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Human beings are currently experiencing a serious public health event. Novel coronavirus
disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome
coronavirus (SARS-CoV-2), has infected about 3 million people worldwide and killed
more than 200,000, most being the elderly or people with potential chronic diseases
or in immunosuppressive states. According to big data analysis, there are many proteins
homologous to or interacting with the angiotensin-converting enzyme 2 (ACE2), which,
therefore, may not be the only receptor for the novel coronavirus; other receptors may
also exist in host cells of different species. These potential receptors may also play an
important role in the infection process of the novel coronavirus. The current study aimed
to discover such key proteins or receptors and analyze the susceptibility of different
animals to the novel coronavirus, in order to reveal the transmission process of the virus
in cross-species infection. We analyzed the proteins coded by the ACE2 gene in different
mammalian species and predicted their correlation and homology with the human ACE2
receptor. The major finding of our predictive analysis suggested ACE2 gene-encoded
proteins to be highly homologous across mammals. Based on their high homology,
their possibility of binding the spike-protein of SARS-CoV-2 is quite high and species
such as Felis catus, Bos taurus, Rattus norvegicus etc. may be potential susceptible
hosts; special monitoring is particularly required for livestock that are in close contact
with humans. Our results might provide ideas for the prevention and control of the novel
coronavirus pneumonia.

Keywords: COVID-19, SARS-CoV-2, ACE2 gene, protein, mammals

Emerging infectious diseases (EIDs) pose a risk to global public health and biosafety. Over 5,000
viruses have been identified to date, of which ~75% are of a zoonotic origin, and can cross the
species barrier and establish infection in human beings (1). Since December 2019, multiple cases
of pneumonia of an unknown cause had been reported, which was subsequently identified as an
acute respiratory infectious disease caused by a novel coronavirus infection, i.e., coronavirus disease
2019 (COVID-19) (2). Based on the results of genome comparisons, this novel coronavirus was
named “severe acute respiratory syndrome coronavirus type 2” (SARS-CoV-2) by the International
Committee on Taxonomy of Viruses, and was considered the primary pathogen of the current
outbreak (3). The frequent and occasional regional outbreaks and uncertain epidemics have
triggered serious social panic and caused huge economic losses, as the disease gradually spread
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globally. A previous study revealed the potential relationship
between infection and history of contact with seafood and wildlife
markets at the early stage (4). However, the source of SARS-CoV-
2 has not been conclusively identified yet, since some patients did
not have a history of exposure to wildlife markets at all.

Previous studies had documented infection from
coronaviruses in humans, pigs, cattle, sheep, birds, dogs,
cats, mice, camels, bats, and whales (5). Some hosts can be
seriously infected with various coronaviruses, such as severe
acute respiratory syndrome coronavirus (SARS-CoV) and the
Middle East respiratory syndrome coronavirus (MERS-CoV).
SARS-CoV-2 belongs to the B-coronavirus genus of the family
Coronaviridae. The coronaviruses infecting human beings
at present had originated from animals, and their natural

hosts are generally Chiroptera (bats) and rodents (rats) (6).
Additionally, different types of coronavirus can also infect
Artiodactyla, including livestock (pigs, cattle, and camels), and
carnivorous intermediate hosts, such as minks and civets (7).
Whether SARS-CoV-2 can infect livestock (pigs and birds)
and pets (such as dogs) is not yet clear. At present, there is
insufficient understanding of the host-adaptive mechanisms
of SARS-CoV-2, including the process of virus infection and
replication, the function of virus coding proteins, interaction
between the virus and its host factors, activation of the innate
antiviral immune response of host, and the mechanism of viral
escape from the host's immune system. Moreover, there is a
lack of available approaches to deal with sudden viral infection
events, to effectively target specific molecules to inhibit viral
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FIGURE 1 | Angiotensin-converting enzyme 2 gene-encoded proteins in mammalian species. The RAXML tree was generated using RAXML-HPC2, with GAMMA
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infection, and to treat the infection-related complications. In
addition, with the source of the pathogen still being unclear,
it significantly restricts extensive study and tracking of the
route of transmission. Advancements in novel technologies
could provide a new method to trace the source of the virus.
Specifically, the possibility of suspect animals as intermediate
hosts can be evaluated based on the binding characteristics of
the viral proteins with different receptors. New technologies,
such as artificial intelligence and shared data, are available for
epidemiological investigation, thereby contributing to improved
accuracy and screening efficiency.

