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Abstract
Detecting the targets of adaptive natural selection from whole genome sequencing data is a

central problem for population genetics. However, to date most methods have shown sub-

optimal performance under realistic demographic scenarios. Moreover, over the past

decade there has been a renewed interest in determining the importance of selection from

standing variation in adaptation of natural populations, yet very few methods for inferring

this model of adaptation at the genome scale have been introduced. Here we introduce a

new method, S/HIC, which uses supervised machine learning to precisely infer the location

of both hard and soft selective sweeps. We show that S/HIC has unrivaled accuracy for

detecting sweeps under demographic histories that are relevant to human populations, and

distinguishing sweeps from linked as well as neutrally evolving regions. Moreover, we show

that S/HIC is uniquely robust among its competitors to model misspecification. Thus, even if

the true demographic model of a population differs catastrophically from that specified by

the user, S/HIC still retains impressive discriminatory power. Finally, we apply S/HIC to the

case of resequencing data from human chromosome 18 in a European population sample,

and demonstrate that we can reliably recover selective sweeps that have been identified

earlier using less specific and sensitive methods.

Author Summary

The genetic basis of recent adaptation can be uncovered from genomic patterns of varia-
tion, which are perturbed in predictable ways when a beneficial mutation “sweeps”
through a population. However, the detection of such “selective sweeps” is complicated by
demographic events, such as population expansion, which can produce similar skews in
genetic diversity. Here, we present a method for detecting selective sweeps that is remark-
ably powerful and robust to potentially confounding demographic histories. This method,
called S/HIC, operates using a machine learning paradigm to combine many different fea-
tures of population genetic variation, and examine their values across a large genomic
region in order to infer whether a selective sweep has recently occurred near its center. S/
HIC is also able to accurately distinguish between selection acting on de novo beneficial
mutations (“hard sweeps”) and selection on previously standing variants (“soft sweeps”).
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We demonstrate S/HIC’s power on a variety of simulated datasets as well as human popu-
lation data wherein we recover several previously discovered targets of recent adaptation
as well as a novel selective sweep.

Introduction
The availability of population genomic data has empowered efforts to uncover the selective,
demographic, and stochastic forces driving patterns of genetic variation within species. Chief
among these are attempts to uncover the genetic basis of recent adaptation [1]. Indeed, recent
advances in genotyping and sequencing technologies have been accompanied by a proliferation
of statistical methods for identifying recent positive selection [see 2 for recent review].

Most methods for identifying positive selection search for the population genetic signature
of a “selective sweep” [3], wherein the rapid fixation of a new beneficial allele leaves a valley of
diversity around the selected site [4–6], about which every individual in the population exhibits
the same haplotype (i.e. the genetic background on which the beneficial mutation occurred).
At greater genetic distances, polymorphism recovers as recombination frees linked neutral var-
iants from the homogenizing force of the sweep [4]. This process also produces an excess of
low- and high-frequency derived alleles [7, 8], and increased allelic association, or linkage dis-
equilibrium (LD), on either side of the sweep [9], but not across the two flanks of the sweep
[10, 11]. Selective fixation of de novo beneficial mutations such as described by Maynard Smith
and Haigh [5] are often referred to as “hard sweeps.”

More recently, population geneticists have begun to consider the impact of positive selection
on previously standing genetic variants [12, 13]. Under this model of adaptation, an allele ini-
tially evolves under drift for some time, until a change in the selective environment causes it to
confer a fitness advantage and sweep to fixation. In contrast to the hard sweep model, the
selected allele is present in multiple copies prior to the sweep. Thus, because of mutation and
recombination events occurring near the selected site during the drift phase, the region con-
taining this site may exhibit multiple haplotypes upon fixation [14]. The resulting reduction in
diversity is therefore less pronounced than under the hard sweep model [12, 15]. For this rea-
son sweeps from standing genetic variation are often referred to as “soft sweeps.” Soft sweeps
will not skew the allele frequencies of linked neutral polymorphisms toward low and high fre-
quencies to the same extent as hard sweeps [16], and may even present an excess of intermedi-
ate frequencies [17]. This mode of selection will also have a different impact on linkage
disequilibrium: LD will be highest at the target of selection rather than in flanking regions [18].
In very large populations, selection on mutations that are immediately beneficial may also pro-
duce patterns of soft sweeps rather than hard sweeps, as the adaptive allele may be introduced
multiple times via recurrent mutation before the sweep completes [14, 19]. While this model of
a soft sweep is similar to that of selection on standing variation in that it will produce addi-
tional haplotypes carrying the selected allele, there are differences in the patterns of polymor-
phism produced by these two types of soft sweeps [18, 20]. Here, we examine only the model of
selection on a single standing variant.

Adaptation could proceed primarily through selection on standing variation if the selective
environment shifts frequently relative to the time scale of molecular evolution, and if there is
enough standing variation segregating in the population on which selection may act following
such a shift [12, 21]. However, it is important to note that selection on standing variation may
produce a hard sweep of only one haplotype containing the adaptive mutation if this allele is
present at low enough frequency prior to sweep [16, 22]. In other words, the observation of
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hard sweeps may be consistent with selection on standing variation as well as selection on de
novomutations. For these and other reasons, there is some controversy over whether adapta-
tion will result in soft sweeps in nature [22]. This could be resolved by methods that can accu-
rately discriminate between hard and soft sweeps. To this end, some recently devised methods
for detecting population genetic signatures of positive selection consider both types of sweeps
[23–25]. Unfortunately, it may often be difficult to distinguish soft sweeps from regions flank-
ing hard sweeps due to the “soft shoulder” effect [18].

Here we present a method that is able to accurately distinguish between hard sweeps, soft
sweeps on a single standing variant, regions linked to sweeps (or the “shoulders” of sweeps),
and regions evolving neutrally. This method incorporates spatial patterns of a variety of popu-
lation genetic summary statistics across a large genomic window in order to infer the mode of
evolution governing a focal region at the center of this window. We combine many statistics
used to test for selection using an Extremely Randomized Trees classifier [26], a powerful
supervised machine learning classification technique. We refer to this method as Soft/Hard
Inference through Classification (S/HIC, pronounced “shick”). By incorporating multiple sig-
nals in this manner S/HIC achieves inferential power exceeding that of any individual test. Fur-
thermore, by using spatial patterns of these statistics within a broad genomic region, S/HIC is
able to distinguish selective sweeps not only from neutrality, but also from linked selection
with much greater accuracy than other methods. Thus, S/HIC has the potential to identify
more precise candidate regions around recent selective sweeps, thereby narrowing down
searches for the target locus of selection. Further, S/HIC’s reliance on large-scale spatial pat-
terns makes it more robust to non-equilibrium demography than previous methods, even if the
demographic model is misspecified during training. This is vitally important, as the true demo-
graphic history of a population sample may be unknown. Finally, we demonstrate the utility of
our approach by applying it to chromosome 18 in the CEU sample from the 1000 Genomes
dataset [27], recovering most of the sweeps identified previously in this population through
other methods; we also highlight a compelling novel candidate sweep in this population.

Methods

Supervised machine learning to detect soft and hard sweeps
We sought to devise a method that could not only accurately distinguish among hard sweeps,
soft sweeps, and neutral evolution, but also among these modes of evolution and regions linked
to hard and soft sweeps, respectively [18]. Such a method would not only be robust to the soft
shoulder effect, but would also be able to more precisely delineate the region containing the tar-
get of selection by correctly classifying unselected but closely linked regions. In order to accom-
plish this, we sought to exploit the impact of positive selection on spatial patterns of several
aspects of variation surrounding a sweep. Not only will a hard sweep create a valley of diversity
centered around a sweep, but it will also create a skew toward high frequency derived alleles
flanking the sweep and intermediate frequencies at further distances [7, 8], reduced haplotypic
diversity at the sweep site [24], and increased LD along the two flanks of the sweep but not
between them [10]. For soft sweeps, these expected patterns may differ considerably [14, 16,
18], but also depart from the neutral expectation.

