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Immune checkpoint genes (ICGs) play pivotal roles in tumor immune microenvironment (TIME), and thus, targeting them
represents a promising strategy for cancer immunotherapy. However, the genetic landscape of ICGs in lung adenocarcinoma
(LUAD) is still unknown. Herein, we comprehensively evaluated the ICG expression profiles of 1439 LUAD samples and
linked ICG expression patterns with infiltration of immune cells, clinical features, and response to immune checkpoint
blockade (ICB). The ICGscore was developed to quantify ICG expression patterns of individual patient by principal
component analysis algorithms. Three distinct ICG expression patterns and three ICG-related genomic clusters were
determined, which were implicated in different clinical outcomes, level of immune infiltrates, and biological process. LUAD
patients were subdivided into high- and low-ICGscore subgroups. Patients with higher ICGscore were characterized by
favorable survival outcomes, increased immune cell infiltration, and enhanced expression of ICGs. Further analysis revealed
that lower ICGscore was associated with greater tumor mutation loads and higher mutation rates of TTN, KEAP1, and ZFHX4.
High ICGscore has the potential to be a robust indicator in clinical benefit of immunotherapy. Taken together, unraveling
the ICG expression patterns will advance our understanding of heterogeneity of TIME and guides more effective
immunotherapeutic strategies in LUAD.

1. Introduction

Immune checkpoint system, as an important immune inhib-
itory signaling, participates in maintaining the immune
homeostasis in humans and modulating the intensity of
the immune response in peripheral tissues, as well as con-
trolling tolerance against self-antigens [1, 2]. Immunother-
apy currently in clinical use is aimed at reversing the
immunosuppressive tumor environment by various immune
checkpoint inhibitors (ICIs) [3]. Beyond these classic
immune checkpoint factors, several novel immune check-
point genes (ICGs) were successively found one after
another [4–6]. The biological interplay between tumor cells
and the immune system is orchestrated by a complex set of

regulatory networks. Immune system is required to maintain
the appropriate balance between T cell activation to defend
against tumor cells and preventing autoimmunity, which is
tightly regulated by an array of cell surface receptors and
ligands [7]. To achieve an optimal effector function, T cells
require at least T cell receptor (TCR) activation (signal
one) and costimulation (signal two). The first signal is
mediated by the interaction of TCR with antigen peptides
presented by the major histocompatibility complex (MHC)
[8]. A second synergistic signal is supported by T cell costim-
ulatory receptor and its ligands on antigen-presenting cells
(APCs) such as CD80-CD86, CD40 ligand-CD40, and
ICOS-ICOS ligand [9, 10]. Meanwhile, immunoinhibitory
receptors and its ligands (e.g., CTLA-4-CD80, PD1-PD-L1)
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play a pivotal role in inhibiting T cell activation and mainte-
nance of immune tolerance [11]. These immune checkpoints
are essential for establishing immune homeostasis, eradicating
pathogens efficiently, and protecting organs from unnecessary
damage [12]. Therefore, dissecting the genetic landscape of
immune checkpoint pathway can facilitate our understanding
of its dysregulation in tumor and provide unique opportuni-
ties for antitumor immunity.

To survive in immune pressure, various solid tumors
including non-small-cell lung cancer (NSCLC) develop
several mechanisms to escape from immune surveillance,
mainly through expressing immune checkpoint molecules
[13]. Lung adenocarcinoma (LUAD), the most common
subtype of NSCLC, is characterized by high mutation rate
of driver genes including KRAS, EGFR, MET, BRAF, ALK,
and TP53 [14]. Further, high tumor mutation burden
(TMB) and strong immunogenicity were observed in LUAD
patients [15]. Currently, the advent of ICIs provides unprec-
edented opportunities for NSCLC patients with no candidate
driver gene mutation or acquired resistance to targeted ther-
apies [16]. PD-1 blockade pembrolizumab has received FDA
approval as first-line therapy for advanced NSCLC with
>50% tumor cells expressing PD-L1 [17, 18]. However, clin-
ical benefits from ICIs (anti-PD-1/L1 or anti-CTLA4) have
been observed in only a minority of patients. Hence, evalua-
tion of novel biomarkers or prediction signatures to define
the appropriate subgroups of patients who can clinically
benefit from ICIs is warranted. Concomitantly, the efficacy
of immunotherapy is greatly influenced by the complex
tumor immune microenvironment (TIME) such as infiltrat-
ing immune cells, cancer-associated fibroblast, and cross-
talks with immune checkpoint pathways [19, 20], which
indicates a critical need for a deeper understanding of how
immune checkpoint molecules orchestrate the TIME land-
scape heterogeneity.

