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Paroxysmal atrial fibrillation (PAF) is the most common cardiac arrhythmia, conveying a
stroke risk comparable to persistent AF. It poses a significant diagnostic challenge given
its intermittency and potential brevity, and absence of symptoms in most patients. This
pilot study introduces a novel biomarker for early PAF detection, based upon analysis of
sinus rhythm ECG waveform complexity. Sinus rhythm ECG recordings were made from
52 patients with (n = 28) or without (n = 24) a subsequent diagnosis of PAF. Subjects
used a handheld ECG monitor to record 28-second periods, twice-daily for at least
3 weeks. Two independent ECG complexity indices were calculated using a Lempel-
Ziv algorithm: R-wave interval variability (beat detection, BD) and complexity of the
entire ECG waveform (threshold crossing, TC). TC, but not BD, complexity scores were
significantly greater in PAF patients, but TC complexity alone did not identify satisfactorily
individual PAF cases. However, a composite complexity score (h-score) based on
within-patient BD and TC variability scores was devised. The h-score allowed correct
identification of PAF patients with 85% sensitivity and 83% specificity. This powerful but
simple approach to identify PAF sufferers from analysis of brief periods of sinus-rhythm
ECGs using hand-held monitors should enable easy and low-cost screening for PAF
with the potential to reduce stroke occurrence.

Keywords: paroxysmal atrial fibrillation, ECG, Lempel–Ziv complexity, ROC analysis, ECG complexity indices

INTRODUCTION

Atrial fibrillation (AF) is the most frequently encountered sustained cardiac arrhythmia, affecting
about 2% of the population. Its prevalence increases with age, rising to 10% of those aged over
80 years. Moreover, AF is associated with an acceleration of cognitive decline and risk of dementia
(Singh-Manoux et al., 2017). It is also associated with a fivefold increased risk of ischaemic stroke, as
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well as increased stroke severity, mortality and disability relative
to those arising from other causes (Dulli et al., 2003). Moreover,
patients suffering a recurrent stroke are almost twice as likely to
have identifiable AF as those presenting with a primary stroke
(30 vs 17%; Han et al., 2018), although reporting rates are
likely underestimated (Jorfida et al., 2016). In consequence, many
patients discharged after a primary stroke are not prescribed
anticoagulants, but general prophylactic use of anticoagulants
in the absence of an AF diagnosis is not beneficial (Hart
et al., 2018). Currently, AF is detected by continuous or
periodic electrocardiographic monitoring over extended periods
(Kirchhof et al., 2016), using invasive or non-invasive methods
(Seet et al., 2011), which can be costly and require patient co-
operation.

Paroxysmal AF (PAF) is a self-terminating condition with
episodes lasting minutes to days and accounts for 25–60% of
diagnosed AF cases (Seet et al., 2011). Studies indicate that
stroke incidence is similar in patients with PAF or sustained AF
(Banerjee et al., 2013), however, other studies differ (Takabayashi
et al., 2015; Ganesan et al., 2016). Nonetheless, PAF is more
difficult to detect, and when episodes do occur, up to 90% of
those affected have no symptoms (Page et al., 1994), also risking
a greater incidence of associated stroke and thromboembolism
(Hart et al., 2007). There is therefore an unmet need to improve
PAF detection using a non-invasive, low-cost method that could
be used by a greater number of people.

Atrial fibrillation is associated with electrical and structural
myocardial remodeling and autonomic dysregulation of the
heart (Andrade et al., 2014; Nattel and Harada, 2014) which
should be reflected in increased electrocardiogram (ECG) signal
variability. However, changes to ECG characteristics, such as P
wave morphology or heart rate variation, are generally poorly
associated with AF incidence and consequent stroke, especially
for prediction of PAF (Schaefer et al., 2014; Maheshwari et al.,
2019). However, P-wave axis variation is a reasonable predictor
(Maheshwari et al., 2019) and supports the concept that small
variations of the sinus-rhythm ECG waveform might be useful
to predict PAF. A recent study based on machine-learning
systems used sinus rhythm ECG traces to extract an AF-signature
algorithm with specificity and sensitivity of around 0.8 (Attia
et al., 2019), providing further evidence that sinus rhythm ECGs
may contain subclinical signs of AF. However, such an approach
is computationally complex and does not provide information
about specific ECG changes that correlate with AF. The present
work develops a method based on analysis of sinus rhythm
ECG trace complexity and its day-to-day variability. It offers a
simpler tool to screen for PAF and as a novel metric it should
also provide additional information that could be combined with
other approaches.

