, anomalous pulmonary venous drainage, 

atrial septal defects (ASD), atrioventricular canal defects, double inlet left ventricle (DILV), 

and tricuspid valve atresia (TA). Any structural anomaly that was not acquired was called an 

extracardiac malformation.

Exome sequencing—Samples were sequenced at the Yale Center for Genome Analysis 

following the same protocol. Genomic DNA from venous blood or saliva was captured using 

the Nimblegen v.2 exome capture reagent (Roche) or Nimblegen SeqxCap EZ MedExome 

Target Enrichment Kit (Roche) followed by Illumina DNA sequencing as previously 

described8. WES data were processed using two independent analysis pipelines at Yale 

University School of Medicine and Harvard Medical School (HMS). At each site sequence 

reads were independently mapped to the reference genome (hg19) with BWA-MEM (Yale) 

and Novoalign (HMS) and further processed using the GATK Best Practices 

workflows46–48, which include duplication marking, indel realignment, and base quality 

recalibration, as previously described49. Single nucleotide variants and small indels were 

called with GATK HaplotypeCaller and annotated using ANNOVAR50, dbSNP (v138), 1000 

Genomes (August 2015), NHLBI Exome Variant Server (EVS), and ExAC (v3)51. The 

MetaSVM algorithm, annotated using dbNSFP version 2.952, was used to predict 

deleteriousness of missense variants (annotated as “D-Mis”) using software defaults53. 

Variant calls were reconciled between Yale and HMS prior to downstream statistical 

analyses.

Kinship analysis—Relationship between proband and parents was estimated using the 

pairwise identity-by-descent (IBD) calculation in PLINK54. The IBD sharing between the 

proband and parents in all trios is between 45% and 55%.

Principal component analysis—To determine the ethnicity of each sample, we used the 

EIGENSTRAT55 software to analyze tag SNPs in cases, controls, and HapMap subjects as 

described before56. Because all subjects who carried the p.Met364Thr RGs in GDF1 were 

self-reported Ashkenazi Jewish (AJ), we utilized an additional software package, LASER57, 

which can accurately infer worldwide continental ancestry from sequencing data. To validate 

their reported AJ ancestry and to determine the number of AJ in cases and controls, we first 
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downloaded genome-wide SNP array data for 471 AJ Individuals from the Gene Expression 

Omnibus database (accession no. GSE23636)58 and then merged this data with 938 

unrelated individuals from the Human Genome Diversity Project provided with LASER. We 

then clustered our cases and controls with these 1,409 samples whose ancestral information 

was known and determined which individuals in our cohort best cluster with known AJ 

using LASER.

Variant filtering—We filtered RGs for rare (MAF ≤ 10−3 across all samples in 1000 

Genomes, EVS, and ExAC) homozygous and compound heterozygous variants that 

exhibited high quality sequence reads (pass GATK Variant Score Quality Recalibration 

[VSQR], have a minimum 8 total reads total for both proband and parents, and have a 

genotype quality [GQ] ≥ 20). Only LoF variants (nonsense, canonical splice-site, frameshift 

indels, and start loss), D-Mis, and non-frameshift indels were considered potentially 

damaging to the disease. For probands whose parents’ WES data were not available, only 

homozygous variants were analyzed. Synonymous variants were also filtered using the same 

criteria and analyzed separately to determine whether there is an inflation of background 

rate.

DNMs were called by Yale using the TrioDenovo59 program and by HMS as previously 

described49, and filtered using the same criteria, which have been shown to yield a 

specificity of 96.3% as described previously49. These hard filters include: (1) an in-cohort 

MAF ≤ 4×10−4; (2) a minimum 10 total reads total, 5 alternate allele reads, and a minimum 

20% alternate allele ratio in the proband if alternate allele reads ≥ 10 or, if alternate allele 

reads is < 10, a minimum 28% alternate ratio; (3) a minimum depth of 10 reference reads 

and alternate allele ratio < 3.5% in parents; and (4) exonic or canonical splice-site variants.