In this study, we reported a comprehensive analysis of
immune cell infiltration patterns mediated by multiple
immune checkpoint molecules through integrating the
genomic and gene expression profiles of 1439 LUAD sam-
ples based on The Cancer Genome Atlas (TCGA) LUAD
dataset and Gene Expression Omnibus (GEO) database.
Herein, we delineated the genetic alteration landscape of
ICGs and identified three distinct immune checkpoint
patterns in LUAD. Additionally, we established a scoring
scheme to quantify the immune checkpoint patterns in
individual tumors for predicting the prognosis of LUAD
patients. Our findings highlighted that the immune check-
point pathway plays an integral role in modulating
individual TME features, molecular typing, and individual
management of LUAD.

2. Materials and Methods

2.1. LUAD Dataset Source and Preprocessing. The public
transcriptome expression data and clinical information of
LUAD samples were obtained from TCGA (https://
cancergenome.nih.gov/) and GEO (https://www.ncbi.nlm
.nih.gov/geo/) database. A total of 1439 LUAD patients were
collected for analysis, including the TCGA-LUAD dataset

(N = 535), GSE72094 cohort (N = 442) [21], and GSE68465
(N = 462) [22]. Patients without complete clinical data were
excluded from all analyses. We directly downloaded the nor-
malized matrix expression files for GEO microarray data. As
to the TCGA-LUAD dataset, RNA sequencing data (FPKM
values) were downloaded from TCGA Genomic Data Com-
mons (GDC, https://portal.gdc.cancer.gov/) and then trans-
formed into transcripts per kilobase million (TPM) values.
To eliminate batch effects among different GEO datasets,
we performed batch effect correction using the “Sva” R pack-
age [23]. The somatic mutation and copy number variation
(CNV) data of LUAD were acquired from TCGA database
and UCSC Xena database (http://xena.ucsc.edu/), respec-
tively. We plotted the CNV landscape of ICGs in human
chromosomes by R package “RCircos.”

2.2. Consensus Molecular Clustering of ICGs. Due to the few
ICGs annotated by GPL96 platform, we did not include the
GSE68465 dataset for clustering analysis. We conducted a
systematic literature review and identified 43 prevalent ICGs
in LUAD for further analysis (Supplementary Table S1). ICGs
are a series of receptors and their ligands that act as active
signal, inhibitory signal, or both to induce immune response
[24]. We performed unsupervised clustering analysis to
identify distinct ICG expression patterns according to 43 ICG
expression and stratified LUAD patients into different
molecular subtypes for further analysis. The best-fitting
number of clusters was determined based on cluster stability,
cophenetic, dispersion, and silhouette. The R package
“ConsensusClusterPlus” was applied to conduct the
consensus clustering with 1000 times repetitions [25].

2.3. Gene Set Variation Analysis (GSVA) and Estimation of
Immune Cell Infiltration. To explore the biological factors in
different ICG patterns, we utilized GSVA enrichment analysis
with R package “GSVA.” The gene set of “c2.cp.kegg.v7.2.sym-
bols” was downloaded from the MsigDB online database
(http://www.gsea-msigdb.org/gsea/downloads.jsp). The top
biological 20 terms were selected with adjusted P < 0:05. The
single-sample gene-set enrichment analysis (ssGSEA) algo-
rithm was adopted to estimate the abundance of 23 immune
cell infiltrations in LUADTIME. Gene panel for each immune
cell type was acquired via referencing the reported literature
[26]. The enrichment scores for each sample were calculated
and normalized to the range of expression from 0 to 1.

2.4. Screening of the Differentially Expressed Genes (DEGs)
between Distinct ICG Phenotypes and Functional Enrichment
Analysis. To determine ICG-related differentially expressed
genes (DEGs) among different ICG clusters, the “limma”
method was applied to identify DEGs with the filtering criteria
of adjusted P < 0:001 [27]. Functional annotation of DEGs by
gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses was performed with
R package “clusterProfiler,” “org.Hs.eg.db,” “enrichplot,”
and “ggplot2.” The top 30 biological terms were shown
with P < 0:05.