Non-linear analytical methods are sensitive tools to estimate
the irregularity of biomedical signals and have been used on
electroencephalogram recordings to identify onset of epileptic
seizures, or risk of Alzheimer’s disease (Hornero et al., 2009;
Aarabi and He, 2017). The Lempel-Ziv algorithm (Lempel and
Ziv, 1976; Kaspar and Schuster, 1987) complexity measure is
widely used to estimate the entropy density of symbolic strings
by analyzing the generation rate of new patterns. It has been

widely used to analyze a variety of biological signals, including
neuronal spiking (Amigo et al., 2004), the electroencephalogram
(Abásalo et al., 2015) and human motion (Peng et al., 2014),
and was also proposed as a feasible tool to assess the signal
quality of the ECG (Zhang et al., 2016). The inherently chaotic
nature of the ECG signal in both healthy hearts (Goldberger,
1991; Glass, 2009; Shaffer and Ginsberg, 2017) and during atrial
fibrillation (Qu, 2011; Aronis et al., 2018) suggested the possibility
to use such an estimator for diagnostic purposes. We have used
this approach in a pilot study to combine two independent
parameters of continuous sinus-rhythm ECG waveforms: day-
to-day variabilities of overall signal complexity and also the R-R
interval. We demonstrate that PAF prediction is possible with
very high specificity and selectivity from recordings made with
a simple hand-help device.

MATERIALS AND METHODS

Study Design
Participants were recruited from a larger study that took place
over 2 years and was a 12-week prospective case-control study,
with at least 12-week follow-up. It compared the diagnostic
yield of PAF, in a population with symptoms of possible AF,
using either a continuous automated cardiac event recorder (the
R Test 4 Evolution, Novacor; 1-week test period) or a hand-
held, battery-driven ECG recorder (Omron HCG-801; Omron
Healthcare, United Kingdom). The study was approved by
National Research Ethics Service Committee (12/LO1357) and
the Royal Surrey County Hospital Research & Development
committee. Participants were recruited over 21 months by
primary care physicians in the Waverley Health District.
Participants gave informed consent and were given a study
number to anonymise data. Methods, data collection and storage
were performed according to relevant guidelines and regulations
in the Research Governance Framework for Health and Social
Care (NHS Health Research Authority, 2018) and conformed to
updated (March 2018) United Kingdom Policy Frameworks for
Health and Social Care Research. All primary data were stored in
encrypted and password-protected computers.

Participant Eligibility Criteria and ECG
Collection
Inclusion criteria were: presenting with palpitations or an
irregular pulse; age ≥ 40 years; no history of AF; no electrolyte
abnormalities; no pacemaker device; no prescribed class Ic
or III anti-arrhythmic drugs; no other arrhythmias. Controls
had no evidence of PAF during the study period. Cases had
PAF diagnosed with either device during the main study,
recordings for this sub-study were made prior to initiation of
any antiarrhythmic drug. PAF was defined as AF lasting 30-s to
7 days with spontaneous termination. Fifty-seven patients (30
cases; 27 controls) were recruited. The cardiologist (PH) reported
on ECG data throughout the study and categorized participants
as controls or cases. Table 1 lists demographics, clinical data and
current medications.
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TABLE 1 | Demographic and clinical data.