For the LoF heterozygous variants, we filtered for rarity (MAF ≤ 10−5 across all samples in 

1000 Genomes, EVS, and ExAC) and high-quality heterozygotes (pass GATK VQSR, 

minimum 8 total reads, GQ score ≥ 20, mapping quality [MQ] score ≥ 59, and minimum 

20% alternate allele ratio in the proband if alternate allele reads ≥ 10 or, if alternate allele 

reads is < 10, a minimum 28% alternate ratio). Additionally, variants located in segmental 

duplication regions (as annotated by ANNOVAR50), RGs, and DNMs were excluded. Of 

particular note, all LoF heterozygous variants that met aforementioned criteria in 226 

singletons were also included in the LoF heterozygous burden analysis even though an 

unknown proportion of these filtered variants could be de novo or compound heterozygous 

events. Finally, in silico visualization was performed on: (1) calls in the H-CHD set, (2) calls 

in the LoF-intolerant gene set (pLI ≥ 0.9), (3) variants that appear at least twice, and (4) 

variants in the top 50 significant genes from our burden analysis

Estimation of the expected number of recessive and dominant variants—We 

implemented a polynomial regression model coupled with a one-tailed binomial test to 

quantify the enrichment of damaging RGs in a specific gene or gene set in cases, 

independent of controls. Details about the modeling of the distribution of recessive and 

dominant variant counts are in the Supplementary Note. The expectation of the RG count for 

each gene was calculated using the fitted values from the polynomial model by the formula 

below:
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where ‘i’ denotes the ‘ith’ gene and ‘N’ denotes the total number of RGs. For a given gene 

set, the expected RG count was based on the sum of fitted values for the gene set.

Alternatively, RG can also be modeled separately as compound heterozygotes or 

homozygotes without the need for regression fits. In this method, the expected number of 

compound heterozygotes for each gene is derived from distributing the observed number of 

RGs, N, across all genes according to the ratio of the squared de novo probabilities:

The expected number of homozygotes is derived similarly, but using the linear ratio of de 
novo probabilities:

The total number of expected RG for each gene is the sum of the derived expected 

compound heterozygous and homozygous values.

For rare LoF heterozygous variants, we found that the number of LoF heterozygous variants 

in a gene was inversely correlated with the pLI score obtained from the ExAC database. To 

control for the potential confounding effect due to the pLI score, we stratified genes into 5 

subsets by pLI quantiles: (1) those with a pLI score between 0 and the first quantile (pLI = 

3.1×10−5); (2) those with a pLI score between the first quantile and the second quantile (pLI 

= 2.9×10−2); (3) those with a pLI score between the second quantile and the third quantile 

(pLI = 0.71); (4) those with a pLI score between third quantile and 1; (5) those without a pLI 

score. For each set, the expected number of LoF heterozygous variants for a gene was 

estimated by the following formula:

where ‘j’ denotes the ‘jth’ gene, ‘k’ denotes the ‘kth’ set, and ‘L’ denotes the total number of 

LoF heterozygous variants. The expected number of heterozygous variants closely match the 

observed number of heterozygous variants in each gene in cases and controls 

(Supplementary Figure 2).
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Statistical analysis

Gene-set enrichment analysis—To test for over-representation of a gene set without 

controls and correction for consanguinity, a one-tailed binomial test was conducted by 

comparing the observed number of variants to the expected count estimated using the 

method detailed above. Assuming that our exome capture reagent captures N genes and the 

testing gene set contains M genes, then the p-value of finding k variants in this gene set out 

of a total of x variants in the entire exome is given by

where p= (Σgene set Expected Valuei)/(Σall genes Expected Valuej). Enrichment was calculated 

as the observed number of genotypes/variants divided by the expected number of genotypes/

variants.