2.5. Generation of the ICG Signature Score. We developed an
ICG signature score (ICGscore) to quantify the ICG
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expression pattern of individual patients with LUAD using
principal component analysis (PCA). Briefly, the overlapping
DEGs among different ICG clusters were extracted and then,
a univariate Cox regression model was employed to perform
prognosis analysis for further screening with Cox P < 0:01.
The genes that were significantly correlated with overall sur-
vival (OS) were extracted for further analysis (Supplementary
Table S2). PCA was carried out based on the expression
profiles of selected gene. Principal component 1 (PC1) and
principal component 2 (PC2) were extracted to calculate
ICGscore. The formula we defined was similar to previous
studies [28, 29]: ICGscore =∑ðPC1i + PC2iÞ, where i
represents the expression of ICG-related genes.

2.6. Correlation between ICG Signature Score and Immune
Cell Infiltration, TMB, and Immunophenoscore (IPS). The
associations of ICGscore with immune cell infiltration were
assessed according to the results of ssGSEA using spearman
correlation analysis. We calculated TMB scores of each sam-
ple based on TCGA LUAD mutation data. Charoentong
et al. developed a scoring scheme to quantify tumor immu-
nogenicity termed immunophenoscore (IPS) using machine
learning [26]. IPS was generally considered the indicator for
ICI response. We collected the immunophenoscores of
TCGA LUAD patients from The Cancer Immunome Atlas
(TCIA) online tool (https://tcia.at/). Herein, a comparison
of IPS between low and high ICGscore was carried out based
on CTLA-4 and PD-1 expression status.

2.7. Statistical Analysis. All statistical analyses in this study
were processed by R-4.0.1. Statistical comparisons between
two groups were calculated using the Wilcoxon rank test,
while comparisons between three or more groups were per-
formed by Kruskal-Wallis tests. Regarding the survival anal-
ysis, we employed the R package “survival” and “survminer”
for Kaplan–Meier analysis. The “surv-cutpoint” function
was adopted to define the optimal cutoff for dividing sam-
ples into high and low subgroups. The CNV landscape of
ICGs in human chromosomes was plotted by R package
“RCircos.” The waterfall plot was visualized with R package
“maftools” to present the mutation profiles in low- and high-
ICGscore subtype. All statistical comparisons were two-
tailed, with a statistically significant P value < 0.05.

3. Results

3.1. Landscape of Genetic Variation of ICGs in LUAD. In our
study, we focused on the roles of 43 representative ICGs in
LUAD. In the TME, antitumor immune response is finely
tuned by complex costimulatory and coinhibitory signals
among tumor cells, T cells, and antigen-presenting cells
(APC), which are responsible for driving or dampening the
antitumor immune response (Figure 1(a)). We further con-
ducted Metascape GO analyses of 43 ICGs, and networks
of significant enrichment biological processes are displayed
in Figure 1(b). Among 561 TCGA LUAD samples, 133 cases
harbored ICG mutations at a frequency of 23.71%. Our find-
ings showed that KIR3DL1 exhibited the highest mutation
frequency followed by CD86 and CD226, while VSIR, PVR,

ICOSLG, and CD70 did not present any known mutation
(Figure 1(c)). CNV alteration analysis revealed that amplifi-
cations in copy number of most ICGs were observed. In con-
trast, a small number of genes (e.g., PD-L1, PD-1, LAG3,
VTCN1, and TNFSF9) had a wide range of CNV deletions
(Figure 1(d)). Intriguingly, CEACAM1 mutation was associ-
ated with high expression of PD-L1, PD-1, and CTLA-4
(Figure 1(e)), indicating CEACAM1 mutation status might
serve as a potential biomarker for predicting response to
immunotherapy. Additionally, CD96 mutation substantially
decreased the expression of CD96 and CTLA-4 (Supplemen-
tary Figure 1). RCircos plot further showed the distribution of
CNV alterations of several ICGs on human chromosomes
(Figure 1(f)). Further differential expression analysis
demonstrated that 37 of 43 ICGs were aberrantly expressed
in LUAD at mRNA level (Figure 1(g)). Univariate Cox
regression analysis and Kaplan–Meier (KM) curves were
employed to investigate the prognostic value of ICGs for
LUAD patients. The results of prognosis analysis of ICGs are
presented in Supplementary Table S3. The above results
depicted the overall genetic variation and expression
difference landscape of ICGs, which further supported the
prominent role of ICGs in mediating LUAD occurrence
and progression.