Controls (n = 24) Cases (n = 28)

Age, years 66.3 ± 9.9 70.8 ± 7.4

Male:Female 8M:16F 8M:20F

Systolic BP, mmHg 136 ± 21 143 ± 20

Diastolic BP, mmHg 79 ± 13 76 ± 13

Heart rate, min−1 74 ± 10 71 ± 11

BMI, kg.m−2 25.1 ± 4.3 26.8 ± 4.5

CHA2DS2-VASc score 2.1 ± 1.5 2.3 ± 1.3

Smokers 3 6

Excess alcohol 3 2

Diabetes mellitus 1 0

Ischaemic heart disease. 1 4

Cardiac failure 0 0

Stroke/TIA 0 1

Dyslipidaemia 9 11

Total medications 1.8 ± 1.7 3.3 ± 2.7*

All antihypertensive agents 9 10

β-blockers 0 10*

Warfarin 2 1

Aspirin/clopidogrel 0 10*

Mean values ± SD or numbers within each cohort. CHA2DS2-VASc score
calculated from Lip et al. (2010); BMI, basal metabolic index; TIA, transient
ischaemic attack; all antihypertensives exclude β-blockers. *p < 0.05 χ2-test.

Participants recorded 28-s ECG periods (strips) with the
Omron recorder twice-daily in a rested state whilst sitting,
at roughly 12-h intervals, initially over a period of 5 weeks
although some provided more. Initial data evaluation from eight
control and seven case participants showed at least 30 strips
per participant were required, more provided little additional
benefit – see Results. Subsequently, participants were asked to
provide recordings over 3 weeks (42 strips) – the signal-to-
noise ratio was 15–20 dB. From 57 original participants, 52 (28
cases; 24 controls) provided ≥33 strips for analysis. Four were
excluded because four participants provided <30 strips and with
one participant base-line drift and extraneous electrical noise
during recording was present. The cardiologist also confirmed
that traces were representative of sinus rhythm, with no evidence
of AF or ventricular abnormalities (dysrhythmias, ectopics, or
abnormal waveforms).

Conversion of ECG Recordings to Binary
Strings and Analysis
The Omron device is a bipolar, single-channel recorder sampling
at 125 Hz with signal bandwidth 0.05–40 Hz. Analyses were
enabled by custom-built programs developed in C++ using a Qt
framework1. The first used documentation provided by Omron,
under a non-disclosure agreement, that converted recordings
from the proprietary file format to comma-separated-values
(csv) text files. Files retained only anonymised information
essential for further data processing. The second analyzed csv
files by converting floating-point ECG recordings into binary

1http://www.qt.io

strings, to calculate Lempel–Ziv complexity scores (CS) using two
algorithms (Figures 1A,B).

The TC method used a threshold-crossing algorithm replacing
all values above a threshold by “1” and setting the rest to “0.”
The median value of each strip was used as a threshold due to
its insensitivity to outliers. The BD (beat detection) method used
a QRS complex detection algorithm that assigned a unitary value
for each R peak. The first derivative (dV/dt) of the ECG voltage
was generated and smoothed, by a process of convolution with
a digital Savitsky-Golay filter (Savitzky and Golay, 1964) with a
window size of “5,” that increased precision without distorting the
signal (Nishida et al., 2017; Sadeghi and Behnia, 2018). A sliding
window corresponding to 6 s of strip duration was moved along
the signal and the maximum value of dV/dt (dV/dtmax) was
found within the window. Then the first sample within the
window which satisfied two criteria was taken as the R-peak time
and assigned a value of “1,” with all other points a value of “0.”
The criteria were: i) dV/dt > 0.7∗dV/dtmax in the window and
ii) dV/dt is greater than both preceding and succeeding values.
The window was then advanced and the process repeated. This
simple technique was acceptable in recordings lacking artifacts
and rhythm irregularities and the algorithm is at heart rates below
100 min−1 (Alexeenko et al., 2019). In this study heart rates for
all participants were <100 min−1 [controls; 74 ± 2 (SEM, range
60–91) min−1, n = 24: cases; 73 ± 1 (SEM, range 59–88) min−1,
n = 28].