Gene-based binomial test—A one-tailed binomial test was used to compare the 

observed number of damaging variants within each gene was compared to the expected 

number estimated using the approach detailed above. Enrichment was calculated as the 

number of observed damaging genotypes/variants divided by the expected number of 

damaging genotypes/variants.

De novo enrichment analysis—The R package ‘denovolyzeR’ was used for the analysis 

of DNMs based on a mutation model developed previously60, 61. The probability of 

observing a DNM in each gene was derived as described previously49, except that the 

coverage adjustment factor was based on the full set of 2,645 case trios or 1,789 control trios 

(separate probability tables for each cohort). The overall enrichment was calculated by 

comparing the observed number of DNMs across each functional class to expected under the 

null mutation model. The expected number of DNMs was calculated by taking the sum of 

each functional class specific probability multiplied by the number of probands in the study, 

multiplied by two (diploid genomes). The Poisson test was then used to test for enrichment 

of observed DNMs versus expected as implemented in denovolyzeR60. For gene set 

enrichment, the expected probability was calculated from the probabilities corresponding to 

the gene set only.

To estimate the number of genes with > 1 DNM, 1 million permutations were performed to 

derive the empirical distribution of the number of genes with multiple DNMs. For each 

permutation, the number of DNMs observed in each functional class was randomly 

distributed across the genome adjusting for gene mutability. The empirical p value is 

calculated as the proportion of times that the number of recurrent genes from the 

permutation is greater than or equal to the observed number of recurrent genes.

To examine whether any individual gene contain more DNMs than expected, the expected 

number of DNMs for each functional class (LoF, D-Mis, and LoF+D-Mis) was calculated 

from the corresponding probability adjusting for cohort size. The Poisson test was then used 

to compare the observed DNMs for each gene versus expected. For each gene, we compared 
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the statistical significance across LoF, D-Mis, and LoF+D-Mis and reported the most 

significance statistical values. The Bonferroni multiple-testing threshold is, therefore, equal 

to 8.8×10−7 (0.05/(3×18,989)).

Meta-analysis of damaging de novo and LoF heterozygous variants—The 

Fisher’s method62 with 4 degrees of freedom was performed to combine p-values from 

damaging DNMs and LoF heterozygous variants. We calculated p-values for damaging 

DNMs in each gene by comparing the observed number of damaging DNMs to the expected 

number in a respective gene under the null mutation model. We calculated p-values for LoF 

heterozygous variants using the one-tailed binomial test to compare the observed number of 

LoF heterozygous variants to the expected number adjusted for LoF de novo probabilities.

Estimating the number of genes with more than one recessive genotype—One 

million permutations were performed to derive the empirical distribution of the number of 

genes with multiple damaging RGs. For each permutation, the number of observed 

damaging RGs (N = 467) was randomly distributed across the genome using the fitted 

values from the polynomial model for each gene. The empirical p value is calculated as the 

proportion of times that the number of recurrent genes from the permutation is greater than 

or equal to the observed number of recurrent genes (N = 44). Similarly, 1 million 

permutations were conducted on synonymous RGs as an ancillary analysis.

Estimating the number of overlapping genes with damaging/LoF de novo 
mutations between CHD and autism cohorts—A permutation test was performed to 

assess the enrichment of overlapping genes with damaging/LoF DNMs shared between the 

CHD and autism cohorts. Given that the observed numbers of genes with DNMs in the CHD 

and autism cohorts are N1 and N2, respectively, and the observed number of overlapping 

genes is M, we sampled N1 genes from all genes in the CHD cohort and N2 genes from all 

genes in the autism cohorts without replacement using the probability of observing at least 

one DNM as weight. The number of overlapping genes, P, was determined in each iteration 

of the simulation. A total of 1,000,000 iterations were conducted to construct the empirical 

distribution. The empirical number of overlapping genes was calculated by taking the 

average of the number of overlapping gens across all iterations. The empirical p-value was 

calculated as follows:

Gene ontology enrichment analysis—The complete list of genes which harbored LoF/

damaging variants were input into GOrilla63 (http://cbl-gorilla.cs.technion.ac.il/) to identify 

enriched GO terms compared to the background set of genes (M=18,715). A false-discovery 

rate (FDR; represented as q value) of 0.1 was used as cutoff.