3.2. Identification of Distinct ICG Expression Patterns in
LUAD. We combined two GEO datasets (GSE72094 and
GSE68465) and TCGA-LUAD cohort to create a final meta-
cohort. The crosstalk involving in host antitumor immune
responses between costimulatory and coinhibitory signal
was complex. The comprehensive interaction profile of
ICG correlations and their prognostic value for LUAD
patients were visualized as the checkpoint regulator network
(Figure 2(a)). We next performed consensus clustering analysis
to classify LUAD samples into different ICG patterns, and three
distinct ICG clusters were identified using unsupervised cluster-
ing (Figure 2(b) and Supplementary Figure 2). We named these
clusters ICGclusters A-C and principal component analysis of
ICGcluster showed obvious segregation among three ICG
clusters (Figure 2(c)). A striking difference of ICG expression
profile was observed between distinct ICG clusters.
ICGcluster-A displayed the lowest checkpoint gene
expression, while ICGcluster-B exhibited the highest relative
abundance of checkpoint genes (Figure 2(d)). Survival
analysis further demonstrated that ICGcluster-A had the
worst prognosis in the metacohort (Figure 2(e), P = 0:002,
Log-rank test).

3.3. The Distinct ICG Expression Patterns Characterized by
Immune Cell Infiltration. To investigate the biological pro-
cess among these distinct ICGs patterns, heat map showed
differences in biological pathway activities determined by
GSVA between different ICG clusters. As shown in
Figure 3(a), compared with ICGcluster-A, ICGcluster-B
was markedly enriched in nod-like receptor signaling path-
ways, toll-like receptor signaling pathways, and adaptive
immune response pathways. In addition, ICGcluster-C was
highly enriched in JAK-STAT signaling pathway, cytokine
receptor interaction, and multiple immune-related signaling
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Figure 1: Continued.

4 Oxidative Medicine and Cellular Longevity



(c) (d)

(e) (f)
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Figure 1: The landscape of genetic and expression alterations of immune checkpoint genes in lung adenocarcinoma. (a) A brief description
of the representative immune checkpoint molecules involved in the antitumor immunity. Mechanisms of costimulatory and coinhibitory
interactions among tumor cells, T cells, and APC in the tumor microenvironment. (b) Metascape GO analysis of 43 ICGs showed the
significant biological process enriched terms. Different colours correspond to indicated enrichment terms. (c) The mutation frequency of
43 ICGs in TCGA-LUAD cohort. Each column represented an individual sample. The number on the right indicated the mutation
frequency for each gene. The right histogram summarized the percentage of each variant type. The stacked barplot below indicated
fraction of conversions, and the upper barplot showed TMB for an individual sample. (d) The CNV variation frequency of ICGs in
TCGA-LUAD cohort. The vertical axis represented the alteration frequency. The deletion frequency, green dot; the amplification
frequency, red dot. (e) The effects of CEACAM1 mutation status on PD-L1, PD-1, and CTLA-4 expression. All gene expression values
are expressed as TPM. (f) The location of CNV alteration of representative ICGs on chromosomes. (g) The mRNA expression of 43
m6A regulators between normal tissues and lung adenocarcinoma tissues. All gene expression values are expressed as TPM. Normal,
blue; tumor, red (∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001).
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Figure 2: Continued.
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compared with ICGcluster-A (Figure 3(b)). Comparisons of
the biological behaviors between ICGcluster-B and
ICGcluster-C are presented in Figure 3(c). We also noticed
that ICGcluster-A was prominently enriched in metabolism-
related pathway such as aminoacyl biosynthesis, tricarboxylic
acid cycle, and oxidative phosphorylation (Supplementary
Table S4). We further calculated ssGSEA scores to quantify
the abundances of 23 immune-infiltrating cells in different
ICG patterns (Figure 3(d)). A series of antitumor immune
cells such as activated CD8 T cell, activated CD4 T cell,
activated dendritic cell, and natural killer T cells were mainly
enriched in ICGcluster-B subtype, while ICGcluster-A
subtype presented relatively low abundances of these
immune-infiltrating cells. Based on the results above, we
identified ICGcluster-B as a high-immunogenicity LUAD
subtype characterized by “hot” immune status and abundant
immune cell infiltration.