While some of these patterns of variation have been used individually for sweep detection
[e.g. 10, 28], we reasoned that by combining spatial patterns of multiple facets of variation we
would be able to do so more accurately. To this end, we designed a machine learning classifier
that leverages spatial patterns of a variety of population genetic summary statistics in order to
infer whether a large genomic window recently experienced a selective sweep at its center. We
accomplished this by partitioning this large window into adjacent subwindows, measuring the
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values of each summary statistic in each subwindow, and normalizing by dividing the value for
a given subwindow by the sum of values for this statistic across all subwindows within the
same window to be classified. Thus, for a given summary statistic x, we used the following vec-
tor:

x1P
ixi

x2P
ixi

. . .
xnP
ixi

� �

where the larger window has been divided into n subwindows, and xi is the value of the sum-
mary statistic x in the ith subwindow. Thus, this vector captures differences in the relative val-
ues of a statistic across space within a large genomic window, but does not include the actual
values of the statistic. In other words, this vector captures only the shape of the curve of the sta-
tistic x across the large window that we wish to classify. Our goal is to then infer a genomic
region’s mode of evolution based on whether the shapes of the curves of various statistics sur-
rounding this region more closely resemble those observed around hard sweeps, soft sweeps,
neutral regions, or loci linked to hard or soft sweeps. In addition to allowing for discrimination
between sweeps and linked regions, this strategy was motivated by the need for accurate sweep
detection in the face of a potentially unknown nonequilibrium demographic history, which
may grossly affect values of these statistics but may skew their expected spatial patterns to a

much lesser extent. In total, we constructed these vectors for each of π [29], ŷw [30], ŷH [8], the
number of distinct haplotypes, average haplotype homozygosity, H12 andH2/H1 [24, 31], ZnS
[9], and the maximum value of ω [10]. Thus, we represent each large genomic window by the
following vector, to which we refer as the feature vector:
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We sought to discriminate between hard sweeps, regions linked to hard sweeps, soft sweeps,
regions linked to soft sweeps, and neutrally evolving regions on the basis of the values of the
vectors defined above. While Berg and Coop [20] recently derived approximations for the site
frequency spectrum (SFS) for a soft sweep under equilibrium population size, and π, the joint
probability distribution of the values all of the above statistics at varying distances from a
sweep is unknown. Moreover expectations for the SFS surrounding sweeps (both hard and
soft) under nonequilibrium demography remain analytically intractable. Thus rather than tak-
ing a likelihood approach, we opted to use a supervised machine learning framework, wherein
a classifier is trained from simulations of regions known to belong to one of these five classes.
We trained an Extra-Trees classifier (aka extremely randomized forest; [26]) from coalescent
simulations (described below) in order to classify large genomic windows as experiencing a
hard sweep in the central subwindow, a soft sweep in the central subwindow, being closely
linked to a hard sweep, being closely linked to a soft sweep, or evolving neutrally according to
the values of its feature vector (Fig 1).

Briefly, the Extra-Trees classifier is an ensemble classification technique that harnesses a
large number classifiers referred to as decision trees. A decision tree is a simple classification
tool that uses the values of multiple features for a given data instance, and creates a branching
tree structure where each node in the tree is assigned a threshold value for a given feature. If a
given data point’s (or instance’s) value of the feature at this node is below the threshold, this
instance takes the left branch, and otherwise it takes the right. At the next lowest level of the
tree, the value of another feature is examined. When the data instance reaches the bottom of
the tree, it is assigned a class inference based on which leaf it has landed [32]. Typically, a deci-
sion tree is built according to an algorithm designed to optimize its accuracy [32]. The Extra-
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Trees classifier, on the other hand, builds a specified number of semi-randomly generated deci-
sion trees. Classification is then performed by simply taking the class receiving the most
“votes” from these trees [26], building on the strategy of random forests [33]. While individual
decision trees may be highly inaccurate, the practice of aggregating predictions from many
semi-randomly generated decision trees has been proved to be quite powerful [34].

In the following sections we describe our methodology for training, testing, and applying
our Extra-Trees classifier for identifying positive selection.

Coalescent simulations for training and testing
We simulated data for training and testing of our classifier using our coalescent simulator, dis-
coal_multipop (https://github.com/kern-lab/discoal_multipop). As discussed in the Results,
we simulated training sets with different demographic histories (S1 Table), and, for positively
selected training examples, different ranges of selection coefficients (α = 2Ns, where s is the
selective advantage and N is the population size). For each combination of demographic history

Fig 1. Examples of the five classes used by S/HIC. S/HIC classifies each window as a hard sweep (blue), linked to a hard sweep (purple), a soft sweep
(red), linked to a soft sweep (orange), or neutral (gray). This classifier accomplishes this by examining values of various summary statistics in 11 different
windows in order to infer the mode of evolution in the central window (the horizontal blue, purple, red, orange, and gray brackets). Regions that are centered
on a hard (soft) selective sweep are defined as hard (soft). Regions that are not centered on selective sweeps but have their diversity impacted by a hard
(soft) selective sweep but are not centered on the sweep are defined as hard-linked (soft-linked). Remaining windows are defined as neutral. S/HIC is trained
on simulated examples of these five classes in order to distinguish selective sweeps from linked and neutral regions in population genomic data.

doi:10.1371/journal.pgen.1005928.g001
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and range of selection coefficients, we simulated large chromosomal windows that we later sub-
divided into 11 adjacent and equally sized subwindows. We then simulated training examples
with a hard selective sweep whose selection coefficient was uniformly drawn from the specified
range, U(αlow, αhigh). We generated 11,000 sweeps: 1000 where the sweep occurred in the center
of the leftmost of the 11 subwindows, 1000 where the sweep occurred in the second subwin-
dow, and so on. We repeated this same process for soft sweeps at each location; these simula-
tions had an additional parameter, the derived allele frequency, f, at which the mutation
switches from evolving under drift to sweeping to fixation, which we drew from U(0.05, 0.2), U
(2/2N, 0.05), or U(2/2N, 0.2) as described in the Results. For our equilibrium demography sce-
nario, we drew the fixation time of the selective sweep from U(0, 0.2)×N generations ago, while
for non-equilibrium demography the sweeps completed more recently (see below). We also
simulated 1000 neutrally evolving regions. Unless otherwise noted, for each simulation the
sample size was set to 100 chromosomes.

For each combination of demographic scenario and selection coefficient, we combined our
simulated data into 5 equally-sized training sets (Fig 1): a set of 1000 hard sweeps where the
sweep occurs in the middle of the central subwindow (i.e. all simulated hard sweeps); a set of
1000 soft sweeps (all simulated soft sweeps); a set of 1000 windows where the central subwin-
dow is linked to a hard sweep that occurred in one of the other 10 windows (i.e. 1000 simula-
tions drawn randomly from the set of 10000 simulations with a hard sweep occurring in a non-
central window); a set of 1000 windows where the central subwindow is linked to a soft sweep
(1000 simulations drawn from the set of 10000 simulations with a flanking soft sweep); and a
set of 1000 neutrally evolving windows unlinked to a sweep. We then generated a replicate set
of these simulations for use as an independent test set.

Training the Extra-Trees classifier
We used the python scikit-learn package (http://scikit-learn.org/) to train our Extra-Trees clas-
sifier and to perform classifications. Given a training set, we trained our classifier by perform-
ing a grid search of multiple values of each of the following parameters: max_features (the
maximum number of features that could be considered at each branching step of building the
decision trees, which was set to 1, 3,

ffiffiffi
n

p
, or n, where n is the total number of features); max_-

depth (the maximum depth a decision tree can reach; set to 3, 10, or no limit), min_samples_s-
plit (the minimum number of training instances that must follow each branch when adding a
new split to the tree in order for the split to be retained; set to 1, 3, or 10); min_samples_leaf.
(the minimum number of training instances that must be present at each leaf in the decision
tree in order for the split to be retained; set to 1, 3, or 10); bootstrap (a binary parameter that
governs whether or not a different bootstrap sample of training instances is selected prior to
the creation of each decision tree in the classifier); criterion (the criterion used to assess the
quality of a proposed split in the tree, which is set to either Gini impurity [35] or to information
gain, i.e. the change in entropy [32]). The number of decision trees included in the forest was
always set to 100. After performing a grid-search with 10-fold cross validation in order to iden-
tify the optimal combination of these parameters, we used this set of parameters to train the
final classifier.

We used the scikit-learn package to assess the importance of each feature in our Extra-Trees
classifiers. This is done by measuring the mean decrease in Gini impurity, multiplied by the
average fraction of training samples that reach that feature across all decision trees in the classi-
fier. The mean decrease in impurity for each feature is then divided by the sum across all fea-
tures to give a relative importance score, which we show in S2 Table. We also show values of
Extra-Trees classifier parameters resulting from grid searchers in S3 Table.
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Comparisons with other methods
We compared the performance of our classifier to that of various other methods. First, we
examined two population genetic summary statistics: Tajima’s D [36] and Kim and Nielsen’s
ωmax [10] (which we refer to as ω for simplicity), calculating their values in each subwindow
within each large simulated chromosome that we generated for testing (see above). We also
used Nielsen et al.’s composite-likelihood ratio test, referred to as CLR or SweepFinder [28],
which searches for the spatial skew in allele frequencies expected surrounding a hard selective
sweep. When testing SweepFinder’s ability to discriminate between modes of evolution within
larger regions, we computed the composite-likelihood ratio between the sweep and neutral
models at 200 sites across each of the 11 subwindows of our large simulated test regions, taking
the maximum CLR value. The only training necessary for SweepFinder was to specify the neu-
tral site frequency spectrum.

Next, we used scikit-learn to implement Ronen et al.’s [37] SFselect, a support vector
machine classifier that discriminates between selection and neutrality on the basis of a region’s
binned and weighted SFS. In our implementation we collapsed the SFS into 10 bins as sug-
gested by Ronen et al., and also added soft sweeps as a third class (in addition to hard sweeps
and neutrality), using Knerr et al.’s [38] method for extending a binary classifier to perform
multi-class classification. We trained this classifier from simulated data following the same
demographic and selective scenarios used to train our own classifier, and with the same num-
ber of simulated training instances, but these simulations encapsulated much smaller regions
(equivalent to the size of one of our eleven subwindows). To avoid confusion with the original
SFselect, which only handles hard sweeps, we refer to this implementation as SFselect+. For fur-
ther comparisons, we also trained a support vector machine using a vector of two statistics: the
maximum values of the SweepFinder CLR statistic and ω (a subset of the features in the Pavli-
dis et al.’s SVM [39]). We refer to this method as CLR+ω, and trained it in the same manner as
SFselect+, except for the different feature vector.