Angiotensin-converting enzyme (ACE) is a monomeric,
membrane-bound, zinc- and chlorine-dependent dipeptidase
(8). It can catalyze the conversion of decapeptide angiotensin
(Ang) I to octapeptide Ang II, and hydrolyze bradykinin by
removing a C-terminal dipeptide (9). Angiotensin-converting
enzyme 2 (ACE2), discovered as a homolog of ACE, functions
as a carboxypeptidase that can preferentially cleave hydrophobic
or basic amino acids at the carboxyl terminus. It can catalyze
the conversion of Ang II to Ang-(1-7) and degrade Ang I to
the inactive Ang-(1-9) (10). Ang-(1-7) is a vasodilator peptide
with antioxidant, anti-fibrotic, and anti-inflammatory properties
(11). ACE2 is highly expressed in the heart, kidneys, testis,
hepatobiliary duct, and alveolar type 2 cells (12). Previous studies
had predicted the structure of the spike-protein of SARS-CoV-2,
and revealed it as a key protein that mediated virus invasion into

host cells, interacted with ACE2 proteins, and mediated infection
in humans (13).

The receptor binding domain of SARS-CoV-2 shares high
sequence homology with SARS-CoV, indicating the potential
binding of ACE2 with SARS-CoV-2 (14). The differences
between SARS-CoV and SARS-CoV-2 were examined by electron
microscopy. The results showed that SARS-CoV-2 binds to ACE2
with a higher affinity than SARS-CoV (15, 16). In accordance
with the current data analysis, other species also have proteins
with the same amino acid composition as the key region of the
human ACE2 protein. This key region refers to the region that
binds to the coronavirus spike protein. Other potential receptors
may also exist in host cells of different species, which may play
an essential role in the invasion of SARS-CoV-2. Therefore,
besides humans and proven animals that can be infected, it seems
imperative to analyze potential receptors in other species.

In this study, protein sequences corresponding to the ACE2
gene were downloaded from UniProt database (17), with
subsequent construction of the phylogenetic tree, with the
protein sequences, using the maximum likelihood method (18,
19). Figure 1 displays the distance distribution across ACE2
gene-encoded proteins in different species, with a high homology
across those discovered in mammals.

Shared data comparison was conducted, focusing on the key
homologous proteins and core regions of different species. With
the random selection of one species from each clade, further
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FIGURE 3 | Comparison across the key domains of mammalian reservoir hosts. (A) The binding region of human ACE2 protein and SARS-CoV-2 virus S protein.

(B) The results of the comparison between the key regions of proteins encoded by different mammalian ACE2 genes and human ACE2 protein. Red stars indicate the
suspect species that deserves attention. The red stars indicate suspicious species that have been in close contact with humans or have been reported to be
suspected of carrying SARS-CoV-2, such as Pongo abelii, Felis catus, Paguma larvata, Bos taurus, etc.
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analysis was conducted on the crystal structure of N-terminal
protease domain of ACE2 or key structural domains of other
potential receptors and S-protein receptor-binding domain
structure of SARS-CoV-2, so as to speculate the possibility of
receptor-binding by SARS-CoV-2. Results indicated a high
possibility of ACE2 binding to the S-protein of SARS-CoV-2
based on high homology (Figure2). Superposition of the
structural model of SARS-CoV-2 S-RBD complexed with
ACE2/ACE from human, Nyctereutes procyonoides (Raccoon
dog), Neophocaena asiaeorientalis (Finless porpoise), and
Rhinolophus sinicus (Chinese rufous horseshoe bat) showed the
complexes to have highly similar overall structures (Figure 2A).
By analyzing the interacting residues between S-RBD and
ACE2/ACE from different species in these complexes, two
interacting regions (residues 19-84 and 346-360) were identified
in ACE2/ACE. The sequences of these two regions from the
species analyzed were found to be highly conserved (Figure 2B).
However, the interaction interfaces between SARS-CoV-2
S-RBD and ACE2/ACE from different species in these complex
structures were slightly different, with the ACE2 from humans
having the maximum number of interacting residues, and being
the largest buried area across the species (Figures 2C-F). This
suggested ACE2 from humans could have a have higher affinity
to SARS-CoV-2 S-RDB than those from other species.