3.4. Generation of Checkpoint Gene Signatures and
Functional Annotations. To further explore the genetic alter-
ations across three ICG expression patterns, we determined
the potential ICG-related DEGs using “limma” R package.
In total, 1173 overlapping DEGs were recognized as ICG-
related signature and results were illustrated in a Venn dia-
gram (Figure 4(a)). GO analysis revealed that these genes
were predominantly enriched in “T cell activation,” “exter-
nal side of plasma membrane,” and “cytokine receptor bind-
ing” (Figure 4(b)). KEGG pathway enrichment analysis
further demonstrated that DEGs were mainly involved in
immune-related pathways such as cytokine−cytokine recep-
tor interaction, chemokine signaling pathway, and T cell
receptor signaling pathway (Figure 4(c)). After screening
DEGs by the univariate Cox regression model, we further
performed consensus clustering analysis to produce a robust

genomic subtype of LUAD patients. Unsupervised consen-
sus clustering also suggested three ICG-related genomic
clusters, and we defined it as ICG-G1, ICG-G2, and ICG-
G3 (Figure 4(d) and Supplementary Figure 3). We noted
that ICG-G2 patients were largely overlapped with
ICGcluster-B subtype, and patients with alive status were
mainly focused on the ICG-G2 subtype (Figure 4(e)).
Further survival analysis indicated that ICG-G2 was correlated
with better prognosis, while ICG-G3 was correlated with
worse OS (Figure 4(f)). Beyond this, ICG-G2 patients
exhibited higher expression of most checkpoint genes than
other subtypes (Figure 4(g)), which agreed with the previous
results of ICG pattern profiles.

3.5. Construction of the ICG Signature Score and Exploration
of Its Clinical Significance. To quantify the ICG TME pattern
of individual LUAD sample, we developed a scoring system
termed as ICGscore. Notably, high ICG signature score was
associated with favorable survival outcomes of LUAD
patients (Figure 5(a)). The characteristics of individual
patients were illustrated by the alluvial diagram (Figure 5(b)).
These results demonstrated that ICG-G2 with the ICGcluster-
B subtype was linked to a higher ICGscore, while ICG-G3 with
ICGcluster-A subtype had a lower ICGscore. ICGcluster-C
subtype had a high overlap with ICG-G1, while this overlap-
ping population exhibited low ICGscore with a favorable prog-
nosis. We also noticed that ICGcluster-B and ICG-G2 subtype
showed the highest ICG signature score (Figures 5(c) and 5(d)).
To illustrate the relationship between ICGscore and immune
cell infiltration, a heat map of the correlation analysis indicated
that ICG signature score was markedly positively related to the
infiltration of activated B cells, CD4 T cells, CD8 T cells, Type1
T helper cells, and other antitumor immune cells (Figure 5(e)).
Since TMB levels correlate with immunotherapeutic efficacy in

(e)

Figure 2: Identification of distinct ICG expression subtypes in LUAD. (a) The interactions of ICGs in LUAD. Active signal, light blue;
inhibitory signal, orange; two-side signal, brown. Pink semicircle represented the risk factors of prognosis; green semicircle represented
the protective factors of prognosis. The size of the circle represented the effect of ICGs on the prognosis, and the statistical significance
was calculated by the Log-rank test. The lines among different ICGs indicated their interactions, and negative correlation was marked
with bright red and positive correlation with gray. (b) Consensus clustering matrix for k = 3 based on ICG expression. (c) Principal
component analysis of ICG expression to distinguish different ICG subtypes. (d) Unsupervised clustering of ICG expression to classify
patients into three ICG subtypes. The ICG clusters, datasets, gender, age, and survival status were used as patient annotations. (e)
Kaplan-Meier curves of OS for three LUAD subtypes from TCGA-LUAD, GSE72094, and GSE68465. The numbers of patients in
ICG-A, ICG-B, and ICG-C subtypes are 372, 437, and 535, respectively.
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(b)

Figure 3: Continued.
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(c)

(d)

