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Epidemiological studies in man and with experimental animal models have shown that intrauterine growth restriction (IUGR)
resulting in low birth weight is associated with higher risk of programming welfare diseases in later life. In the pig, severe ITUGR
occurs naturally and contribute substantially to a large intralitter variation in birth weight and may therefore be a good model for
man. In the present paper the natural form of IUGR in pigs was studied close to term by nuclear magnetic resonance (NMR-
)based metabolomics. The NMR-based investigations revealed different metabolic profiles of plasma samples from low-birth
weight (LW) and high-birth weight (HW) piglets, respectively, and differences were assigned to levels of glucose and myo-inositol.
Further studies by GC-MS revealed that LW piglets had a significant higher concentration of myoinositol and D-chiro-inositol in
plasma compared to larger littermates. Myo-inositol and D-chiro-inositol have been coupled with glucose intolerance and insulin
resistance in adults, and the present paper therefore suggests that [UGR is related to impaired glucose metabolism during fetal
development, which may cause type 2 diabetes in adulthood.

1. Introduction

It is well established that decreased growth during fetal
development, leading to intrauterine growth retardation
(IUGR) and consequently low birth weight, has crucial
influence on health later in life, and is documented in
population studies [1]. However, the relationship between
birth weight and health later on in life cannot be described
by a simple linear relationship but seems to be U-shaped
[2]. The hypothesis that poor fetal growth increases the
risk of developing metabolic disorder, like type 2 diabetes,
coronary heart disease, elevated blood pressure, and obesity,
in adult life, was first put forward by Hales and Barker[3].
Long-term epidemiological studies in humans have shown
a relationship between birth weight and adult health, and
later experimental studies mainly in animal models of IUGR
have documented the original hypothesis[4]. The term fetal

metabolic programming is generally accepted to describe the
phenomenon of the long-term effects of a stimulus or insult
during fetal development [4].

Several different experimental animal models have been
used to study fetal metabolic programming. Accordingly,
maternal metabolism during pregnancy has been manipu-
lated, and the effects on the offspring have been investigated
[5]. Maternal calorie restriction throughout gestation in
guinea pigs has a negative effect on fetal growth, and
postnatal glucose tolerance tests demonstrated a decreased
glucose tolerance and increased fasting plasma insulin levels,
suggesting insulin resistance [6]. Also maternal protein
deprivation in rats showed an alteration in the glucose
metabolism in the liver of the offspring [7]. Structural
changes in the liver of offspring from protein deprived moth-
ers were observed in the same study. Placental restriction
induced by surgery caused reduced fetal growth, increased
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adiposity postnatal, and impaired glucose-stimulated insulin
production in young sheep offspring [8]. Hyperinsulinemia
produced in the fetal rhesus monkey during the last third of
gestation indicated that insulin is important for fetal weight
characteristics [9]. The cause of the naturally occurring
IUGR is not fully understood, but decreased placental
growth and efficiency for nutrient transfer seems to be
important [10]. In litter-bearing species, like rat, mice, and
pig, a naturally occurring form of IUGR are present. In
these species, low birth weight animals have been coupled
with retarded postnatal growth, hypertension and glucose
intolerance [11]. Thus, studies in pigs showed that low birth
weight is associated with glucose intolerance at 1 year of
age [12]. It has been suggested that impairments in early
cell development result in fetal malnutrition and predispose
individuals to development of type 2 diabetes later in
life [13]. An alternative hypothesis suggests that genetic
variants predisposing the type 2 diabetes phenotype might
also reduce birth weight by altering intrauterine insulin
secretion or action [14] Other factors which likely explain
fetal programming of adult health comprise changes in DNA
methylation, increased apoptosis in the developing kidney,
alterations in renal renin-angiotensin system activity, and
increased fetal glucocorticoid exposure [15]. Nevertheless,
even though the impact of fetal metabolic programming on
adult health is well documented, the underlying mechanisms
are poorly understood.

In the present study, the naturally occurring form of
IUGR in the pig was used as an experimental model for
fetal metabolic programming. The objective was to identify
possible mechanisms during fetal development that can
couple metabolism during fetal life with later development
of the metabolic disorders.