Case vs. control comparison—For FLT4 and SMAD6, we compared the burden of LoF 

alleles in all European cases to all non-Finnish subjects in the ExAC database. Only LoF 

variants with a global (i.e. across all individuals) MAF < 10−5 were extracted from ExAC for 
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comparison. The total number of alleles evaluated per gene was taken as the median of the 

allele numbers reported for all positions in a gene. A two-sided Fisher’s exact test was used 

to compare the frequency of LoF variants in FLT4 and SMAD6.

URLs—GATK: (https://www.broadinstitute.org/gatk/); TrioDeNovo: (http://

genome.sph.umich.edu/wiki/Triodenovo); DenovolyzeR: (http://denovolyzer.org); Plink: 

(http://pngu.mgh.harvard.edu/~purcell/plink); MetaSVM/ANNOVAR: (http://

annovar.openbioinformatics.org); NHLBI ESP: (http://evs.gs.washington.edu/EVS/); 

ExAC03: (http://exac.broadinstitute.org) Contact the authors for the in-house pipelines

Data availability—Whole-exome sequencing data have been deposited in the database of 

Genotypes and Phenotypes (dbGaP) under accession number phs000571.v1.p1, 

phs000571.v2.p1, and phs000571.v3.p2

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors are enormously grateful to the patients and families who participated in this research. We thank the 
following team members for outstanding contributions to patient recruitment: A. Julian, M. Mac Neal, Y. Mendez, 
T. Mendiz-Ramdeen, C. Mintz (Icahn School of Medicine at Mount Sinai); N. Cross (Yale School of Medicine); J. 
Ellashek and N. Tran (Children’s Hospital of Los Angeles); B. McDonough, J. Geva, M. Borensztein (Harvard 
Medical School), K. Flack, L. Panesar, N. Taylor (University College London); E. Taillie (University of Rochester 
School of Medicine and Dentistry); S. Edman, J. Garbarini, J. Tusi, S. Woyciechowski, (Children’s Hospital of 
Philadelphia); D. Awad, C. Breton, K. Celia, C. Duarte, D. Etwaru, N. Fishman, M. Kaspakoval, J. Kline, R. 
Korsin, A. Lanz, E. Marquez, D. Queen, A. Rodriguez, J. Rose, J.K. Sond, D. Warburton, A. Wilpers, and R. Yee 
(Columbia Medical School). We are grateful to Joseph Ekstein and Dor Yeshorim for provision of anonymized 
DNA samples. The authors thank Shiuan Wang for critical discussion.

This work was supported by the U01 HL098153 and Grant UL1TR000003 from the National Center for Research 
Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, grants to the 
Pediatric Cardiac Genomics Consortium (U01-HL098188, U01-HL098147, U01-HL098153, U01-HL098163, U01-
HL098123 and U01-HL098162), the NIH Centers for Mendelian Genomics (5U54HG006504), the Howard Hughes 
Medical Institute (RPL and CES) and the Simons Foundation (WKC). SCJ was supported by the James Hudson 
Brown-Alexander Brown Coxe Postdoctoral Fellowship at the Yale University School of Medicine. JH was 
supported by the John S. LaDue Fellowship at Harvard Medical School and is a recipient of the Alan Lerner 
Research Award at the Brigham and Women’s Hospital. The content is solely the responsibility of the authors and 
does not necessarily represent the official view of the National Heart, Lung, and Blood Institute, the National 
Center for Research Resources or the NIH.