Lempel-Ziv Complexity and the Final
Outcome Measure, the h-Score
Lempel-Ziv (LZ’76) complexity is a non-linear signal analysis
method to estimate sequence complexity (CS; Lempel and Ziv,
1976) by identifying the number of different sub-sequences and
their recurrence rate (Radhakrishnan and Gangadhar, 1998).
The ECG time series, x(i) was converted to a discrete, binary,
sequence, P = s(1),s(2) by comparing x(i) with a threshold Td with
s(i):

s (i) =
{

0 if x (i) < Td

1 if x (i) ≥ Td
(1)

LZ’76 complexity was estimated by scanning P from left to
right and increasing a complexity counter c(n) with every new
sub-sequence (Lempel and Ziv, 1976; Kaspar and Schuster,
1987). To achieve independence of c(n) from sequence length
(n), the number of unique sub-sequences was normalized to
the n/log2(n) = b(n) value (Hand, 1981; Figure 1B), i.e.,
CS(n) = c(n)/b(n). Thus, CSTC and CSBD scores were generated
for each strip. Next variability (varCSTC or varCSBD) scores
for each patient were calculated as CS variability discriminated
better between the two cohorts. Thus varCSTC = 6(iCSTC–
meanCSTC)2, where iCSTC is an individual CS (same for CSBD).
The final discriminant measure, the h-score was calculated and
reflects the independent variability of CSTC and CSBD scores for
each participant during sinus rhythm. With a constant, k

h− score =
√

varCS2
TC + k.varCS2

BD (2)
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FIGURE 1 | ECG analysis techniques. (A) The two methods to convert a digitised ECG recording to a binary string. Threshold Crossing (TC) substitutes “1” for all
values equal to or above a median threshold and sets all other values to “0.” Beat Detection (BD) sets all values of a binary string to zero except at time-points where
the R-wave peak is detected; to R-waves are marked on the trace. (B) The binary strings were split into a set of unique substrings (LZ’76 complexity analysis); the
final complexity score was normalized to the length of the recording. (C) Flowchart of ECG processing to obtain a final discriminating h-score.

A flow chart of the analysis is shown in Figure 1C, see Results for
calculation of k.

The enclosed Supplement contains the source code for the
LZ’76 complexity estimator used in this analysis. The Supplement
also includes data sets used for validation as well as the expected
program outputs.

Statistical Analysis
Not all summary data sets for CSTC/CSBD, their derived
variability scores or the final h-score were normally distributed
(Shapiro-Wilks tests) and so these data are quoted as medians
with 25 and 75% interquartiles. Differences between controls
and cases cohorts were calculated with Mann–Whitney U-tests:
the null hypothesis was rejected at p < 0.05. Mean values of
CSTC/CSBD for each participant were used to calculate varCSTC
or varCSBD scores. Intra-subject analyses showed CSTC scores
were normally distributed, except for one in each cohort with
excess kurtosis (k) > 1. For CSBD scores, k > 1 with two
controls, 12 cases; skewness (s) > | 1| for two cases participants.
Categorical data sets were compared with a χ2-analysis. Receiver-
Operating Characteristic (ROC) empirical curves described test
characteristics, with area-under-the-curve (AUC) as a summary
statistic2. Significance between different AUCs was also tested3.
The operating point of the final AUC for the h-score was the point
where a 45◦ line is tangent to the ROC curve. A Spearman rank-
order correlation coefficient, rs, was calculated to test association

2http://www.rad.jhmi.edu/jeng/javarad/roc/JROCFITi.html
3http://vassarstats.net/roc_comp.html

between two variables. Data summaries and statistical analyses
were performed using Excel or Vassar Stats.

RESULTS

Participant Characteristics
Participants were divided into cases or controls who did or did
not show eventual evidence of paroxysmal atrial fibrillation, but
during recording were in sinus rhythm. The two cohorts were
statistically similar for all demographic and relevant clinical data
(Table 1). Pharmacotherapy showed that total medications in the
cases cohort were greater, in particular for β-blockers (10/28 vs
0/24) and aspirin/clopidogrel (9/28 vs 0/24). Initial sub-analyses
revealed no differences in ECG complexity metrics in the cases
cohort between those taking β-blockers or aspirin/clopidogrel
and those who did not, thus all data in this cohort were combined.