We also tested the performance of the evolBoosting [40], an R package which uses an
machine learning approach called boosting [41] to classify genomic windows as sweeps or neu-
tral on the basis of several statistics, including Tajima’s D, Fay and Wu’sH [8], integrated hap-
lotype homozygosity (iHH; [42]), and several others. Boosting was also recently used by Pybus
et al. [43] to accurately detect hard and partial sweeps and make coarse inferences about sweep
ages. Like S/HIC, this method uses a vector of the values of each of these statistics from several
subwindows surrounding the region being classified. However, unlike S/HIC, this method does
not take the relative values of these statistics in each subwindow divided by the sum across all
subwindows, instead just taking the value of the statistic measured in that subwindow. As with
SFselect, we extend this method to discriminate between hard sweeps, soft sweeps, and neutral
windows. This was done by first training a classifier to distinguish between sweeps (hard and
soft, balanced in number within the training set) from neutral windows and secondarily train-
ing a classifier to distinguish between hard and soft sweeps.

Finally, we implemented a version of Garud et al.’s [24] scan for hard and soft sweeps.
Garud et al.’s method uses an Approximate Bayesian Computation-like approach to calculate
Bayes Factors to determine whether a given region is more similar to a hard sweep or a soft
sweep by performing coalescent simulations. For this we performed simulations with the same
parameters as we used to train SFselect+, but generated 100,000 simulations of each scenario in
order to ensure that there was enough data for rejection sampling. We then used two statistics
to summarize haplotypic diversity within these simulated data: H12 and H2/H1 [31]. All simu-
lated regions whose vector [H12 H2/H1] lies within a Euclidean distance of 0.1 away from the
vector corresponding to the data instance to be classified are then counted [24]. The ratio of
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simulated hard sweeps to simulated soft sweeps within this distance cutoff is then taken as the
Bayes Factor. Note that Garud et al. restricted their analysis of the D.melanogaster genome to
only the strongest signals of positive selection, asking whether they more closely resembled
hard or soft sweeps. Therefore when testing the ability of Garud et al.’s method to distinguish
selective sweeps from both linked and neutrally evolving regions, we used large simulated win-
dows and simply examined the value of H12 within the subwindow that exhibited the largest
value in an effort to mimic their strategy of usingH12 peaks [24].

We summarized each method’s power using the receiver operating characteristic (ROC)
curve, making these comparisons for the following binary classification problems: discriminat-
ing between hard sweeps and neutrality, between hard sweeps and soft sweeps, between selec-
tive sweeps (hard or soft) and neutrality, and between selective sweeps (hard or soft) and
unselected regions (including both neutrally evolving regions and regions linked to selective
sweeps). For each of these comparisons we constructed a balanced test set with a total of 1000
simulated regions in each class, so that the expected accuracy of a completely random classifier
was 50%, and the expected area under the ROC curve (AUC) was 0.5. Whenever the task
involved a class that was a composite of two or more modes of evolution, we ensured that the
test set was comprised of equal parts of each subclass. For example, in the selected (hard or
soft) versus unselected (neutral or linked selection) test, the selected class consisted of 500 hard
sweeps and 500 soft sweeps, while the unselected class consisted of 333 neutrally evolving
regions, 333 regions linked to hard sweeps, and 333 regions linked to soft sweeps (and one
additional simulated region from one of these test sets randomly selected, so that the total size
of the unselected test set was 1000 instances). As with our training sets, we considered the true
class of a simulated test region containing a hard (soft) sweep occurring in any but the central
subwindow to be hard-linked (soft-linked)—even if the sweep occurred only one subwindow
away from the center.

The ROC curve is generated by measuring performance at increasingly lenient thresholds
for discriminating between the two classes. We therefore required each method to output a
real-valued measure proportional to its confidence that a particular data instance belongs the
first of the two classes. For S/HIC, we used the posterior classification probability from the
Extra-Trees classifier obtained using scikit-learn’s predict_proba method. For SFselect+, we
used the value of the SVM decision function. For SweepFinder, we used the composite likeli-
hood ratio. For Garud et al.’s method, we used the fraction of accepted simulations (i.e. within
a Euclidean distance of 0.1 from the test instance) that were of the first class: for example, for
hard vs. soft, this is the number of accepted simulations that were hard sweeps divided by the
number of accepted simulations that were either hard sweeps or soft sweeps. For Tajima’s D
[36] and Kim and Nielsen’s ω [10], we simply used the values of these statistics.

Simulating sweeps under non-equilibrium demographic models
To examine the power and sensitivity of S/HIC under non-equilibrium demographic histories,
we simulated training and test datasets from a few scenarios that might be relevant to research-
ers. Firstly we examined the power of our method under two complex population size histories
that are relevant to humans. Secondly we examined the case of simple population bottlenecks,
as might be common in populations that have recently colonized new locales, using two levels
of bottleneck severity.

We simulated training and test datasets from Tennessen et al.’s [44] European demographic
model (S1 Table). This model parameterizes a population contraction associated with migra-
tion out of Africa, a second contraction followed by exponential population growth, and a
more recent phase of even faster exponential growth. Values of θ and ρ = 4Nr were drawn from
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prior distributions (S1 Table), allowing for variation within the training data, whose means
were selected from recent estimates of human mutation [45] and recombination rates [46],
respectively. For simulations with selection, we drew values of α from U(5.0×103, 5.0×105), and
drew the fixation time of the sweeping allele form U(0, 51,000) years ago (i.e. the sweep com-
pleted after the migration out of Africa).

We also generated simulations of Tennessen et al.’s African demographic model, which con-
sists of exponential population growth beginning ~5,100 years ago (S1 Table). We generated
two sets of these simulations: one where α was drawn from U(5.0×104, 5.0×105), and one with
α drawn from U(5.0×104, 5.0×105). The sample size of these simulated data sets was set to 100
chromosomes. These two sets were then combined into a single training set. For these simula-
tions, the sweep was constrained to complete some time during the exponential growth phase
(no later than 5,100 years ago).

Finally, we examined two models with a population size bottleneck. The first was taken
from Thornton and Andolfatto [47], and models the demographic history of a European popu-
lation sample of D.melanogaster (S1 Table). This model consists of a population size reduction
0.044×2N generations ago to 2.9% of the ancestral population size, and then 0.0084×2N gener-
ations ago the population recovers to its original size. The second bottleneck model we used
was identical except the population contraction was less severe (reduction to 29% of the ances-
tral population size). For sweep simulations under both of these bottleneck scenarios, we drew
α from U(1.0×102, 1.0×104). For all of our non-equilibrium demographic histories, when simu-
lating soft sweeps on a previously standing variant, we drew the derived allele frequency at the
onset of positive selection from U(2/2N, 0.2). For each demographic model in S1 Table, we
show in S1 Fig the means and standard deviations of Tajima’s D across 11 windows at increas-
ing distances from a selective sweep (for one possible sweep scenario), as well as values from
neutrally evolving windows for comparison.

For each demographic model in S1 Table, we show in S1 Fig the means and standard devia-
tions of Tajima’s D across 11 windows at increasing distances from a selective sweep (for one
possible sweep scenario), as well as values from neutrally evolving windows for comparison.

Application to human chromosome 18 from the 1000GenomesCEU sample
We applied our method to chromosome 18 from the Phase I data release from the 1000
Genomes project [27]. We restricted this analysis to the CEU population sample (individuals
with European ancestry, sampled from Utah), and trained S/HIC using data from the European
demographic model described above. After training this classifier, we prepared data from chro-
mosome 18 in CEU for classification. Prior to constructing feature vectors, we first performed
extensive filtering for data quality. First, we masked all sites flagged by the 1000 Genomes Proj-
ect as being unfit for population genetic analyses due to having either limited or excessive read-
depth or poor mapping quality (according to the strictMask files for the Phase I data set which
are available at http://www.1000genomes.org/). In order to remove additional sites lying within
repetitive sequence wherein genotyping may be hindered, we eliminated sites with 50 bp read
mappability scores less than one [48] and also sites masked by RepeatMasker (http://www.
repeatmasker.org). Finally, we attempted to infer the ancestral state at each remaining site,
using the chimpanzee [49] and macaque [50] genomes as outgroups. For each site, if the chim-
panzee and macaque genomes agreed, we used this nucleotide as our inferred ancestral state. If
instead only the chimpanzee or the macaque genome had a nucleotide aligned to the site, we
used this base as our inferred ancestral state. For sites that were SNPs, we also required that the
inferred ancestral state matched one of the two human alleles. For all cases where these criteria
were not met, we discarded the site.
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After data filtering, we calculated summary statistics within adjacent 200 kb windows across
the entire chromosome. Importantly, we divided the values of each summary statistic by the
number of sites in the window, ignoring sites filtered as discussed above (i.e. π summarizes
average nucleotide diversity per site rather than total diversity in the subwindow). Windows
with>50% of sites removed during the filtering processes were omitted from our analysis.
These two steps limited the effect of variation in the number of unfiltered sites from window to
window our classification. For the remaining windows, we used a sliding window approach
with a 2.2 Mb window and a 200 kb step size to calculate the feature vector in the same manner
as for our simulated data, and then applied S/HIC to this feature vector to infer whether the
central subwindow of this 2.2 Mb region contained a hard sweep, a soft sweep, was linked to a
hard sweep, linked to a soft sweep, or evolving neutrally. Visualization of candidate regions
was performed using the UCSC Genome Browser [51]. We used hg19 coordinates for all of our
analyses using human data.