References

1. van der Linde D, et al. Birth prevalence of congenital heart disease worldwide: a systematic review 
and meta-analysis. J Am Coll Cardiol. 2011; 58:2241–7. [PubMed: 22078432] 

2. Egbe A, Lee S, Ho D, Uppu S, Srivastava S. Prevalence of congenital anomalies in newborns with 
congenital heart disease diagnosis. Ann Pediatr Cardiol. 2014; 7:86–91. [PubMed: 24987252] 

3. Marino BS, et al. Neurodevelopmental outcomes in children with congenital heart disease: 
evaluation and management: a scientific statement from the American Heart Association. 
Circulation. 2012; 126:1143–72. [PubMed: 22851541] 

4. Soemedi R, et al. Contribution of global rare copy-number variants to the risk of sporadic congenital 
heart disease. Am J Hum Genet. 2012; 91:489–501. [PubMed: 22939634] 

Jin et al. Page 18

Nat Genet. Author manuscript; available in PMC 2018 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.broadinstitute.org/gatk/
http://genome.sph.umich.edu/wiki/Triodenovo
http://genome.sph.umich.edu/wiki/Triodenovo
http://denovolyzer.org
http://pngu.mgh.harvard.edu/~purcell/plink
http://annovar.openbioinformatics.org
http://annovar.openbioinformatics.org
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org


5. Glessner JT, et al. Increased frequency of de novo copy number variants in congenital heart disease 
by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res. 
2014; 115:884–96. [PubMed: 25205790] 

6. Zaidi S, Brueckner M. Genetics and Genomics of Congenital Heart Disease. Circ Res. 2017; 
120:923–940. [PubMed: 28302740] 

7. Pediatric Cardiac Genomics, C. The Congenital Heart Disease Genetic Network Study: rationale, 
design, and early results. Circ Res. 2013; 112:698–706. [PubMed: 23410879] 

8. Zaidi S, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 
2013; 498:220–3. [PubMed: 23665959] 

9. Homsy J, et al. De novo mutations in congenital heart disease with neurodevelopmental and other 
congenital anomalies. Science. 2015; 350:1262–6. [PubMed: 26785492] 

10. Oyen N, et al. Recurrence of congenital heart defects in families. Circulation. 2009; 120:295–301. 
[PubMed: 19597048] 

11. Li Y, et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. 
Nature. 2015

12. Prendiville T, Jay PY, Pu WT. Insights into the genetic structure of congenital heart disease from 
human and murine studies on monogenic disorders. Cold Spring Harb Perspect Med. 2014; 4

13. Sifrim A, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart 
defects identified by exome sequencing. Nat Genet. 2016; 48:1060–5. [PubMed: 27479907] 

14. Krumm N, et al. Excess of rare, inherited truncating mutations in autism. Nat Genet. 2015; 47:582–
8. [PubMed: 25961944] 

15. Hu H, et al. VAAST 2.0: improved variant classification and disease-gene identification using a 
conservation-controlled amino acid substitution matrix. Genet Epidemiol. 2013; 37:622–34. 
[PubMed: 23836555] 

16. Yandell M, et al. A probabilistic disease-gene finder for personal genomes. Genome Res. 2011; 
21:1529–42. [PubMed: 21700766] 

17. Singleton MV, et al. Phevor combines multiple biomedical ontologies for accurate identification of 
disease-causing alleles in single individuals and small nuclear families. Am J Hum Genet. 2014; 
94:599–610. [PubMed: 24702956] 

18. Reeve JP, Rannala B. DMLE+: Bayesian linkage disequilibrium gene mapping. Bioinformatics. 
2002; 18:894–5. [PubMed: 12075030] 

19. Kaasinen E, et al. Recessively inherited right atrial isomerism caused by mutations in growth/
differentiation factor 1 (GDF1). Hum Mol Genet. 2010; 19:2747–53. [PubMed: 20413652] 