2. Materials and Methods

2.1. Animals. Offspring from 6 Danish Landrace sows mated
with one of 6 Danish Landrace boars were used in this study.
After mating, the sows were reared under normal production
conditions at the Faculty of Agricultural Sciences, Aarhus
University, Denmark, until day 110 of gestation. Gestation
length in pigs is 113-115 days. At day 110 of gestation sows
were stunned using a captive bolt pistol, and immediately
after bleeding the uterus was taken out. The umbilical
cord of each fetus/piglet was cut and as much blood as
possible was collected through the umbilical cord. Blood
was used for production of plasma, which was kept at
—80° C until analysis was performed. Piglets were weighed
and their position within the uterus horns recorded. Organs
were weighed and some anatomical measures recorded.
All procedures were carried out after permission from the
Danish Animal Experiments Inspectorate.

2.2. Study Design. The data reported in this study is for a
total of 24 piglets. Within each of the 6 litters, plasma from
the 2 piglets with the lowest birth weight (LW) and the 2
piglets with the highest birth weight (HW) were analyzed by
NMR and GC-MS methods as described in what follows.
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Ficure 1: Differences in the 'H NMR metabolite profile of
plasma samples from low birth weight (LW) and high birth
weight (HW) piglets. (a) PCA score plot showing the two first
principal components for HW piglet samples (closed circles) and
LW piglet samples (open circles). (b) Loading plot of first principal
component.

2.3. NMR Measurements. The NMR measurements were
performed at 310 K on a Bruker Avance III 600 spectrometer,
operating at a 'H frequency of 600.13 MHz, and equipped
with a 5-mm 'H TXI probe (Bruker BioSpin, Rheinstetten,
Germany). Prior to the measurements, plasma samples were
thawed and 400 uL aliquots were mixed with 200 ul D,O.
Sodium trimethylsilyl-[2,2,3,3-2H,]-1-propionate (TSP) was
added as an internal chemical shift reference (0.17 mg/ml).
'H NMR spectra of plasma samples were obtained using a
Carr-Purcell-Meiboom-Gill (CPMG) delay added in order to
attenuate broad signals from high-molecular-weight compo-
nents. The total CPMG delay was 50 ms. Water suppression
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TaBLE 1: Anatomical characteristics of low birth weight (LW) and high birth weight (HW) piglets. LSMean values and standard errors of the

LSMeans (SEM) are given.

Traits 18%Y HW SEM p
No. of piglets 12 12

No. of female piglets 6 6

No. of male piglets 6 6

Body weight, g 687 1,179 0.05 <.001
CRL, cm* 21.7 26.3 0.058 < .001
CRL/100 g body weight 33.0 22.1 1.9 < .001
Pancreas, g/100 g body 1.03 1.04 0.06 NS
weight

Liver, g/100 g body weight 29.1 322 1.3 .052

* Crown-rump-length.

was achieved by irradiating the water peak during the
relaxation delay of 3s. A total of 64 transients of 32K
data points spanning a spectral width of 17.36 ppm were
collected. An exponential line-broadening function of 0.3 Hz
was applied to the free induction decay (FID) prior to Fourier
transform (FT). All spectra were referenced to the TSP signal
at 0.0 ppm. The spectra were subdivided into 0.026 ppm
integral regions and integrated, reducing each spectrum into
345 independent variables in the region 0.52—4.60 and 5.02—
10.0 ppm.

2.4. GC-MS Measurements. Prior to GC-MS measurements,
50 ul plasma from each sample was extracted with 960 ul of
MeOH (8:1v/v) and 100yl of 0.1 mg/ml D6 myo-inositol
(Isotech) was added. The sample was then centrifuged at
14,000 g for 10min at room tempature Thereafter 100 ul
supernatant was transferred to GC-vials, evaporated and
derivatized with 30 ul of metoxyamin in pyridine (15 mg/ml)
for 90 min at 30°C. The sample was then added to 30 ul of
MSTTFA (1% TMCS; PIERCE), vortexed and left for 30 min at
37 °C. Thereafter, 40 ul of heptan was added and the sample
was vortexed before GC-MS.

GC-MS was performed using an Agilent 7890 GCsys-
tem with a CTC COMBI PAL autosampler coupled to a
single quadrupole mass spectrometer (Agilent 5975). Gas
chromatographic separation was performed using a 30 m
*250pum (i.d.) * 0.25um film HP-5MS column (] & W
Scientific). A volume of 1 ul derivatized extract was injected
into the GC-MS using split mode 1:10 with a split flow
of 12ml/min. The inlet temperature was 270°C. Oven
temperature was increased from an initial 70°C to 230°C (15
°C per min) and thereafter from 230°C to 300°C (10 °C per
min). The run time was 21 min. Helium 6.0 was used as a
carrier gas at a flow rate of 1.2 ml/min. The ion source and
quadrupole temperatures were 230 and 150°C, respectively.
Chromatograms and mass spectra were evaluated using
the chemstation E.02.00.493 software. Myo-inositol-C-d-d6
(Isotech) was used as an internal standard. D-(+)-chiro-
inositol (cas 643-12-9; Aldrich) and Myo-inositol (Fluka)

was used to perform standard curves for each compound
over the expected range relative to the internal standard.
Semiquantitative concentrations of plasma myo-inositol and
D-chiro-inositol were obtained against the standard curves.