Complexity Score Values
Digitised ECG strips were downloaded and the two Lempel-
Ziv CSs (CSTC and CSBD, see section “Materials and Methods”)
calculated. An initial evaluation of the number of strips required
from each participant was carried out with 15 participants
(controls n = 8; cases n = 7) who all provided more than 75 strips.
Average CSTC was calculated for each participant with the final
strip successively removed until only the first 10 were used. The
p-value for the difference between the two cohorts showed that
discrimination was increasingly lost with fewer than 30 strips
per participant (Figure 2A). The inset shows the mean of CSTC
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FIGURE 2 | TC and BD complexity scores. (A) p-values of differences between mean CSTC values between a group of controls (n = 8) and cases (n = 7) participants
who each offered >75 ECG strips. p-values calculated after successive final strips from the first 70 strips were removed. The horizontal line shows the value for
p = 0.05. The inset shows mean values of the CSTC values for these subsets of participants, *p < 0.05. (B) Dot plots of CSTC scores of individual ECG traces (strips)
from 24 controls and 28 PAF cases. Horizontal lines mark the median values of scores, ***p < 0.001. (C) Dot plots of median CSTC (upper) and median CSBD (lower)
values for individual participants. The horizontal lines through the data points show median values of each set; *p < 0.05. (D) ROC curves using CSTC and CSBD for
discrimination between controls and cases cohorts; AUC values shown by each curve.

values from the two cohorts when the first 35 strips from each
patent were used.

The median CSTC score off all strips from 24 control and 28
cases participants was significantly greater in ECG strips from
cases vs controls [0.488 (0.434, 0.548) bits/sec, n = 1571 ECG
strips vs 0.464 (0.410, 0.515) bits/sec, n = 1392; p < 0.001:
Figure 2B]. Median CSBD scores in both cohorts were the

same although the two sets were significantly different due a
greater range of values in the cases cohort [0.0437 (0.0404,
0.0471) bits/sec, n = 1571 vs 0.0437 (0.0404, 0.0471) bits/sec,
n = 1392; p = 0.039]. However, neither score alone provided a
useful discriminator due to the considerable overlap of values
between the two cohorts, as exemplified by the CSTC data sets
in Figure 2B.
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Mean values of CSTC and CSBD for each participant were
calculated: mean-CSTC values remained significantly (p = 0.039)
different between cases and controls (Table 2) but mean-CSBD
scores were not significantly different (p = 0.92); Figure 2C.
The usefulness of mean CSTC and CSBD scores for identifying
future PAF subjects was assessed using a ROC curve analysis
(Figure 2D); neither was a good discriminator between cases and
controls with respective area-under-the-curve (AUC) values of
0.662 and 0.523 (Table 2).

Variability of CS Scores
Variability of individual CSTC and CSBD values (varCSTC or
varCSBD; units, (bits/sample)2 for a participant were greater
in the cases cohort compared to those in the control cohort.
Generally, those in the control cohort had fewer outliers and
more uniform complexity values than those in the cases cohort.
Figure 3A shows examples of CSTC, CSBD and respective
varCSTC or varCSBD values from a control participant (§24),
who showed little variability, and a cases participant (§8) with
more variability. Median varCSTC or varCSBD values were both
significantly greater for the cases cohort (p = 0.00147, p = 0.00148,
respectively, Figure 3B and Table 2). ROC curve analysis of
varCSTC and varCSBD performance as binary classifiers showed
increased AUC values over the base CS scores (Figure 3C). The
varCSTC AUC = 0.740, but was not statistically different from the
CSTC value (p = 0.22). However, the varCSBD AUC (= 0.798) was
significantly (p = 0.001) improved.

Calculation of the Final Discriminant
Score
A key observation was that varCSTC and varCSBD values were
uncorrelated for data from a particular participant. Figure 4A
plots Spearman correlation coefficients (ρ) and corresponding
p-values for varCSTC and varCSBD pairs from individual
participants. There was no significant association between these
two variance scores for any individual, except for two (in the
cases cohort) where significance was just achieved. Overall, the
two variance scores could be used as independent variables.
The mean values of varCSBD vs varCSTC (Figure 4B, top)
showed a clustering of data from the control cohort in the
lower left-hand quadrant. Also shown is an ellipse function
that optimally separates data points from the two cohorts and
with intersections on the two axes at varCSTC = 4.546.10−3

and varCSBD = 3.77.10−5 (Figure 4B, top – arrowed). To

weight equally the two variance measures, varCSBD values were
normalized by multiplying by k = 120.6; the ratio of the two
intercepts. Figure 4B (lower) shows the data transformation now
with a circle fit of radius 0.00455 bits/sample2; note that only the
sub-set of data points near the circle boundary is shown.