20. Lee SJ. Expression of growth/differentiation factor 1 in the nervous system: conservation of a 
bicistronic structure. Proc Natl Acad Sci U S A. 1991; 88:4250–4. [PubMed: 2034669] 

21. Rankin CT, Bunton T, Lawler AM, Lee SJ. Regulation of left-right patterning in mice by growth/
differentiation factor-1. Nat Genet. 2000; 24:262–5. [PubMed: 10700179] 

22. Tanaka C, Sakuma R, Nakamura T, Hamada H, Saijoh Y. Long-range action of Nodal requires 
interaction with GDF1. Genes Dev. 2007; 21:3272–82. [PubMed: 18079174] 

23. Ching YH, et al. Mutation in myosin heavy chain 6 causes atrial septal defect. Nat Genet. 2005; 
37:423–8. [PubMed: 15735645] 

24. Hershberger RE, et al. Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, 
TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ 
Cardiovasc Genet. 2010; 3:155–61. [PubMed: 20215591] 

25. Niimura H, et al. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. 
Circulation. 2002; 105:446–51. [PubMed: 11815426] 

26. Ikemba CM, et al. Mitral valve morphology and morbidity/mortality in Shone's complex. Am J 
Cardiol. 2005; 95:541–3. [PubMed: 15695151] 

27. Theis JL, et al. Recessive MYH6 Mutations in Hypoplastic Left Heart With Reduced Ejection 
Fraction. Circ Cardiovasc Genet. 2015; 8:564–71. [PubMed: 26085007] 

28. Harrison MJ, Shapiro AJ, Kennedy MP. Congenital Heart Disease and Primary Ciliary Dyskinesia. 
Paediatr Respir Rev. 2016; 18:25–32. [PubMed: 26545972] 

Jin et al. Page 19

Nat Genet. Author manuscript; available in PMC 2018 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Karkkainen MJ, et al. Missense mutations interfere with VEGFR-3 signalling in primary 
lymphoedema. Nat Genet. 2000; 25:153–9. [PubMed: 10835628] 

30. De Rubeis S, et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 
2014; 515:209–15. [PubMed: 25363760] 

31. Iossifov I, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 
2014; 515:216–21. [PubMed: 25363768] 

32. Tan HL, et al. Nonsynonymous variants in the SMAD6 gene predispose to congenital 
cardiovascular malformation. Hum Mutat. 2012; 33:720–7. [PubMed: 22275001] 

33. Timberlake AT, et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare 
SMAD6 and common BMP2 alleles. Elife. 2016; 5

34. Shieh JT, Bittles AH, Hudgins L. Consanguinity and the risk of congenital heart disease. Am J 
Med Genet A. 2012; 158A:1236–41. [PubMed: 22488956] 

35. Kaipainen A, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to 
lymphatic endothelium during development. Proc Natl Acad Sci U S A. 1995; 92:3566–70. 
[PubMed: 7724599] 

36. Wamstad JA, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in 
the cardiac lineage. Cell. 2012; 151:206–20. [PubMed: 22981692] 

37. Paige SL, et al. A temporal chromatin signature in human embryonic stem cells identifies 
regulators of cardiac development. Cell. 2012; 151:221–32. [PubMed: 22981225] 

38. Ang SY, et al. KMT2D regulates specific programs in heart development via histone H3 lysine 4 
di-methylation. Development. 2016; 143:810–21. [PubMed: 26932671] 

39. Razzaghi H, Oster M, Reefhuis J. Long-term outcomes in children with congenital heart disease: 
National Health Interview Survey. J Pediatr. 2015; 166:119–24. [PubMed: 25304924] 

40. Oyen N, et al. Prepregnancy Diabetes and Offspring Risk of Congenital Heart Disease: A 
Nationwide Cohort Study. Circulation. 2016; 133:2243–53. [PubMed: 27166384] 