Figure 3: Biological pathways TME characteristics of each ICG subtypes. (a–c) Heat map showed the GSVA score of biological pathways in
different ICG subtypes. Red indicated activated pathways, and blue indicated inhibited pathways. (a) ICG-A cluster vs. ICG-B cluster; (b)
ICG-A cluster vs. ICG-C cluster; (c) ICG-B cluster vs. ICG-C cluster. (d) The abundance of each TME-infiltrating immune cells in three
ICG subtypes. The lines in the boxes indicated the median value. The top and bottom ends of the boxes were interquartile range of
values. The statistical significance was calculated by the Kruskal-Wallis H test (ns: not significant; ∗∗P < 0:01; ∗∗∗P < 0:001).
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Figure 4: Construction of ICG-related gene signatures and functional annotation. (a) 1173 ICG-related differentially expressed genes
(DEGs) between three ICG subtypes were shown in the Venn diagram. (b) Functional enrichment for ICG-related genes using GO
annotation analysis. The size of circle represented the number of genes enriched, and q value is measured from blue to red. (c)
Functional enrichment for ICG-related genes using KEGG pathway analysis. The size of the circle represented the number of genes
enriched, and q value is measured from blue to red. (d) The identification of ICG-related gene signatures by consensus clustering matrix
for k = 3. (e) Unsupervised clustering of overlapping ICG-related DEGs to divide patients into different genomic subtypes. The
ICG-related gene clusters, ICG clusters, datasets, gender, age, and survival status were used as patient annotations. (f) The survival curves
of the ICG-related gene signatures were plotted by the Kaplan-Meier plotter. The numbers of patients in ICG-G1, ICG-G2, and ICG-G3
subtypes are 596, 414, and 334. (g) The expression of ICGs in different ICG-related gene signatures. The statistical significance was
calculated by the Kruskal-Wallis H test (∗∗P < 0:01; ∗∗∗P < 0:001). All gene expression values are expressed as TPM.
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Figure 5: Continued.
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some types of tumors, we further explored the prognostic value
of TMB level combined with our ICG signature score in
LUAD. In TCGA-LUAD cohort, a high level of TMB tended
to predict a longer survival time, but the difference was not sta-
tistically significant (P = 0:082, Figure 5(f)). However, we were
surprised to observe that high TMB level and high ICG score
were closely related to a favorable survival, whereas LUAD

patients with low TMB level and low ICG score had the worst
prognosis (Figure 5(g)). The significant prognosis benefits were
further validated in our metacohort LUAD patients with high
ICGscore compared to those with low ICGscore (Figures 5(h)
and 5(i)). Then, we investigated the distribution differences of
significant somatic mutation in different ICGscore groups of
TCGA-LUAD cohort with “maftools” package. The mutation
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Figure 5: Construction of ICGscore and exploration of its clinical significance. (a) Kaplan-Meier curves for high- and low-ICGscore patient
groups in our metacohort. Log-rank test, P < 0:001. (b) Alluvial diagram of ICG clusters in groups with different ICG-related gene
signatures, m6Sig score, and survival status. (c) The correlation between ICGscore and ICG-related gene signatures. (d) The correlation
between ICGscore and ICG clusters. (e) Heat map showed the relationship between ICG score and immune cell infiltration. (f) Kaplan-Meier
curves for high- and low-TMB patient groups in TCGA-LUAD dataset. Log-rank test, P = 0:082. (g) Survival analyses for subgroup patients
stratified by both ICGscore and TMB using Kaplan-Meier curves. (h) The effect of ICGscore on survival status in LUAD. (i) The proportion
of survival status in the high- and low-ICGscore group.
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landscapes of the waterfall plot revealed that the low-ICGscore
group presented a higher mutation burden than the high-
ICGscore group, with the percentage of the top 20 most signif-
icant mutated gene 95.97% versus 81.3% (Figures 6(a) and
6(b)). Of these, TTN (50% vs. 31%), KEAP1 (26% vs. 8%),
and ZFHX4 (36% vs. 21%) had higher mutation rates in the
low-ICGscore group.