2.5. Data Analysis and Statistics. Multivariate analysis of
NMR data was performed using the Unscrambler software
version 9.2 (Camo, Oslo, Norway). Principal component
analysis (PCA) was applied to the centered data to explore
any clustering behavior of the samples, and partial least
square regression (PLS) was carried out using NMR spectra
as x-variables and birth weight as y-variable. Martens’
uncertainty test [16] was used to eliminate noisy variables,
and all models were validated using full cross-validation [17].

Statistical analysis of GC-MS data and anatomical prop-
erties were performed using the SAS version 9.2 (SAS
Institute Inc., Cary, NC, USA) using the MIXED procedure.

The MIXED model generalizes the standard linear model
as follows:

y=XB+Zy+e. (1)

In this expression, y represents a vector of observed data,
B is an unknown vector of fixed-effects parameters with
known design matrix X, y is a vector of random-effects
parameters with known design matrix Z, and ¢ is an
unknown random error vector whose elements are not
required to be independent or homogeneous.

The model included the fixed effects of gender and birth
weight group (LW or HW) and their interaction and sow as
a random factor.

3. Results

3.1. Anatomical Properties of Piglets. The average birth
weight of LW and HW piglets were 687 and 1,179g,
respectively (P < .001; Table 1). Also the crown-rump-length
(CRL) was measured and LW piglets had an average CRL of
21.7 cm whereas HW piglets had an average of 26.3 cm. The
proportional length of LW piglets was significantly higher
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FIGURE 2: Prediction of birth weight by the 'H NMR metabolite
profile of plasma samples from low birth weight (LW) and high
birth weight (HW) piglets. (a) Predicted versus measured birth
weight from PLS regression with NMR-variables as x-variables and
measured birth weight as y-variable. Values are given in Kg. R2 =
0.47, Root mean squared error of prediction = 0.21 Kg. (b) The
corresponding regression coefficients. The regression coefficients
show the relationship between the NMR variables used as predictors
for the birth weight. A positive coefficient shows a positive link with
birth weight, and a negative coefficient shows a negative link. NMR
variables with a small coefficient are negligible.

than of HW piglets (P < .001; Table 1), indicating that the
LW piglets were very thin. This is a trait which is often
recognized in IUGR subjects [2]. The extreme differences in
size at birth were evident in the present study, where the
variation in birth weight differed from 334 ¢ to 1,453 g in
one of the litters. This LW piglet had an extremely low birth
weight, and in the animal science literature this extreme LW
piglet is referred to as a runt [18-20].

In this study, pancreas and liver were weighed (Table 1).
The relative weight (g/100 g body weight) of pancreas did not
differ between LW and HW piglets, but the relative weight of
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FIGURE 3: Myo-inositol and D-chiro-inositol levels in plasma from
low birth weight (LW) and high birth weight (HW) piglets. (a) GC-
MS spectra of a representative plasma sample. Peak at retention time
11.61 is D-chiro-inositol and peak at retention time 12.60 is myo-
inositol. The spectra reveal the large difference in concentration
of D-chiro-inositol and myo-inositol in the plasma samples. (b)
Arbitrary plasma inositol levels in LW and HW piglets, showing
that LW piglets have a significantly higher plasma concentration of
both myo- and D-chiro-inositol than HW piglets at birth. Each bar
represents the LSMeans of 12 piglets = SEM. ab, P < .05. Bars
named ratio is representing the ratio between D-chiro-inositol and
myo-inositol.

the liver tended (P = .052) to be higher in HW than in LW
piglets (32.2 v 29.1 g/100 g body weight, resp.).