Software availability
Our classification tool is available at https://github.com/kern-lab/shIC, along with software for
generating the feature vectors used in this paper (either from simulated training data or from
real data for classification).

Results

S/HIC accurately detects hard sweeps
The most basic task that a selection scan must be able to perform is to distinguish between
hard sweeps and neutrally evolving regions, as the expected patterns of nucleotide diversity,
haplotypic diversity, and linkage disequilibrium produced by these two modes of evolution dif-
fer dramatically [5, 8, 10, 18, 24, 52]. We therefore begin by comparing S/HIC’s power to dis-
criminate between hard sweeps and neutrality to that of several previously published methods:
these include SweepFinder [aka CLR; 28], SFselect [37], Garud et al.’s haplotype approach
using theH12 and H2/H1 statistics [24], Tajima’s D [36], and Kim and Nielsen’s ω [10], evol-
Boosting [40], and a support vector machine implemented that uses CLR and ω statistics
(Methods). We extended SFselect and evolBoosting to allow for soft sweeps (Methods), and
therefore refer to this classifier as SFselect+ and evolBoosting+ in order to avoid confusion. We
summarize the power of each of these approaches with the receiver operating characteristic
(ROC) curve, which plots the method’s false positive rate on the x-axis and the true positive
rate on the y-axis (Methods). Powerful methods that are able to detect many true positives with
very few false positives will thus have a large area under the curve (AUC), while methods per-
forming no better than random guessing are expected to have an AUC of 0.5.

We began by assessing the ability of these tests to detect selection in populations with con-
stant population size and no population structure. First, we used test sets where the selection
coefficient α = 2Ns was drawn uniformly from U(2.5×102, 2.5×103), finding that S/HIC
achieved had perfect accuracy (AUC = 1.0; S2A Fig), and that several other methods performed
nearly as well. When drawing α fromU(2.5×103, 2.5×104), every method had near perfect accu-
racy (AUC>0.99) except H12 and ω (S2B Fig). For weaker selection [α ~U(25, 2.5×102)] this
classification task is more challenging, and the accuracies of most of the methods we tested
dropped substantially. S/HIC, however, performed quite well, with an AUC of 0.9797, slightly
better than evolBoosting+ (AUC = 0.9702) and SFselect+ (AUC = 0.9683), and substantially
better than the remaining methods (S2C Fig). Note that Garud et al.’sH12 statistic performed
quite poorly in these comparisons, especially in the case of weak selection. This is likely because
the fixation times of the sweeps that we simulated ranged from 0 to 0.2×N generations ago, and
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the impact of selection on haplotype homozygosity decays quite rapidly after a sweep com-
pletes [18]. Indeed, H12 has been shown to have good power to detect recent sweeps [24].

For the above comparisons, our classifier, evolBoosting+, and SFselect+, and the SVM com-
bining CLR and ω were trained with the same range of selection coefficients used in these test
sets. Thus, these results may inflate the performance of these methods relative to other meth-
ods, which do not require training from simulated selective sweeps. If one does not know the
strength of selection, one strategy is to train a classifier using a wide range of selection coeffi-
cients so that it may be able to detect sweeps of varying strengths [37]. We therefore combined
the three training sets from the three different ranges of α described above into a larger training
set consisting of sweeps of α ranging from as low as 25 to as high as 25,000. This step was done
not only for S/HIC, but also for SFselect+, evolBoosting+, and the CLR+ω SVM, and we use
this approach for the remainder of the paper when using classifiers trained from constant pop-
ulation size data. When trained on a large range of selection coefficients, S/HIC still detected
sweeps with α drawn from U(2.5×102, 2.5×103) with perfect accuracy, as did SFselect+ (Fig
2A). For stronger sweeps, we again had excellent accuracy (AUC = 0.999; Fig 2B) and outper-
formed all other methods except SFselect+ and SweepFinder (AUC = 1.0). For weaker sweeps
our method had the highest accuracy (AUC = 0.9772 for S/HIC, 0.9660 for SFselect+, 0.9562
for evolBoosting+, and lower for other methods; Fig 2C). Thus, S/HIC can distinguish hard
selective sweeps of greatly varying strengths of selection from neutrally evolving regions as well
as if not better than previous methods.

S/HIC can uncover soft sweeps and distinguish them from hard sweeps
In order to uncover the targets of recent selective sweeps and also determine which mode of
positive selection was responsible, one must be able to detect the signatures of soft (initial
selected frequency f ~U(0.05, 0.2)) as well as hard sweeps and to distinguish between them. We
therefore assessed the power of each method to distinguish sets of simulated selective sweeps
consisting of equal numbers of hard and soft sweeps from neutral simulations, using the same
training data (for methods that require it) as for the analysis in Fig 2. For all ranges of selection
coefficients, S/HIC has excellent power to distinguish hard and soft sweeps from neutrality;
our AUC scores ranging from 0.9533 to 0.9862, and are higher than every other method in
each scenario (S3 Fig). S/HIC also distinguishes hard sweeps from soft sweeps with accuracy
similar to evolBoosting+ and SFselect+, and these three methods perform better than each
other method, except in the case of weak sweeps where SFselect+ and evolBoosting+ have
slightly better power (AUC = 0.0.7978 for S/HIC, versus 0.8066 and 0.8239, for SFselect+ and
evolBoosting+, respectively; S4 Fig).

Distinguishing sweeps from linked selection to narrow the target of
adaptation
The goal of genomic scans for selective sweeps is not merely to quantify the extent to which
positive selection impacts patterns of variation, but also to identify the targets of selection in
hopes of elucidating the molecular basis of adaption. Unfortunately, hitchhiking events can
skew patterns of variation across large chromosomal stretches often encompassing many loci.
Furthermore, this problem not only confounds selection scans by obscuring the true target of
selection, it may also lead to falsely inferred soft sweeps as a result of the soft shoulder effect
[18]. Our goal in designing S/HIC was to be able to accurately distinguish among positive selec-
tion, linked selection, and neutrality, thereby addressing both of these challenging problems.

In order to assess the ability of our approach and other methods to perform this task, we
repeated the test shown in S3 Fig, but this time we included regions linked to selective sweeps
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Fig 2. ROC curves showing the true and false positive rates of variousmethods/statistics when
tasked with discriminating between regions containing a hard sweep and neutrally evolving regions.
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among the set of neutral test instances. Thus, we ask how well these methods distinguish geno-
mic windows containing the targets of selective sweeps (soft or hard) from neutrally evolving
windows or windows closely linked to sweeps. Encouragingly, we find that S/HIC is able confi-
dently distinguish windows experiencing selective sweeps from linked as well as neutrally
evolving regions (Fig 3)—S/HIC achieves substantially higher accuracy than each other method
(AUC = 0.9593 or higher for all values of α, while no other method has AUC>0.91 for any α).
As the selection coefficient increases, S/HIC’s performance increase relative to that of other
methods is particularly pronounced (Fig 3A and 3B), which is unsurprising because in these
cases the impact of selection on variation within linked regions is much further reaching than
for weak sweeps (Fig 3C).

While ROC curves provide useful information about power, a more complete view of our
ability to distinguishing among hard sweeps, soft sweeps, linked selection, and neutrality can
be obtained by asking how our classifier behaves at varying distances from selective sweeps.
We directly compared our method’s ability to classify regions ranging from 5 subwindows
upstream of a hard sweep to 5 subwindows downstream of a hard sweep to evolBoosting+ and
SFselect+ which were the top performers among all other methods we had examined. For these
simulations, each subwindow had a total recombination rate 4Nr = 80, corresponding to 0.2
cM per subwindow when N = 10,000. We then counted the fraction of simulations predicted to
belong to each of our five classes (hard, hard-linked, soft, soft-linked, and neutral) or the three
classes used for evolBoosting+ and SFselect+. As shown in Fig 4, we find that when α ranges from
250 to 2500 and there has been a hard sweep in the central window, all three methods recover the
sweep with high frequency when examining the correct window (>95% accuracy). However, as
we move away from the selected site, a large number of windows are misclassified as hard sweeps
by SFSelect+ and evolBoosting+. For example, both methods misclassify nearly 50% of cases two
windows away from the true sweep as hard sweeps, and most of the remaining examples as soft
sweeps. In contrast, our method classifies<5% of these regions as sweeps, correctly classifying
>93% of these windows as hard-linked instead. At a distance of 5 windows away from the sweep,
SFselect+ classifies the majority of windows as soft sweeps and many others as hard sweeps, and
evolBoosting+ exhibits a smaller but still prominent shoulder effect (21.2% of windows classified
as soft and 12.7% as hard). Meanwhile, S/HIC classifies>95% of these windows as hard-linked,
and<1% as sweeps of either mode. For soft sweeps, we have the highest sensitivity in the sweep
window (78.6% for S/HIC versus 75.9% for SFselect+ and 60.8% for evolBoosting+). We also nar-
row the target of selection down to a smaller region, as we classify the majority of flanking win-
dows as soft-linked, while SFselect+ produces many soft sweep calls in these windows.