Finally, to reduce the dimensionality of the data a coordinate
transform (Hand, 1981) was applied to produce a single h-score
which quantified the compound variability of CSTC and CSBD
for a participant as the length of the vector from the origin
to a particular datum point. Values of h-scores are shown in
Figure 5A with the decision threshold for the h-score = 4.5·10−3

shown by the solid horizontal line. Controls and cases were
separated with 89% sensitivity (true positive rate) and 83%
specificity (true negative rate). ROC curve analysis demonstrated
the further superiority of the h-score (p = 0.11 vs varCSTC and
p = 0.049 vs varCSBD) as the discriminant with an AUC = 0.919
(C.I. 0.844–0.994); Figure 5B and Table 2.

Figures 4B, 5A show that several of the patient h-scores lie
close to the discriminant boundary (h-score = 4.5·10−3) and a
small variation of this value could have important consequences
of sensitivity and selectivity estimations. The horizontal dotted
lines of Figure 4C show values of the h-score varied by
±5 and±10%.

A decrease of the h-score would decrease the number of false
negatives but increase the number of false positives. For a 5
and 10% decrease, sensitivity was either unchanged or increased
to 93%, respectively, but specificity was reduced to 71 or 58%,
respectively. For a 5 and 10% increase, sensitivity fell to 79 or 71%,
respectively, but with increased specificity to 92% in both cases.

The CHA2DS2-VASc score is used to estimate stroke risk
in patients with non-rheumatic AF and may offer a further
independent score to predict the occurrence of PAF. Any
association between the CHA2DS2-VASc score and the h-score
was tested by calculation of a Spearman rank-order correlation
coefficient, ρ: there was no statistical association for the whole
data set (ρ = −0.0443, p = 0.758, n = 52). Thus, combination
of the h-score with the CHA2DS2-VASc score would not provide
further discrimination between the two cohorts.

DISCUSSION

This study shows that analysis of ECG entropy, using LZ’76
complexity, has potential for diagnosing PAF from sinus rhythm

TABLE 2 | Complexity scores (CS) for threshold crossing (TC) and beat detection (BD), their derivative variabilities, varCSTC and varCSBD, as well as final h-scores for
data from controls (n = 24) and cases (n = 28) cohorts.

Controls Cases AUC (C.I.)

CSTC 0.470 (0.436, 0.502) 0.504 (0.469, 0.542)* 0.662 (0.511–0.813)

CSBD 0.0443 (0.0414, 0.0459) 0.0439 (0.0409, 0.0472) 0.490 (0.329–0.651)

varCSTC 3.23 (2.43, 3.64)·10−3 4.21 (2.84, 5.38)·10−3** 0.740 (0.604–0.876)

varCSBD 2.05 (1.75, 2.60)·10−5 3.15 (2.43, 3.94)** 0.798 (0.677–0.919)

h-score 3.87 (3.39, 4.37)·10−3 5.93 (4.85, 7.06)·10−3*** 0.919 (0.844–0.994)

Data are medians (25,75% interquartiles); *p < 0.05, **p < 0.01, and ***p < 0.001. The final column shows AUC estimations from ROC curve analysis and 95% confidence
intervals (C.I.) of differentiation between the two cohorts.
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FIGURE 3 | Variability of CSTC and CSBD. (A) Data from for a ‘control (§24)’ and a ‘cases (§8)’ participants. Shown (top to bottom) are CSTC, CSBD, varCSTC and
varCSBD values over the recording period. (B) Values of median varCSTC and varCSBD for each participant in the control and cases cohorts; **p < 0.005. (C) ROC
curves for varCSTC and varCSBD for discrimination between controls and cases cohorts. AUC values shown by each curve.