3.6. The Predictive Value of ICGscore for the Immunotherapeutic
Benefits. To evaluate the stability and applicability of our ICG-
score, we further analyzed the effect of patient characteristics
on the prognosis of ICGscore. We stratified LUAD samples
by age and gender and found that ICGscore signature still
had a satisfactory prediction of prognosis (Figures 7(a)–
7(d)). Immune checkpoint inhibitors represented by anti-
bodies against PD-1, PD-L1, and CTLA-4 constitute the
current frontier in cancer therapy. We wondered whether
the ICGscore could serve as a predictive signature for immune
checkpoint blockade therapy. We first noted that an increased
level of PD-1, PD-L1, and CTLA4 expression was found in the
high-ICGscore subgroup (Figures 7(e)–7(g)), which implied a
potential response to immune checkpoint blockade therapy.
Further analysis using IPS scheme demonstrated that high
ICGscore had the potential to be a robust indicator for
immunotherapies in TCGA-LUAD cohort, especially for
patients with PD-1 or CTLA-4 positive expression
(Figures 7(h)–7(k)). These findings strongly indicated that
ICGscore significantly correlated to antitumor immune and
immunotherapy response in LUAD.

4. Discussion

The LUAD is characterized by high degree of heterogeneity
in terms of its clinical behavior and molecular landscapes
[30]. Although great strides are being made in ICI therapy
for LUAD, only a small number of patients respond to ICIs
[31]. Intense efforts have been made to develop precise pre-
dictive immunooncology biomarkers, such as TMB, PD-L1
expression, and tumor-infiltrating immune cells [32]. Never-
theless, to date, there are still no unified standards or single
indicator to select LUAD patients from receiving ICIs.
Cancer immunotherapy is usually achieved by targeting
ICGs such as antibody inhibition of PD-1 and CTLA-4,
but its clinical efficacy largely depends on the individual
tumor immune microenvironment and immune-related reg-
ulatory networks [33], which underscores the importance of
understanding how immune checkpoint genes orchestrate
TME patterns and affect patients’ prognostic outcomes.
Unraveling the role of ICG-mediated TME patterns can help
to provide important implications for rational immunother-
apy strategies. Recently, several studies have revealed the
immune signature for prediction of ICI efficacy in LUAD.
Yi et al. conducted a 17-gene immune signature to predict
survival and response to ICI treatment of LUAD [15]. The
study of Guo et al. reported a 10 immune-related gene model
that could facilitate the management of immunotherapy in
LUAD [34]. In addition, Zhou et al. also established a
nine-gene signature based on immune checkpoints to aid
prognostic analysis in LUAD [35]. The aforementioned
studies were confined to several-gene model, while the
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Figure 7: Continued.
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antitumor immune response effect was influenced by com-
plex components of TIME. Here, we first investigated the
landscape of genetic variation of ICGs in LUAD and identi-
fied LUAD subtype based on ICG expression patterns and
ICG-related genomic profiles. We also developed a scoring
scheme ICGscore based on ICG-related DEG expression
using PCA rather than based on selected immune-related

genes. In this study, 43 prevalent ICGs were identified based
on a comprehensive literature search. Metascape GO analy-
ses further confirmed that ICGs indeed played a sizable role
in T cell costimulation, positive or negative regulation of
immune response. We then portrayed the landscape of
ICG genomic alterations in TCGA-LUAD cohort. Overall,
genomic alterations of ICGs presented a relatively low
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Figure 7: The predictive value of ICGscore in LUAD. (a–d) The ICGscore retained its prognostic value in multiple subgroups of LUAD
patients. Survival analysis in the low- and high-ICGscore group adjusted by age and gender. (e–g) The expression of immune checkpoint
members including PD-1, PD-L1, and CTLA-4 in high- and low-ICGscore LUAD groups. All gene expression values are expressed as
TPM. (h–k) The relative distribution of IPS adjusted by CTLA-4 or PD-1 expression was compared between ICGscore high versus low
groups in TCGA-LUAD dataset.
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proportion of LUAD patients. Previous studies reported the
independent prognosticator role of CEACAM1 in lung ade-
nocarcinoma [36, 37]. Here, we showed that CEACAM1
mutation status was found to correlate with the expression
of PD-L1, PD-1, and CTLA1, underlining the potential pre-
dictive value of CEACAM1 in ICI therapy. We next revealed
three distinct ICG patterns which were correlated with dif-
ferent patients’ prognosis and immune phenotypes.
ICGcluster-B was characterized by abundant immune cell
infiltration in TME with elevated ICG expression levels,
indicating the potential benefits of immunotherapy.
Previous literature reported that baseline levels of tumor-
infiltrating CD8+ T lymphocytes cells, and B cells were
correlated with the better prognosis of LUAD [38, 39]. In
contrast, the ICGcluster-A subgroup with poor prognosis
was markedly enriched in metabolism-related pathway, sup-
porting the essential role of metabolic flexibility in mediating
disease progression. Based on the above findings, we pro-
posed that LUAD patients with the ICGcluster-B expression
pattern might most benefit from the treatment of ICIs.