The difference between S/HIC and these two other methods is amplified when testing these
classifiers on stronger hard sweeps (α ranging from 2,500 to 25,000). Our classifier is better
able to narrow down the selected region by classifying flanking windows as hard-linked, while
SFselect+ and evolBoosting classifies the vast majority of simulations even 5 windows away
from the target of selection as hard sweeps (Fig 5). SFselect+ and evolBoosting both have more
sensitivity to detect hard sweeps when examining the correct window (>99% versus 88.8%), as
S/HIC misclassifies 10.9% of these stronger sweeps as hard-linked. On the other hand, S/HIC
recover 91.8% of soft sweeps versus 87.7% for SFselect+ and 73.3% for evolBoosting+, and cor-
rectly classifies the mode of selection more often than these methods. We also misclassify

A) For intermediate strengths of selection (α~U(2.5×102, 2.5×103)). B) For stronger selective sweeps (α~U
(2.5×103, 2.5×104)). C) For weaker sweeps (α~U(2.5×101, 2.5×102)). Here, and for all other ROC curves
unless otherwise noted, methods that require training from simulated sweeps were trained by combining
three different training sets: one where α~U(2.5×101, 2.5×102), one where α~U(2.5×102, 2.5×103), and one
where α~U(2.5×103, 2.5×104).

doi:10.1371/journal.pgen.1005928.g002
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Fig 3. ROC curves showing the true and false positive rates of variousmethods/statistics when
tasked with discriminating between regions containing a sweep (either hard or soft) and unselected
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relatively few regions linked to soft sweeps as sweeps themselves (~16% when one window
away, versus ~50% for SFselect+ and ~20% for evolBoosting+).

For weaker sweeps [α ~U(25, 250)], the impact of selection on linked regions is reduced, and
SFselect+ and evolBoosting+ call fewer false sweeps in linked regions than under stronger positive
selection. However, S/HIC has greater sensitivity to both hard and soft sweeps at the correct win-
dow, and also misclassifies fewer flanking regions as sweeps (S5 Fig). Across the entire range of
selection coefficients, S/HICmislabeled fewer neutral simulations as sweeps than SFselect+,
though evolBoosting+ had a slightly lower false positive rate. In summary, across all selection
coefficients S/HIC has greater sensitivity than other methods to detect soft sweeps, and also
for hard sweeps except when selection is very strong. Importantly, for both types of sweeps
S/HIC will identify a smaller candidate region around the selective sweep than SFselect+ or evol-
Boosting+. S/HIC is able to classify far fewer linked windows as selected because it has two classes
for this purpose, hard-linked and soft-linked, that the other methods lack. Though SFselect
+ could be improved by incorporating these classes, it may prove difficult to determine whether a
window is selected or merely linked to a sweep on the basis of its SFS alone [18], rather than
examining larger scale spatial patterns of variation. evolBoosting+ fares better in this respect
because it does incorporate spatial information. However, perhaps because it takes the true values
of each statistic in each window rather than the relative values and also lacks “linked” classes, this
method still experiences a much greater soft shoulder effect than S/HIC.

Selection on low frequency standing variants, and ranking feature
importance
Up until this point our model of selection on previously stranding variation specified an initial
selected frequency, f, ranging from 0.05 to 0.2. However, a large fraction of soft selective sweeps
may begin the sweep phase at a lower frequency [13, 16, 20]. Therefore, in order to assess how
our classifier performs when soft sweeps have a lower initial selected frequency, we repeated
these analyses with f drawn from U(2/2N, 0.05). Again, for all three ranges of the selection coef-
ficient S/HIC has greater accuracy than any other method (S6 Fig). When attempting to distin-
guish between hard sweeps and soft sweeps under this parameterization, performance was
reduced considerably for all methods, and there was no clear winner across all strengths of
selection. While S/HIC was not the top performer at this task, its AUC was within 5% of the
highest score for each range of selection coefficients (S7 Fig).

Next, for S/HIC and each other method that requires training, we constructed a training set
in the same manner as above but allowing f to range from U(2/2N, 0.2), and we use this range
of initial selected frequencies for all analyses presented below. While training S/HIC on these
data, we ranked the importance of each feature’s contribution to our Extra-Trees classifier’s
accuracy (Methods), which we list in S2 Table. Generally, we find that features near the center

of the window have a greater contribution, and that relative values of ŷw and π tend to have
greater importance than other statistics.

The impact of population size change and demographic misspecification
Non-equilibrium demographic histories have the potential to confound population genetic
scans for selective sweeps [53, 54]. We therefore sought to assess the power of S/HIC and other

regions (either neutral or linked to sweeps). A) For intermediate strengths of selection (α~U(2.5×102,
2.5×103)). B) For stronger selective sweeps (α~U(2.5×103, 2.5×104)). C) For weaker sweeps (α~U(2.5×101,
2.5×102)).

doi:10.1371/journal.pgen.1005928.g003
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Fig 4. Heatmaps showing the fraction of regions at varying distances from sweeps inferred to belong
to each class by S/HIC, SFselect+, and evolBoosting+. The location of any sweep relative to the classified
window (or "Neutral" if there is no sweep) is shown on the y-axis, while the inferred class on the x-axis. Here,
α~U(2.5×102, 2.5×103). A) Results for S/HIC. B) SFselect+. C) evolBoosting+.

doi:10.1371/journal.pgen.1005928.g004
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Fig 5. Heatmaps showing the fraction of regions at varying distances from strong sweeps inferred to
belong to each class by S/HIC, SFselect+, and evolBoosting+. The location of any sweep relative to the
classified window (or "Neutral" if there is no sweep) is shown on the y-axis, while the inferred class on the x-
axis. Here, α~U(2.5×103, 2.5×104). A) Results for S/HIC. B) SFselect+. C) evolBoosting+.

doi:10.1371/journal.pgen.1005928.g005
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methods to detect selection occurring in populations experiencing dramatic changes in popula-
tion size. To this end we trained and tested our classifiers under four demographic scenarios
(S1 Table): two simple population bottlenecks of varying severity (one of which models Euro-
pean Drosophila), a model of recent exponential population size growth, and finally a more
complex model that describes out-of-Africa populations of humans.

Human demographic models. We examined the performance of S/HIC under demo-
graphic models that were recently estimated for African and European human populations by
Tennessen et al. [44]. The African model from Tennessen et al. consists of recent exponential
growth in population size. The European model from Tennessen et al. (S1 Table) includes
recurrent population contractions followed by first slow and then accelerated population
growth. Performance of these models is shown in S8 Fig, from which it can be seen that S/HIC
has the highest accuracy of all methods that we examined. For these two scenarios both training
and testing data were drawn from the same demographic model.

A more pessimistic scenario is one where the true demographic history of the population is
not known, and therefore misspecified during training. Most demographic events should
impact patterns of variation genome-wide rather than smaller regions (but see refs. [55, 56]).
Thus, approaches that search for spatial patterns of polymorphism consistent with selective
sweeps may be more robust to demographic misspecification than methods examining local
levels of variation only (as demonstrated by ref. [28]). To test this, we trained S/HIC and other
classifiers on equilibrium datasets, and measured their accuracy on test data simulated under
the non-equilibrium demographic models described above. In S9A Fig we show the power of
these classifiers to detect selective sweeps occurring under the African model of recent expo-
nential growth. Under this scenario, with α~U(5.0×103, 5.0×104) (equivalent to s~U(6.0×10−3,
6.0×10−2) with N = 424,000), S/HIC achieves an AUC of 0.8122, while the next-highest per-
forming method is evolBoosting+ (AUC = 0.7567). Similarly, we perform better than other
methods when searching for stronger selection (α ranging from 5.0×104 to 5.0×105;
AUC = 0.9844 versus<0.92 for all others; S9B Fig).

Note that the simple summary statistic methods ω and Tajima’sD have some power to detect
selection even under non-equilibrium demography (S8 Fig). However, this result is probably
quite optimistic: the ROC curve is generated by repeatedly adjusting the critical threshold and
measuring true and false positive rates. In practice, a single critical threshold may be chosen to
identify putative sweeps. If this critical value is chosen based on values of the statistic generated
under the incorrect demographic model, then the false positive rate may be quite high. For exam-
ple, Nielsen et al. [28] showed that when a threshold for Tajima’s D is selected based on simula-
tions under equilibrium, 100% of neutral simulations under a population growth model exceed
this threshold. In other words, the ROC curve is useful for illustrating a method’s potential
power if an appropriate threshold is selected, but this may not always be the case in practice.