ECGs. Analysis of at least 30 half-minute strips per patient,
acquired using an inexpensive handheld ECG monitor in patients
whilst in sinus rhythm, produced a final score (the h-score)
based on individual variability of two ECG complexity measures,
CSTC and CSBD. Mean CSTC scores were statistically different
in cases compared to control, whereas mean CSBD scores were
not, but alone they provided poor discrimination between the
two cohorts. Generation of the h-score depended on two key
observations of this pair of CSs. First, variability of both CSTC and
CSBD (varCSTC and varCSBD) on a day-to-day basis were greater
in the cases cohort compared to controls (Figure 3 and Table 2).
Second, varCSTC and varCSBD were independent measures of
complexity which enabled generation of a final h-score that
provided excellent discrimination between the two cohorts with
83% specificity and 89% sensitivity. The h-score is an absolute
value derived from this pilot study of a relatively small cohort
of 52 patients, so that a larger study will generate a value with
greater confidence. The observation of greater variability of ECG
complexity in patients at risk of PAF implies that their atria show
subtle electrophysiological changes that, without immediate gross
pathophysiological consequence, provide a substrate or trigger
for a period of atrial fibrillation.

Participant compliance was good, 93% provided sufficient
numbers of recordings and only one provided data that could

not be analysed. The requirement to produce short recordings
in a restful home-setting, using a hand-held device will have
contributed to this high rate of participation. Because, the key
component of the analysis is measurement of CS variability on
a day-to-day basis to generate a discriminant score, fewer but
longer individual recordings may not be useful. An alternative
refinement may be to determine if multiple-lead ECGs or
alternative complexity estimates are better, but this remains
to be explored. Other strategies might be derived to process
higher quality recordings, for example, using more complex ECG
parsing techniques but simpler analysis methods (Alexeenko
et al., 2020). The method also required a cardiologist to
scrutinize ECG traces before analysis to exclude abnormalities,
and although they are relatively uncommon in a general
population (Sirichand et al., 2017) a fully automated process
would need some preliminary screening process (see Limitations,
below). Finally, combination with other approaches, including
biomarkers such as brain natriuretic peptide (Rodríguez-Yáñez
et al., 2013) or AF-related stroke-risk scores might also provide
further discrimination. However, combination of the h-score
with CHA2DS2-VASc scores provided no improvement of
selectivity or sensitivity.

The relative simplicity of this predictive method makes it
suitable for population screening of at-risk groups or those who
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FIGURE 4 | Independence of varCSTC and varCSBD and their values for controls and cases. (A) Dot plots of Spearman rank correlation coefficient, ρ, (upper) and
calculated p-values (lower) of varTC-varBD relationships in the controls and cases cohorts. Lower plot: dotted line represents the p-value of 0.05; note the logarithmic
ordinate scale. (B) Upper: plot of varCSBD vs varCSTC values for controls (blue circles) and cases (red circles). The curve is an ellipse that optimally separates data
from controls and cases cohorts, arrows mark the intercepts with axes, used to estimate a scaling factor for the varCSBD data – see text for details. Lower plot:
transformed data where the varCSBD data are multiplied by a constant, k, to allow a circle function to optimally separate data from controls and cases cohorts – see
text for details.

cannot co-operate easily with clinical tests. The method may also
be applied to analyze previously-collected data, e.g., to investigate
links between subclinical AF and cryptogenic stroke (Healey
et al., 2012) or development of dementia, when early screening
would be especially useful (Cuadrado-Godia et al., 2020).

Methods of Atrial Fibrillation Detection
This method of AF prediction, using simple and unambiguous
ECG parsing algorithms coupled to second moment analysis of
short and relatively low-quality ECGs recorded by hand-held
devices may be compared to other methods that measure existing
AF and potentially predict its occurrence. Measurement of
existing AF is continuously improving and achieves similar
sensitivity and selectivity to that recorded here, even with
hand-held devices (Svennberg et al., 2015; Marinucci et al.,
2020); however, their use to record paroxysmal AF is limited.
Alternatively, analysis of risk factors that combine demographic

features, simple clinical tests and plasma biomarkers, through
generation of machine-learning models are increasingly
sophisticated (Ambale-Venkatesh et al., 2017; Hill et al., 2019).
They have the advantage of yielding pathological insight
but require sophisticated resources and thus far are less
sensitive and selective.