3.2. NMR Metabolomics. To investigate the early conse-
quences of IUGR and possible relation with later develop-
ment of adult health, a metabolomic approach was applied
to plasma samples from LW and HW piglets by 'H NMR
spectroscopy. Principal component analysis (PCA), which
is an unsupervised method, was performed on the pre-
processed 'H NMR spectra. The resulting plot of score
1 versus score 2 for mean-centered data shows a clear
separation of plasma samples from IW and HW piglets,
respectively, (Figure 1(a)). The corresponding X-loadings
for the first component reveal that signals at 3.29, 3.56,
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FIGURE 4: Relationship between piglet birth weight and (a) plasma
myo-inositol and (b) plasma D-chiro-inositol. For both inositols a
negative relationship (linear regression) exists between the plasma
inositol concentration and piglet birth weight. R®* = 0.43 for myo-
inositol; R> = 0.42 for D-chiro-inositol. Each point represents a
single piglet.

and 3.64ppm are determining the position of samples
along the first score, and thereby clearly dominate in the
differentiation between LW and HW piglets (Figure 1(b)).
These chemical shift values are equivalent with reference
values for myo-inositol [21]. For a further investigation of
the relationship between the 'H NMR metabolite profiles
and birth weight of the piglets, partial least squares (PLS)
regression was carried out with NMR spectra as X-variables
and birth weight as y-variable, which established a clear
correlation (R? = 0.47) (Figure 2(a)). Analysis of the PLS
model’s regression coefficients reveals that intensities of
signals at 3.53 and 3.66 ppm are positively correlated to
birth weight (Figure 2(b)), and these signals are tentatively
assigned to glucose. In addition, the regression coefficients
disclose that NMR variables at 3.30, 3.56, and 3.64 ppm,
which are equivalent with reference values for myo-inositol

[21], contribute to the correlation between the 'H NMR
metabolite profiles and birth weight of the piglets, as the
intensity of these are negatively correlated with birth weight.

3.3. Plasma Inositol Concentrations. In order to verify that
the found effect could be ascribed to a higher myo-inositol
in LW piglets, semi-quantitative plasma myo-inositol con-
centrations were determined together with semi-quantitative
plasma concentrations of D-chiro-inositol by GC-MS. The
LW piglets in the present study had a significant higher
plasma concentration of both myo-inositol (P < .01)
and D-chiro-inositol (P < .05) than HW piglets, whereas
the myo-/D-chiro-inositol ratio did not differ between LW
and HW piglets (Figure 3(b)). Also it can be seen from
Figure 3(a) that the plasma level of myo-inositol is much
higher than the level of D-chiro-inositol.

3.4. Correlations between Plasma Inositol Concentrations and
Piglet Birth Weight. The above shown results verify that
LW piglets have a higher plasma concentration of both
myo-inositol and D-chiro-inositol than HW piglets. In this
study, piglets from 6 litters have been examined but the
variation in birth weight within each litter differs between
litters. Thus, in some litters the LW piglets are not extremely
small and may be more in the category of average weigh
piglets in other litters. We therefore tested the correlation
between piglet birth weight and both myo-inositol and D-
chiro-inositol (Figure 4). These results verify that there is a
negative correlation between piglet birth weight and myo-
inositol (R> = 0.43) and D-chiro-inositol (R* = 0.42)
plasma concentrations. It can also be seen in Figure 4 that
the variation in the plasma concentration of each compound
seems to be higher in the IW piglets compared to the HW
piglets. The extreme LW piglet also has a much higher
concentration of myo-inositol and especially of D-chiro-
inositol compared to the other LW and HW piglets.

4. Discussion

In the present study we used the naturally occurring form
of IUGR that exists in pigs to study the influences of IUGR
on the plasma metabolomic. Even though pigs are a litter-
bearing species (9-14 piglets/litter) they seem to be a good
model for human IUGR as there is increasing evidence that
low birth weight pigs develop the same metabolic changes in
relation to hypertension, obesity and type 2 diabetes as seen
in human IUGR [11, 12, 22]. Thus, pigs are considered an
excellent model for studying fetal metabolic programming
and the adult consequences of IUGR.

In the present study, the 2 piglets with the lowest (LW)
and the 2 piglets with the highest (HW) birth weight within
each of 6 litters were studied in order to select pigs that
had been subjected to IUGR (LW) and compared with pigs
expected to have a normal nutrient supply during fetal
development (HW). Piglets were taken from the uterus at day
110 of gestation (gestation length in sows is 113-115 days)
in order to study piglets close to birth, but at the same time



ensuring that the piglets did not suckle and thereby ingest
food.

A fuel-mediated teratogonesis has been proposed [23].
Thus, fetal islets, fetal fat stores, fetal muscles, and a large
range of other cells may be altered mediated by changes in
fetal fuels [23]. Accordingly, the organs of [UGR subjects may
have a disproportionate growth compared to normal subject,
where for example, the weight of pancreas and liver relative
to whole body weight is lower in protein-restricted subjects
[24]. The disproportional growth of body length (CRL) and
liver in relation to body weight found in this study indicates
that some tissues and organs are more affected by the IUGR
than others, which may have long-term effects on postnatal
growth and metabolism in adulthood.