A more informative approach to evaluating our power may thus be to examine the fraction
of regions including sweeps, linked to sweeps at various recombination distances, or evolving
neutrally, that were assigned to each class (as done in Figs 4 and 5 for constant population
size). We show this in S10 Fig, which better illustrates S/HIC’s power and robustness to
unknown demographic history. Overall, S/HIC has roughly similar sensitivity to selection as
SFselect+ and evolBoosting+. For example, with α ~U(5.0×104, 5.0×105), we recover 98.3% of
hard sweeps versus 99.7% for SFselect+ and 99.3% for evolBoosting+ (S10D–S10F Fig), though
these three methods misclassify many of hard sweeps as soft (48.5%, 26.8%, and 30.6%, respec-
tively). For soft sweeps, with α ~U(5.0×104, 5.0×105), S/HIC classifies 84.5% of examples cor-
rectly, and an additional 7.9% as hard, versus 83.0% as soft and 12.3% as hard for SFselect+,
and 77.6% as soft and 8.4% as hard for evolBoosting+. When examining windows linked to
selective sweeps, both SFselect+ and evolBoosting+ incorrectly classify large fractions of
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instances as hard or soft sweeps (especially for stronger selection coefficients), while S/HIC
classifies most of these as hard-linked or soft-linked (or neutral in the case of weak selection)—
indeed our method classifies very few linked regions as selective sweeps.

In the context of scans for positive selection, the primary concern with non-equilibrium
demography is that it will produce a large number of false selective sweep calls. Indeed, when
trained on an equilibrium demographic history and tested on the exponential growth model,
SFselect+ classifies roughly one-fifth of all neutral loci as having experienced recent positive
selection; for evolBoosting+ the false positive rate is ~15%. In stark contrast, S/HIC does not
seem to be greatly affected by this problem: we classify only ~7% of neutrally evolving regions
as sweeps. Thus, while these three methods all have comparable sensitivity to sweeps in this
scenario, S/HIC has superior specificity: SFselect+ and evolBoosting+ classify a large fraction of
unselected regions (including both neutral and sweep-linked regions) as sweeps, whereas S/
HIC has a low false positive rate. For the curious reader, we present S/HIC’s feature rankings
for classifiers trained on both human demographic histories in S2 Table.

Next, we examined the impact of demographic misspecification on power to detect selection
occurring under Tennessen et al.’s model of the population size history of Europeans following
their migration out of Africa [44] but having trained S/HIC under the standard neutral model.
This demographic history presents an even greater challenge for identifying positive selection
than the African model, as it is characterized by two population contractions followed by expo-
nential growth, and then a more recent phase of faster population growth (Methods). For this
scenario, a single range of selection coefficients was used: α ~U(5.0×103, 5.0×105). Here, we
find that, perhaps unsurprisingly, the performance of most methods is lower than in the Afri-
can scenario. However, S/HIC once again appears substantially more robust to misspecification
of the demographic model than other methods (AUC = 0.8127 versus 0.7250 for evolBoosting
+, and ~0.6 or less for all other methods; Fig 6).

Next, we examined the proportion of windows at various distances from sweeps that are
assigned to each class under this scenario of demographic misspecification. We find that while
S/HIC classifies hard sweeps with lower sensitivity than under constant population size scenario
(56.0% and 19.1% of test examples are classified as hard and soft, respectively), relatively few
linked windows are classified as sweeps (Fig 7A). For soft sweeps S/HIC fares less well (20.7% of
windows are correctly classified, and 34.7% classified as hard sweeps), though again relatively few
false positives are produced in linked or neutral regions. In contrast, evolBoosting+ classifies the
majority of windows, selected or otherwise, as soft sweeps (Fig 7C): 68.5% of hard sweeps and
55.0% of neutral regions are misclassified as soft. For SFselect+ this problem in exacerbated:
68.6% of hard sweeps and 95.3% of neutral windows are classified as soft sweeps. Thus, under
this scenario of demographic misspecification, S/HIC is the only method we examine which can
discriminate between positively selected and unselected portions of the genome effectively.

Bottleneck models. Next we sought to examine accuracy on a 3-epoch population bottle-
neck in which the population contracts to a much smaller size and then later recovers to its
original size. We first examined a model similar to that from Thornton and Andolfatto [47] for
European Drosophila populations, but with a less severe contraction in population size (Meth-
ods; S1 Table). We assessed each method’s ability to detect sweeps with three different fixation
times: the immediate past, in the middle of the bottleneck, and immediately prior to the popu-
lation contraction. When methods that require training were trained under the correct demo-
graphic model, S/HIC was better able to discriminate between sweeps and unselected windows
than any other method (S11 Fig). This difference grew more pronounced with increasing time
since the sweep: for instance, S/HIC had an AUC of 0.9458 for the oldest fixation time consid-
ered, while the next most accurate method was evolBoosting+ with an AUC of 0.8023 (S11C
Fig). Furthermore, when all methods were trained from simulations under constant population
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size (i.e. misspecified), their performance tended to decrease, sometimes considerably, while S/
HIC exhibited no drop in accuracy (S11D–S11F Fig).

We then tested our set of tools on a bottleneck model with the same parameterization as Thorn-
ton and Andolfatto’s model estimated inD.melanogaster [47]. This bottleneck is 10-fold more
severe than the model tested above. In this model, the population size decreases to just 2.9% of its
original size during the bottleneck. Detecting positive selection in the context of this population size
history is far more challenging, and the performance of every method suffers considerably (S12
Fig). Still, S/HIC is once again the top performing method for both recent fixations and the oldest
fixation time we examined, though SFselect+ is slightly more powerful for the intermediate fixation
time (AUC = 0.6902 versus 0.6750). When trained on equilibrium demography S/HIC experiences
no drop in accuracy for older sweeps, in contrast to the other methods (e.g. on very old sweeps
SFselect+ performs worse than a random classifier). Interestingly, S/HIC does show a noticeable
drop in AUC (from 0.9182 to 0.7817) when trained on the wrong model, but still has the highest
accuracy in this case (S12A and S12D Fig). Thus under each demographic model we examined, S/
HIC exhibits sensitivity to selective sweeps comparable to other top-performing methods (though
it occasionally struggles to correctly infer the mode of selection). More importantly, S/HIC avoids
the enormous false positive rates that may plague other methods. Taken together, the above results
lend credence to the idea that spatial patterns of variation will be more robust to non-equilibrium
demography, and far less impaired by misspecification of the demographic model.

Identifying selective sweeps in a human population sample with
European ancestry
The results from simulated data described above suggest that our method has the potential to
identify selective sweeps and distinguish them from linked selection and neutrality with

Fig 6. ROC curves showing the true and false positive rates of variousmethods/statistics when
tasked with discriminating between regions containing a sweep (either hard or soft) and unselected
regions (either neutral or linked to sweeps) when testing on simulations with Tennessen et al.’s
European demographic model.Here, α~U(5×103, 5×105), and the methods that require training from
simulated sweeps were trained from the same simulations with equilibrium demography as used for Figs 2–5.
Note that Tajima’s D and Kim and Nielsen’sω were omitted from this figure, as we simply used the values of
these statistics to generate ROC curves without respect to any demographic model.

doi:10.1371/journal.pgen.1005928.g006
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excellent accuracy. In order to demonstrate our method’s practical utility, we used it to perform
a scan for positive selection in humans. In particular, we searched the 1000 Genomes Project’s
CEU population sample (European individuals from Utah) for selective sweeps occurring after
the migration out of Africa. We focused this search on chromosome 18, where several putative
selective sweeps have been identified in Europeans [57]. The steps we took to train our classifier
and filter the 1000 Genomes data prior to conducting our scan are described in the Methods.

In total, we examined 344 windows, each 200 kb in length. We classified 34 windows (9.9%)
as centered around a hard sweep, 22 (6.4%) as linked to a hard sweep, 48 (14.0%) as centered
around a soft sweep, 89 (25.9%) as linked to a soft sweep, and 151 (43.9%) as neutral. Surpris-
ingly, we infer that over 56% of windows lie within regions whose patterns of variation are
affected by sweeps either within the window or in linked regions. This may imply that, given
the genomic landscape of recombination in humans, even if selective events are somewhat rare
[58], they may nonetheless impact variation across large stretches of the genome. However, we
cannot firmly draw this conclusion given the difficulty of distinguishing between linked selec-
tion and neutrality under the European demographic model (Fig 7).

Encouragingly, our scan recovered 4 of the 5 putative sweeps on chromosome 18 in Europe-
ans identified by Williamson et al. [57] using SweepFinder. These include CCDC178 (which we
classify as a hard sweep), DTNA (which we classify as soft), CCDC102B (hard), and the region
spanning portions of CD226 and RTTN (hard). In each of these loci, the windows that we pre-
dicted to contain the sweep overlapped regions of elevated composite likelihood ratio (CLR)
values from SweepFinder [visualized using data from 59]. Although the CLR statistic is not
completely orthogonal to the summary statistics we examine to perform our classifications, the
close overlap that we observe between these two methods underscores our ability to precisely
detect the targets of recent positive selection. We also identify a novel candidate hard sweep
within L3MBTL4, an apparent tumor suppressor gene that is often mutated, downregulated, or
deleted in breast tumors [60]. As shown in Fig 8, π, Tajima’s D, ZnS, ω, and the CLR statistic all
show patterns strongly suggestive of a selective sweep within this gene. The complete set of
coordinates of putative sweeps from this scan is listed in S4 Table.