41. Morishima M, Yasui H, Ando M, Nakazawa M, Takao A. Influence of genetic and maternal 
diabetes in the pathogenesis of visceroatrial heterotaxy in mice. Teratology. 1996; 54:183–90. 
[PubMed: 9122887] 

42. Zhu JY, Fu Y, Nettleton M, Richman A, Han Z. High throughput in vivo functional validation of 
candidate congenital heart disease genes in Drosophila. Elife. 2017; 6

43. Ohye RG, et al. Comparison of shunt types in the Norwood procedure for single-ventricle lesions. 
N Engl J Med. 2010; 362:1980–92. [PubMed: 20505177] 

44. Goldberg CS, et al. Factors associated with neurodevelopment for children with single ventricle 
lesions. J Pediatr. 2014; 165:490–496 e8. [PubMed: 24952712] 

45. Fischbach GD, Lord C. The Simons Simplex Collection: a resource for identification of autism 
genetic risk factors. Neuron. 2010; 68:192–5. [PubMed: 20955926] 

46. McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 2010; 20:1297–303. [PubMed: 20644199] 

47. Van der Auwera GA, et al. From FastQ data to high confidence variant calls: the Genome Analysis 
Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013; 43:11 10 1–33. [PubMed: 
25431634] 

48. Genomes Project C, et al. A global reference for human genetic variation. Nature. 2015; 526:68–
74. [PubMed: 26432245] 

49. Homsy J, et al. De novo mutations in congenital heart disease with neurodevelopmental and other 
congenital anomalies. Science. 2015; 350:1262–6. [PubMed: 26785492] 

50. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res. 2010; 38:e164. [PubMed: 20601685] 

51. Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016; 
536:285–91. [PubMed: 27535533] 

52. Liu X, Jian X, Boerwinkle E. dbNSFP v2.0: a database of human non-synonymous SNVs and their 
functional predictions and annotations. Hum Mutat. 2013; 34:E2393–402. [PubMed: 23843252] 

Jin et al. Page 20

Nat Genet. Author manuscript; available in PMC 2018 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Dong C, et al. Comparison and integration of deleteriousness prediction methods for 
nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015; 24:2125–37. 
[PubMed: 25552646] 

54. Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage 
analyses. Am J Hum Genet. 2007; 81:559–75. [PubMed: 17701901] 

55. Price AL, et al. Principal components analysis corrects for stratification in genome-wide 
association studies. Nat Genet. 2006; 38:904–9. [PubMed: 16862161] 

56. Lemaire M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat 
Genet. 2013; 45:531–6. [PubMed: 23542698] 

57. Wang C, et al. Ancestry estimation and control of population stratification for sequence-based 
association studies. Nat Genet. 2014; 46:409–15. [PubMed: 24633160] 

58. Bray SM, et al. Signatures of founder effects, admixture, and selection in the Ashkenazi Jewish 
population. Proc Natl Acad Sci U S A. 2010; 107:16222–7. [PubMed: 20798349] 

59. Wei Q, et al. A Bayesian framework for de novo mutation calling in parents-offspring trios. 
Bioinformatics. 2015; 31:1375–81. [PubMed: 25535243] 

60. Ware JS, Samocha KE, Homsy J, Daly MJ. Interpreting de novo Variation in Human Disease Using 
denovolyzeR. Curr Protoc Hum Genet. 2015; 87:7 25 1–15. [PubMed: 26439716] 

61. Samocha KE, et al. A framework for the interpretation of de novo mutation in human disease. Nat 
Genet. 2014; 46:944–50. [PubMed: 25086666] 

62. Fisher, RA. Statistical methods for research workers. Vol. ix. Oliver and Boyd; Edinburgh, London: 
1925. p. 1l

63. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization 
of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009; 10:48. [PubMed: 
19192299] 

Jin et al. Page 21

Nat Genet. Author manuscript; available in PMC 2018 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Quantile-quantile plots comparing observed versus expected P-values for recessive 
genotypes in each gene in cases and controls
Recessive genotypes (RGs) shown include LoF, D-Mis, and non frameshift insertion/

deletions. The expected number of RGs in each gene was calculated from the total number 

of observed RGs as described in Methods. The significance of the difference between the 

observed and expected number of RGs was calculated using a one-sided binomial test. (a). 