More precise electrophysiological approaches are also being
developed. Machine-learning methods for PAF detection use
retrospective analysis of freely available clinical ECG recordings
or clinical databases. These are often based on detection
and classification of atrial premature beats and other ECG
abnormalities (Thong et al., 2004), or from interval analysis
of atrial or ventricular depolarisations (Ghodrati et al., 2008;
Mohebbi and Ghassemian, 2012; Xin and Zhao, 2017; Aronis
et al., 2018), with specificity and sensitivity ranging between
71–93% and 85–96%, respectively, but requiring recording
periods up to 30 min. However, convolutional neural networks
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FIGURE 5 | Distribution of h-scores and final discriminant analysis. (A) Dot-plot of h-scores for controls and cases. The horizontal line is the value for h that optimally
separates data from the controls and cases cohorts. The dotted lines represent ±5 and ±10% changes to the h-score. (B) ROC curve for h-scores to discriminate
between controls and cases cohorts. AUC value shown by the curve. The operating point (OP) is shown by the arrow.

achieve accuracy of detection in the range 75–95% using shorter
recording periods of detection (Hsieh et al., 2020; Nurmaini et al.,
2020). Finally, machine-learning predictive methods using sinus
rhythm recordings are also being developed with sensitivity and
selectivity around 83% (Attia et al., 2019).

A Health Economics Perspective
An estimate of net monitoring costs for AF over 1 week after
an ischaemic stroke, has been estimated to be about $530,000
at today’s costs (Kamel et al., 2010). Outlay for 1,000 re-useable
hand-held monitors of about $125,000, plus employment of
a biometrics analyst represents a large saving to health-care
systems to identify vulnerable patients at risk of subsequent
strokes from PAF.

Limitations
(i): Due to the nature of PAF and with intermittent monitoring,
some individuals assigned as controls may have undetected PAF.
All cases had at least one PAF episode during the study period,
but some controls may have experienced PAF at greater intervals.
(ii): Recorded co-morbidities were similar in both groups, but
more cases than controls took β-blockers and/or aspirin or
clopidogrel. (iii): Participant compliance; of the original 57
participants two each of controls and cases supplied < 30 strips
for analysis and with one control artifacts precluded analysis. (iv):
External electrical noise, e.g., from electromyographic activity
of the participant’s hand, could add to the ECG signal and

if excessive alter the TC complexity score (CSTC). We added
noise to 15 ECG trace segments from 10 random participants
(five each of controls and cases) and recalculated CSTC. It
showed that when noise exceeded 181 µV SD (equivalent to
a signal-to-noise ratio of 15.9 dB) mean complexity scores
were altered by more than 2.5%. Therefore, the analysis will
be useful for signals with a signal-to-noise ratio > 15.9 dB.
(v): The nature of this pilot study precluded recruitment of
additional patients comprising a validation cohort, so this
remains a proof-of-principle study. A larger case-control study
is required to validate the predictive power of the h-score. (vi):
The BD algorithm used in this study was sufficiently robust to
detect specifically R-waves in ECG traces showing sinus rhythm.
However, ventricular dysrhythmias or waveform abnormalities,
such as bigeminy or T-wave alternans, may be confounders that
contribute false positives. In this proof-of-principle study, clinical
evaluation would have excluded such traces; however, this would
be unsuitable for a fully automated process. We envisage the
next phase is to incorporate a preliminary ECG parsing step, for
example with a Pan-Tompkins parser (Pan and Tompkins, 1985),
supplemented with an autocorrelation analysis, to identify traces
with these potential confounders.

CONCLUSION

We describe a link between increased variability of ECG
complexity in sinus rhythm recordings and PAF incidence and
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propose a novel score to quantify PAF risk. We envisage this
score would enable low-cost screening for PAF based on short
periods of ECG recording in a primary care setting or built into
hand-held devices. We anticipate such screening would improve
detection of PAF relative to currently available techniques (Choe
et al., 2015). This may contribute to a reduction of AF-related
mortality that, unlike for heart failure, continues to rise, at least
in Europe and United States (Vasan et al., 2019).
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