Next, we asked whether S/HIC recovered evidence of positive selection on the LCT (lactase)
locus. Previous studies have found evidence for very recent and strong selection on this gene in
the form population differentiation and long-range haplotype homozygosity [61–63]. More-
over, several variants in this region are associated with lactase persistence. Nielsen et al.’s CLR
has also identified this region [28], but not consistently: Williamson et al.’s [57] CLR scan did
not detect a sweep at this locus, nor does a recent scan using the 1000 Genomes data [data
from 59]. This may be expected, as the selection on lactase persistence alleles appears to have
not yet produced completed sweeps. Overall, there is very strong evidence of recent and per-
haps ongoing selection for lactase persistence in human populations relying on diary for
nutrition.

Like the SweepFinder CLR, S/HIC in its current form is also designed to detect completed
sweeps. Nonetheless, we applied S/HIC to a 4 Mb region on chromosome 2 spanning LCT and
neighboring loci. Consistent with previous studies, we find evidence of a selective sweep in a
region upstream of LCT (S13 Fig) that contains a mutation associated with lactase persistence
in Europeans [64], though unlike Peter et al. [25], we classify this sweep as soft. We also find
evidence of a hard selective sweep upstream of LCT, suggesting that there may be additional
targets of selection in this region of chromosome 2. Consistent with this is the observation that
our candidate window also overlaps a region identified by Green et al. [65] as having an excess
of derived alleles in the human genome relative to the number observed in Neanderthal.

The computational speed of this scan is largely governed by the amount of time spent calcu-
lating summary statistics to generate the feature vectors (as well as simulating training data, if
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Fig 7. Heatmaps showing the fraction of regions simulated under Tennessen et al.’s European
demographic model located at varying distances from sweeps inferred to belong to each class by S/
HIC, SFselect+, and evolBoosting+. The location of any sweep relative to the classified window (or

Robust Identification of Soft and Hard Sweeps Using Machine Learning

PLOS Genetics | DOI:10.1371/journal.pgen.1005928 March 15, 2016 22 / 31



absent), as the training and classification tasks are relatively inexpensive (typically requiring
several minutes for the former and only seconds for the later). The approximate runtime for
calculating our set of summary statistics within the 4 Mb region encompassing LCT is ~30
minutes (using code from https://github.com/kern-lab/shIC). Thus, if a compute cluster is
available, one can subdivide the genome into segments of this size and perform these calcula-
tions in parallel, and classify every window in the human genome in under an hour.

"Neutral" if there is no sweep) is shown on the y-axis, while the inferred class on the x-axis. Here, α~U(5×103,
5×105). These three classifiers were trained from simulations with equilibrium demography. A) Results for S/
HIC. B) SFselect+. C) evolBoosting+.

doi:10.1371/journal.pgen.1005928.g007

Fig 8. Browser screenshot showing patterns of variation around a putative selective sweep in Europeans within L3MBTL4 on chr18. Values of π,
Tajima’s D, Kelley’s ZnS, and Nielsen et al’s composite likelihood ratio, all from Pybus et al. [59], are shown. Beneath these statistics we show the
classifications from S/HIC (red: hard sweep; faded red: hard-linked; blue: soft sweep; faded blue: soft-linked; black: neutral). This image was generated using
the UCSC Genome Browser (http://genome.ucsc.edu).

doi:10.1371/journal.pgen.1005928.g008
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Discussion
Detecting the genetic targets of recent adaptation and the mode of positive selection acting on
them—selection on de novomutations versus previously standing variants—remains an impor-
tant challenge in population genetics. The majority of efforts to this end have relied on popula-
tion genetic summary statistics designed to uncover loci where patterns of allele frequency [e.g.
8, 36, 66] or linkage disequilibrium [e.g. 9, 10] depart from the neutral expectation. Recently,
powerful machine learning techniques have begun to be applied to this problem, showing great
promise [18, 37, 39, 40, 43]. Here we have adopted a machine learning approach to develop S/
HIC, a method designed to not only uncover selective sweeps, but to distinguish them from
regions linked to sweeps as well as neutrally evolving regions, and to identify the mode of selec-
tion. This is achieved by examining spatial patterns of a variety of population genetic summary
statistics that capture different facets of variation across a large-scale genomic region. Cur-
rently, this method examines the values of nine statistics across eleven different windows in
infer the mode of evolution in the central window—this makes for a total of 99 different values
considered by the classifier. By leveraging all of this information jointly, our Extra-Trees classi-
fier is able to detect selection with accuracy unattainable by methods examining a single statis-
tic, underscoring the potential of the machine learning paradigm for population genetic
inference. Indeed, on simulated datasets with constant population size, S/HIC has power
matching or exceeding previous methods when linked selection is not considered (i.e. the
sweep site is known a priori), and vastly outperforms them under the more realistic scenario
where positive selection must be distinguished from linked selection as well as neutrality.

We argue that the task of discriminating between the targets of positive selection and linked
but unselected regions is an extremely important and underappreciated problem that must be
solved if we hope to identify the genetic underpinnings of recent adaptation in practice. This is
especially so in organisms where the impact of positive selection is pervasive, and therefore
much of the genome may be linked to recent selective sweeps [e.g. 67]. A method that can dis-
criminate between sweeps and linked selection would have three important benefits. First, it
will reduce the number of spurious sweep calls in flanking regions, thereby mitigating the soft
shoulder problem [18]. Second, such a method would have the potential to narrow down the
candidate genomic region of adaptation. Third, such a method would be able to find those
regions least affected by linked selection, which themselves might act as excellent neutral prox-
ies for inference into demography or mutation. We have shown that S/HIC is able to distin-
guish among selection, linked selection, and neutrality with remarkable power, granting it the
ability to localize selective sweeps with unrivaled accuracy and precision, demonstrating its
practical utility.

While S/HIC performs favorably to other approaches under the ideal scenario where the
true demographic history of the population is known, in practice this may not always be the
case. However, because our method relies on spatial patterns of variation, we are especially
robust to demography: if the demographic model is misspecified, the disparity in accuracy
between S/HIC and other methods is even more dramatic. For example, if we train S/HIC with
simulated datasets with constant population size, but test it on simulated population samples
experiencing recent exponential growth (e.g. the African model from ref. [44]), we still identify
sweeps with impressive accuracy, and vastly outperform other methods. We also tested S/HIC
on a more challenging model with two population contractions followed by slow exponential
growth, and more recent accelerated growth (the European model from ref. [44]), obtaining
qualitatively similar results. S/HIC therefore seems well suited for inference on populations
with unknown demographic histories, though in such scenarios power could perhaps be
improved by quickly fitting a relatively simple non-equilibrium demographic model prior to
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training. Even if oversimplified, simulations under such a model might better approximate pat-
terns of variation around sweeps and within unselected regions than simulations under equilib-
rium, though we have not explored this possibility here.

Though S/HIC performs far better than other tests for selection when tested on non-equilib-
rium populations, power for all methods is far lower than under constant population size, even
if the demographic model is properly specified during training. Similar results are obtained
under a severe population bottleneck. The reason for this is somewhat disconcerting: under
these demographic models, the impact of selective sweeps on genetic diversity is blunted, mak-
ing it far more difficult for any method to identify selection and discriminate between hard and
soft sweeps. This underscores a problem that could prove especially difficult to overcome. That
is, for some demographic histories all but the strongest selective sweeps may produce almost
no impact on diversity for selection scans to exploit.

A second and related confounding effect of misspecified demography is that following pop-
ulation contraction and recovery/expansion, much of the genome may depart from the neutral
expectation, even if selective sweeps are rare. By examining the relative levels of various sum-
maries of variation across a large region, rather than the actual values of these statistics, we are
quite robust to this problem (Fig 7 and S10 Fig). In other words, while non-equilibrium
demography may reduce S/HIC’s sensitivity to selection and its ability to discriminate between
hard and soft sweeps, we still classify relatively few neutral or even linked regions as selected.
Thus, although inferring the mode of positive selection with high confidence may remain
extremely difficult in some populations, our method appears to be particularly well suited for
detecting selection in populations with non-equilibrium demographic histories whose parame-
ters are uncertain. Indeed, applying our approach to chromosome 18 in a European human
population, we detect most of the putative sweeps previously reported by Williamson et al.
[57].