We further compared the mRNA transcriptome differ-
ences among different ICG-related patterns and found that
DEGs mainly participated in immune relevant phenotypes
and cytokine interactions. Three ICG-related genomic clus-
ters were further identified that were strongly associated
with survival time. Similar to the ICGcluster-B pattern, the
ICG-G2 subgroup achieved better survival outcome and
higher expression of ICGs than those with other ICG-
related genomic clusters. Given the individual heterogeneity
of immune checkpoint pathways, we thereby designed a
quantification system named the ICGscore to evaluate
different ICG patterns for individual patients. As a result,
the ICGcluster-B and ICG-G2 subtype exhibited a higher
ICGscore, suggesting ICGscore was a positive prognostic
indicator in LUAD. This might be partly explained by
abundant infiltration of antitumor immune cells in the
high-ICGscore subgroup. High somatic mutation burden
represents a uniform feature of patients who had a better
response to ICIs [40]. Furthermore, the relationships
between TMB and response rates after PD-1 inhibitors treat-
ments have been demonstrated in a pancancer study [41].
Here, we combined our ICGscore and TMB to predict the
prognosis of LUAD and found that LUAD patients with
high level of TMB and ICGscore had the longest OS. These
findings confirmed our hypothesis that the ICG pathway
patterns could provide guidance for the clinical practice.

Identification of the cancer driver genes is also strongly
guiding therapeutic strategies with the development of tar-
geted therapies. In this study, we noticed that the mutation
rates of TTN, KEAP1, and ZFHX4 were obviously increased
in the low-ICGscore group. It has been reported that TTN/
ZFHX4 missense triggered the development of tumor-
associated antigens and could predict a good prognosis in lung
cancer [42, 43]. KEAP1 mutation has a dramatic effect on the
tumor immune microenvironment of LUAD and may also
serve as a predictive biomarker for immunotherapy [44]. A
previous study suggested that KEAP1 mutations were corre-
lated with shorter survival and reduced efficacy of immuno-
therapy of LUAD [45]. Further analysis revealed that the

high-ICGscore subgroup exhibited an increased expression
of ICGs, which confirmed that our ICGscore was markedly
associated with the antitumor immune activity. Finally, we
also verified the predictive value of the ICGscore using IPS
immune response predictor. Potential limitations of our study
should be acknowledged. First, since the included studies were
of retrospective datasets in our work, therefore, further pro-
spective cohort of LUAD patients receiving ICIs is warranted
to validate our findings. Second, we reviewed the literature
and chose the representative ICGs in LUAD; however, some
new identified ICGs need to be incorporated into ICG expres-
sion patterns for future investigation. Thirdly, in this study, we
only tested the accuracy of the ICGscore in LUAD. We thus
hope that ICI-based immunotherapy in pancancer could fur-
ther support our conclusions. Moreover, some LUAD patients
with high ICGscore exhibited a poor survival outcome; thus,
more clinicopathological parameters might require integra-
tion into our prediction models to improve accuracy.

5. Conclusions

In conclusion, we comprehensively evaluated 43 ICG expres-
sion profile among 1439 LUAD patients and systematically
linked ICG-related patterns with immune cell-infiltrating
characteristics and immunotherapeutic efficacy. In clinical
practice, we identified three distinct ICG clusters and ICG-
related genomic clusters and developed the ICGscore to eval-
uate the characterization of TME cell infiltration for individual
patients. Our ICGscore was able to assess the abundances of
tumor-infiltrating immune cells, tumor mutation burden,
patients’ survival outcomes, and the potential immunothera-
peutic benefits. More significantly, this integrated analysis
added another new insight into the molecular subtype of
LUAD and provided a novel concept for guiding ICI immuno-
therapy. Our findings also advanced the understanding of the
complex interplay between immune checkpoint pathways and
tumor immune microenvironment.
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