Quantile-quantile (Q-Q) plot in cases. (b). Q-Q plot in controls. While the observed values 

closely conform to expected values in controls, two genes, GDF1 and MYH6, show a 

significantly increased burden of RGs in cases and survive the multiple-testing correction 

threshold.
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Figure 2. Phenotypes and shared haplotypes among homozygotes for GDF1-p.Met364Thr
(a). Extent of homozygous SNPs flanking homozygous GDF1-p.Met364Thr genotypes. A 

5.9 Mb segment of chromosome 19 extending across the location of the homozygous GDF1-

p.Met364Thr mutation (denoted by red square) in each unrelated subject is depicted. At the 

bottom, tick marks indicate location of all SNPs found by exome sequencing among 

Ashkenazim in cases. Known SNPs are shown via their rs identifiers. Allele frequencies of 

novel SNPs are indicated by asterisks. The closest heterozygous SNP to either side of the 

GDF1-p.Met364Thr in each subject is shown as a white square; all SNPs between these two 

heterozygous SNPs, encompassed by the light blue bar, are homozygous for the same allele 
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seen in other subjects, consistent with the p.Met364Thr variant being identical by descent 

among all subjects. The length of each homozygous segment is indicated at the right of the 

panel. The maximum length of the homozygous segment shared by all subjects is 234 kb 

(shown as grey vertical bar), consistent with the mutation having been introduced into a 

shared ancestor many generations ago. (b). Cardiac and extracardiac phenotypes of GDF1-

p.Met364Thr homozygotes. Present phenotypes are denoted with ‘+’, those absent with ‘−’, 

and those unavailable for testing with ‘NA’ (c). Ribbon diagram of part of GDF1 

homodimer containing p.Met364. The hydrophobic helix from one subunit (yellow) sits 

above p.Met364 on the other subunit (blue). (d). Space filling model of the segment of 

GDF1 containing the wild-type p.Met364 showing surface electrostatic charge 

(blue=positive, red=negative). (e). Surface electrostatic charge of the segment containing 

mutant p.Thr364. Compared to wild-type, the mutant peptide shows a more negatively 

charged cavity.
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Figure 3. FLT4 loss-of-function mutations in Tetralogy of Fallot
(a). Pedigrees of 10 CHD kindreds with rare FLT4 loss-of-function (LoF) mutations are 

shown. Subjects with and without CHD are shown as filled and unfilled symbols, 

respectively. Each kindred ID number is shown along with the FLT4 genotype of each 

subject and CHD phenotype of affected subjects. (b) Diagram of FLT4 protein is shown with 

seven immunoglobulin domains (Ig) and a kinase domain. The top panel shows LoF 

mutations associated with Tetralogy-type CHD, whereas the bottom panel displays missense 

mutations associated with the Milroy disease (Hereditary Lymphedema).
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Figure 4. Chromatin modification genes and genes with multiple damaging de novo mutations 
are enriched for high expression in developing heart and intolerance to loss-of-function mutation
(a) Enrichment of damaging mutations in chromatin modifiers in genes highly expressed in 

developing heart and intolerant to loss-of-function (LoF) mutation. X axis (0–100) denotes 

the percentile rank of heart expression in developing mouse heart at E14.5, and y axis (0–

1.0) denotes intolerance to LoF mutation (pLI) in the ExAC database. (b) 66 genes with 2 or 

more damaging de novo mutations are plotted. Multihit genes are highly enriched (N=31) 

for genes that are highly expressed in developing heart and intolerant to LoF mutation (pLI ≥ 

0.99).
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