The NMR-based metabolomic data in the present study
shows that the plasma concentration of glucose is positively
correlated with birth weight. Fetal plasma glucose originates
mainly from transport across the placenta and the fetus
is therefore highly dependent on delivery of glucose from
the dam [10]. Possibly some gluconeogenesis takes place
in fetal liver at the late part of gestation, and the low-
glucose concentration in LW piglets in the present study
thus indicates either a low maternal-fetal glucose gradient
and/or decreased fetal gluconeogenesis. It is well recognized
that the placental transport of nutrients to the fetus is of
utmost importance for fetal growth, and that placental size
and efficiency of nutrient transport is reduced in relation to
IUGR [10, 25, 26].

Intriguingly, the explorative NMR-based metabolomic
investigation demonstrated differences in plasma myo-
insotiol between piglets with high and low birth weight,
respectively. These findings were confirmed by GC-MS
measurements, which also showed a difference in D-chiro-
inositol between high and low birth weight, respectively.
Since the relationship between birth weight and health seems
to be U-shaped [2], it could be questioned if the group of
high birth weight piglets is an appropriate reference group.
However, comparison of NMR data from an intermediate
birth weight group revealed that the LW pigs also had
a higher plasma myo-insotiol level than the intermediate
birth weight group (data not shown). Myo-inositol and D-
chiro-inositol, which in the present study are negatively
correlated to birth weight, have been related to glucose
intolerance and type 2 diabetes in several studies [27-29].
Consequently, these metabolites are interesting candidates
as markers for fetal programming of metabolic disease in
adult life. Myo-inositol is synthesized from glucose and is
the most abundant inositol in the body. D-chiro-inositol
is either synthesized from myo-inositol by epimerization
or obtained from the diet. Previous studies have shown
that in subjects with noninsulin-dependent and insulin-
dependent diabetes, urinary excretion of myo-inositol and
D-chiro-inositol was higher than in normal subjects both
in humans and rats [27, 30], whereas others have found
a decreased D-chiro-inositol concentration in human urine
[29, 31]. Reports on plasma concentrations of myo- and D-
chiro-inositol in relation to diabetes are sparse, but a higher
plasma concentration of inositols in acute diabetic compared
to normal or mild diabetic rats was found in one study

Journal of Biomedicine and Biotechnology

[32], whereas no differences were found in another study
comparing normal patients with non-insulin-dependent and
insulin-dependent diabetic patients [30].

Thus, while it remains unclear if myo-inositol and D-
chiro-inositol are useful biomarkers in adults, the present
study suggests that they act as biomarkers in newborns.
D-chiro-inositol seems to inhibit glucose-stimulated insulin
release [33], suggesting a negative feedback mechanism
after insulin-stimulated inositol phosphoglycan synthesis.
Consequences of the high concentration of D-chiro-inositol
found in LW piglets in the present study could be deficiency
of insulin during fetal development. This may leave the
insulin-responsive tissues like muscle highly sensitive to
insulin [34]. In fact, highly insulin-sensitive tissues have
been found in a low-maternal protein model for TUGR
[35]. It could therefore be speculated that in the long-
term, this could cause development of glucose intolerance
and insulin resistance, and low-insulin concentrations would
also have an impact on growth[34]. Also, the high D-
chiro-inositol found in LW piglets may be a mechanism
to decrease the glucose uptake in insulin-sensitive tissues,
through the negative feedback on insulin release, leaving the
small amount of available glucose for the more important
tissues/organs in relation to survival, like the brain and
heart. The biological significance of myo-inositol is less
well understood. Thus, the present study suggests that
myo-inositol and/or D-chiro inositol is useful markers in
newborns, however, the consequences of the high plasma
myo-inositol and D-chiro-inositol in LW piglets is not clear.

5. Conclusions

The present study demonstrated a clear positive relationship
between plasma glucose concentration and birth weight and
a negative relationship between myo-inositol and D-chiro-
inositol plasma concentrations on the one hand and birth
weight on the other hand in the naturally occurring pig
model of IUGR. Our results show that low birth weight
(LW) piglets have a significant higher concentration of both
inositols in plasma compared to larger littermates. As Myo-
inositol and D-chiro-inositol have been coupled with glucose
intolerance and insulin resistance in adults, the present study
indicates that these metabolites could be novel biomarkers
for fetal programming.
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