Due to different protein sequence lengths, in order to
get better local sequence alignment, the Needleman-Wunsch
algorithm was applied for the comparison with human ACE2
protein sequence and for the calculation of their similarities to
study the amino acid composition distribution in key domains
of each protein sequence (20). As shown in Figure 3, there was a
high similarity of ACE2 gene-encoded proteins with the human
ACE2 receptor, especially in the three domains bound to the S-
protein of SARS-CoV-2. It consequently supported the higher
potential susceptibility to infection in mammals.

Furthermore, the binding ability of proteins encoded by
different ACE2 genes and the potential receptor models for
stimulating different species was analyzed. The interaction
between ACE2 and SARS-CoV-2 was speculated to be the
possible primary cause for the rapid spread of SARS-CoV-2.
Compared with SARS-CoV, four of the five key residues of
three short insertion and receptor binding sequences in the N-
terminal region of SARS-CoV-2 were changed (21). Shi et al.
had reported the replication of SARS-CoV-2 to be poor in dogs,
pigs, chickens, and ducks, although it was quite efficient in
ferrets and cats (22). They found SARS-CoV-2 to be transmitted
across cats by respiratory droplets, the result consistent with
homology comparisons (Figure 3). Other questions, regarding
the binding ability of other potential receptors to viral proteins,
a potential mutation that could further improve the interaction
between S-protein and ACE2, or on species having highly
homologous proteins or interacting with ACE2, remain to be
addressed. Answers to these questions would facilitate the design
of agents and antibodies against S-protein or ACE2 protein
(or other potential receptors), or of small molecules, to disrupt
their interactions.

In conclusion, the study of ACE2 gene-encoded protein
products in mammalian species would be helpful to obtain

more genetic and functional information about SARS-CoV-2.
Based on their high homology, their possibility of binding the
spike-protein of SARS-CoV-2 is quite high and species such as
Felis catus, Bos taurus, Rattus norvegicus, etc. may be potential
susceptible hosts; special monitoring is particularly required for
livestock and poultry that are in close contact with humans. The
potential susceptibility analyses of mammalian reservoir hosts,
as well as the understanding of immune recognition and escape
of the virus, would be of great significance for controlling the
virus’ spread, treating viral diseases, and protecting the life and
property of people.

METHODS

Data Collection and Phylogenetic Analyses
The protein sequences encoded by the ACE2 gene were
downloaded from the UniProt database (15). If there were
multiple identical protein sequences encoded by the ACE2
gene in each species, a sequence was randomly selected as
the representative sequence of the species for subsequent
processing. The screened sequences were aligned using Clustal
Omega on the EBI web server (23). Maximum likelihood (ML)
phylogenies of all viral genes were estimated by RAXML-HPC2
on XSEDE (18), with GAMMA model and a bootstrap value of
1,000 selected.

Calculation of the Percent Identity of the
Key Domains of Mammalian Reservoir

Hosts

After screening, sequence similarity and identity were analyzed
again to study further the relationship between the protein
sequences encoded by the ACE2 gene. The key operation process
can be divided into the following steps: The protein sequences
from the source host that were not mammals were manually
deleted, while the remaining protein sequences were compared
with the ACE2 protein sequence encoded by the human ACE2
gene one by one using the Needleman-Wunsch algorithm
(20), and the similarity and identity between them were
obtained. Then, regions of the human ACE2 protein sequence
that interacted with the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) S proteins were highlighted and
compared with the amino acid composition of protein sequences
of other species.

Prediction of S Protein-Binding Domain

Structure of Key Domains

The SARS-CoV-2 S-RBD in complex with ACE2 from
Nyctereutes ~ procyonoides, ~ Neophocaena  asiaeorientalis
asiaeorientalis, and Rhinolophus sinicus was modeled with
Coot (24) using the crystal structure of the SARS-CoV-2
S-RBD in complex with human ACE2 (PDB ID: 6LZG) (15)
as the template. The contact residues of the two partners
in these modeled complex structures were determined
with CoCoMaps server (25) with an atom contact distance
cutoff of 4 A.
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