An additional advantage of machine learning approaches such as ours is the relative ease
with which the classifier can be extended to incorporate more features, potentially adding
information complementary to current features that could further improve classification
power. For example, our examination of linkage disequilibrium is limited to within each sub-
window; including features measuring the degree of LD between subwindows could also add
valuable information. In addition, we could add statistics currently omitted which capture pat-
terns of genealogical tree imbalance (e.g. the maximum frequency of derived alleles [68]), or
star-like sub-trees within genealogies (e.g. iHS [42], nSL [23]), both symptoms of various types
of positive selection. Indeed, all tests for selective sweeps can be seen as methods to detect the
distortions in the shapes of genealogies surrounding selected sites. Thus, if one could directly
examine the ancestral recombination graph (ARG) surrounding a focal region, more powerful
inference could be possible. It is now possible to estimate ARGs from sequence data [69], and
summaries of these estimated trees could be incorporated as features to identify sweeps and
classify their mode. These are just some of a multitude of possible features that one can use to
make inferences about natural selection. The success of S/HIC, evolBoosting [40], and SFselect
[37] in our tests relative to more conventional methods shows that machine learning
approaches leveraging many different types of information have the potential to make far more
powerful inferences than methods relying on an individual statistic.

In summary, we have devised a machine learning-based scan for positive selection that pos-
sesses not only unparalleled accuracy, but is also exceptionally robust to the non-equilibrium
demographic models we have examined here. This finding is extremely encouraging, though
we can’t be certain it generalizes to every possible demographic scenario. Adjustments to the
feature space can easily be made to better suit a particular study population. For example, if
haplotypic phase is unknown, one can replace measures of gametic LD with zygotic LD.
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Additional classes could also be incorporated into the classifier (e.g. “partial” or incomplete
sweeps, balancing selection, or background selection), as long as they can be simulated to gen-
erate training data. Thus, our approach is practical and flexible. As additional population
genetic summary statistics and tests for selection are devised, they can be incorporated into our
feature space, thereby strengthening an already powerful method which has the potential to
illuminate the impact of selection on genomic variation with unprecedented detail.

Supporting Information
S1 Fig. Means and standard deviations of Tajima’s D at increasing distances from a selec-
tive sweep, and in neutrally evolving windows. The sweep occurs in window 0. A) Values of
Tajima’s D in 11 subwindows for the constant population size scenario, with α drawn from U
(250, 2500). B) The African demographic model, with α drawn from U(5.0×103, 5.0×104). C)
The European demographic model. D) The less severe bottleneck model (reduction to 29% of
original size), with sweeps completing immediately prior to sampling. E) The more severe
Thornton and Andolfatto [47] model (reduction to 2.9% of original size), with sweeps complet-
ing immediately prior to sampling.
(TIFF)

S2 Fig. ROC curves showing the true and false positive rates of various methods/statistics
when tasked with discriminating between regions containing a hard sweep and neutrally
evolving regions. A) For intermediate strengths of selection (α~U(2.5×102, 2.5×103)). B) For
stronger selective sweeps (α~U(2.5×103, 2.5×104)). C) For weaker sweeps (α~U(2.5×101,
2.5×102)). Here, the methods that require training from simulated sweeps were trained from a
set having the same distribution of selection coefficients as the test set.
(TIFF)

S3 Fig. ROC curves showing the true and false positive rates of various methods/statistics
when tasked with discriminating between regions containing a sweep (either hard or soft)
and neutrally evolving regions. A) For intermediate strengths of selection (α~U(2.5×102,
2.5×103)). B) For stronger selective sweeps (α~U(2.5×103, 2.5×104)). C) For weaker sweeps
(α~U(2.5×101, 2.5×102)).
(TIFF)

S4 Fig. ROC curves showing the true and false positive rates of various methods/statistics
when tasked with discriminating between hard and soft sweeps. A) For intermediate
strengths of selection (α~U(2.5×102, 2.5×103)). B) For stronger selective sweeps (α~U(2.5×103,
2.5×104)). C) For weaker sweeps (α~U(2.5×101, 2.5×102)).
(TIFF)

S5 Fig. Heatmaps showing the fraction of regions at varying distances from weak sweeps
inferred to belong to each class by S/HIC, SFselect+, and evolBoosting+. The location of any
sweep relative to the classified window (or "Neutral" if there is no sweep) is shown on the y-
axis, while the inferred class on the x-axis. Here, α~U(2.5×101, 2.5×102). A) Results for S/HIC.
B) SFselect+. C) evolBoosting+.
(TIFF)

S6 Fig. ROC curves showing the true and false positive rates of various methods/statistics
when tasked with discriminating between regions containing a sweep (either hard or soft)
and unselected regions (either neutral or linked to sweeps). A) For intermediate strengths of
selection (α~U(2.5×102, 2.5×103)). B) For stronger selective sweeps (α~U(2.5×103, 2.5×104)).
C) For weaker sweeps (α~U(2.5×101, 2.5×102)). For the soft sweep training and test examples
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used to generate these plots, f was drawn from ~U(2/2N, 0.05).
(TIFF)

S7 Fig. ROC curves showing the true and false positive rates of various methods/statistics
when tasked with discriminating between hard and soft sweeps. A) For intermediate
strengths of selection (α~U(2.5×102, 2.5×103)). B) For stronger selective sweeps (α~U(2.5×103,
2.5×104)). C) For weaker sweeps (α~U(2.5×101, 2.5×102)). For the soft sweep training and test
examples used to generate these plots, f was drawn from ~U(2/2N, 0.05).
(TIFF)

S8 Fig. ROC curves showing the true and false positive rates of various methods/statistics
when tasked with discriminating between regions containing a sweep (either hard or soft)
and unselected regions (either neutral or linked to sweeps) when testing on non-equilib-
rium demography.Here, the methods that require training from simulated sweeps were
trained from the same demographic model used for testing. A) Testing on the African demo-
graphic model, with α~U(5×103, 5×104). B) The African demographic model, with α~U(5×104,
5×105). C) The European demographic model, with α~U(5×103, 5×105).
(TIFF)

S9 Fig. ROC curves showing the true and false positive rates of various methods/statistics
when tasked with discriminating between regions containing a sweep (either hard or soft)
and unselected regions (either neutral or linked to sweeps) when training with equilibrium
demography but testing on non-equilibrium demography.Here, the methods that require
training from simulated sweeps were trained from the same simulations with equilibrium
demography as used for Figs 2–5. A) Testing on the African demographic model, with α~U
(5×103, 5×104). B) The African demographic model, with α~U(5×104, 2.5×105). Note that Taji-
ma’s D and Kim and Nielsen’s ω were omitted from this figure, as we simply used the values of
these statistics to generate ROC curves without respect to any demographic model.
(TIFF)

S10 Fig. Heatmaps showing the fraction of regions simulated under Tennessen et al.’s Afri-
can demographic model located at varying distances from sweeps inferred to belong to
each class by S/HIC, SFselect+, and evolBoosting+. The location of any sweep relative to the
classified window (or "Neutral" if there is no sweep) is shown on the y-axis, while the inferred
class on the x-axis. For panels A–C, α~U(5×103, 5×104), and for D–F α~U(5×104, 5×105).
These three classifiers were trained from simulations with equilibrium demography.
(TIFF)

S11 Fig. ROC curves showing the true and false positive rates of various methods/statistics
when tasked with discriminating between regions containing a sweep (either hard or soft)
and unselected regions (either neutral or linked to sweeps) for the less severe bottleneck
model. A) For very recent sweeps (fixation immediately prior to sampling). B) For older
sweeps (fixation 0.22×2N generations ago). C) For the oldest sweeps (fixation 0.44×2N genera-
tions ago). D) For very recent sweeps, but after training on equilibrium demography. E) For
older sweeps, after training under equilibrium. F) For the oldest sweeps, after training under
equilibrium.
(TIFF)

S12 Fig. ROC curves showing the true and false positive rates of various methods/statistics
when tasked with discriminating between regions containing a sweep (either hard or soft)
and unselected regions (either neutral or linked to sweeps) for Thornton and Andolfatto’s
severe bottleneck model. A) For very recent sweeps (fixation immediately prior to sampling).
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B) For older sweeps (fixation 0.22×2N generations ago). C) For the oldest sweeps (fixation
0.44×2N generations ago). D) For very recent sweeps, but after training on equilibrium demog-
raphy. E) For older sweeps, after training under equilibrium. F) For the oldest sweeps, after
training under equilibrium.
(TIFF)

S13 Fig. Patterns of variation around the LCT locus in the CEU population. Values of π,
Tajima’s D, Kelley’s ZnS, Kim and Nielsen’s ω, and Nielsen et al’s composite likelihood ratio, all
from Pybus et al. [59], are shown. Beneath these statistics we show the classifications from S/
HIC (red: hard sweep; faded red: hard-linked; blue: soft sweep; faded blue: soft-linked; black:
neutral). This image was generated using the UCSC Genome Browser (http://genome.ucsc.
edu).
(TIFF)

S1 Table. Parameters used for simulating training and test datasets of large chromosomal
regions.
(XLSX)

S2 Table. Feature importance rankings for S/HIC classifiers trained on three different
demographic histories.
(XLSX)

S3 Table. Extra-Trees classifier parameter grid search results for S/HIC classifiers trained
on three different demographic histories.
(XLSX)

S4 Table. Predicted sweeps on chromosome 18 from the CEU sample from Phase I of the
1000 Genomes Project.
(XLSX)
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