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A B S T R A C T   

Background: As of Feb 27, 2022, coronavirus (COVID-19) has caused 434,888,591 infections and 5,958,849 
deaths worldwide, dealing a severe blow to the economies and cultures of most countries around the world. As 
the virus has mutated, its infectious capacity has further increased. Effective diagnosis of suspected cases is an 
important tool to stop the spread of the pandemic. Therefore, we intended to develop a computer-aided diagnosis 
system for the diagnosis of suspected cases. 
Methods: To address the shortcomings of commonly used pre-training methods and exploit the information in 
unlabeled images, we proposed a new pre-training method based on transfer learning with self-supervised 
learning (TS). After that, a new convolutional neural network based on attention mechanism and deep resid
ual network (RANet) was proposed to extract features. Based on this, a hybrid ensemble model (TSRNet) was 
proposed for classifying lung CT images of suspected patients as COVID-19 and normal. 
Results: Compared with the existing five models in terms of accuracy (DarkCOVIDNet: 98.08%; Deep-COVID: 
97.58%; NAGNN: 97.86%; COVID-ResNet: 97.78%; Patch-based CNN: 88.90%), TSRNet has the highest accu
racy of 99.80%. In addition, the recall, f1-score, and AUC of the model reached 99.59%, 99.78%, and 1, 
respectively. 
Conclusion: TSRNet can effectively diagnose suspected COVID-19 cases with the help of the information in un
labeled and labeled images, thus helping physicians to adopt early treatment plans for confirmed cases.   

1. Introduction 

1.1. Background 

Coronavirus disease (COVID-19) is caused by a virus called SARS- 
CoV-2, which spreads widely and rapidly. People infected with the 
SARS-CoV-2 virus usually have symptoms such as cough, fever, and loss 
of smell or taste. Some older infected people develop life-threatening 
conditions [1]. In December 2019, the world’s first new case of coro
navirus pneumonia infection was identified. A few weeks later, the 
pandemic swept through most countries and regions of the world. As of 
Dec 15, 2021, there were 22,061,730 confirmed cases of COVID-19 and 
5,334,236 deaths worldwide, according to the latest outbreak data 
released by the World Health Organization (WHO) [2]. This pandemic 
has devastated economies and cultures worldwide and brought global 

health care systems to the brink of collapse. Although some economi
cally developed countries and regions have developed vaccines and 
completed vaccination at this stage, there are still two major problems: 
First, the virus is an mRNA virus, and it is very prone to mutation, such 
as the Delta variant discovered in October 2020 [3]. This variant is more 
infectious, with higher viral loads within patients after infection, and 
there have been cases of vaccination but still infection. Secondly, most 
countries and regions do not have enough financial resources to develop 
and purchase vaccines. Therefore, efficient diagnosis and proper isola
tion of suspected cases are still the main pandemic prevention measures 
at this stage. Real-time reverse transcription-polymerase chain reaction 
(RT-PCR) is considered the “gold standard” for COVID-19 diagnosis [4]. 
This test converts the RNA of the virus into DNA by reverse transcrip
tion. It then uses PCR to amplify the DNA for appropriate analysis to 
detect the infected subject. However, RT-PCR tests suffer from long 
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acceptance times, high false-negative rates, and lack of test kits. 
The researchers found that CT scan images or X-ray images of pa

tients infected with COVID-19 had typical features such as cloudiness, 
ground-glass nodules or faint black dots. This opens up the possibility for 
physicians to diagnose subjects from their CT scan images or X-ray im
ages. In addition, a related study showed that the sensitivity of RT-PCR 
detection was 71%, and that of CT scan image detection was 98% at the 
time of the patient’s initial visit [5]. At the same time, it is faster and 
easier for physicians to diagnose by CT scan images or X-ray images of 
the subject than by RT-PCR [6]. Therefore, CT scans or X-ray images can 
be used as a complementary tool to RT-PCR to diagnose COVID-19. 

1.2. Related work 

However, traditional manual diagnostic methods struggle to cope 
with the crisis with a widespread epidemic. Deep learning opens up a 
new path for healthcare systems. A binary classification model for 
automatic COVID-19 detection was proposed by Qzturk et al. [7]. The 
accuracy of the model was 98.08%, and there is still room for further 
improvement of the model. Nour and Cömert [8] designed a new CNN 
network structure. They used the deep features extracted by this model 
in machine learning algorithms such as k-nearest neighbors, support 
vector machine (SVM), and decision tree. The highest accuracy of this 
model was 98.97%. Xu et al. [9] modified the initial transfer learning 
model accordingly and built the corresponding algorithm, which was 
later validated by overall internal and external validation with an ac
curacy of 89.5%. Ashkan et al. [10] proposed an auxiliary diagnostic 
system for COVID-19 that uses a modified AlexNet network for feature 
extraction and a majority voting system for final classification and 
diagnosis. The system’s accuracy was 93.20% on the CT dataset. Danial 
Sharifrazi et al. [11] proposed a hybrid model that fuses convolutional 
neural networks with support vector machines and Sobel filters, and the 
method achieved 99.02% accuracy in the automatic detection of 
COVID-19. Matteo et al. [12] improved the proposed lightweight 
network structure based on SqueezeNet and obtained an accuracy of 
85.03% on the new crown CT dataset. Suat Toraman et al. [13] proposed 
a new artificial neural network, CapsNet, which has an accuracy of 
97.24% in COVID-19 dichotomous detection and 84.22% correct rate in 
multiclassification detection. Gonçalo et al. [14] performed COVID-19 
detection based on the EfficientNet architecture and showed an 
average accuracy of 99.63% on dichotomous classification and 96.69% 
on multiclassification. However, this paper uses a single network model 
for diagnosis. The accuracy still needs to be improved. D. Apostolo
poulos et al. [15] used transfer learning for COVID-19 detection on X-ray 
images. The results showed that an accuracy of 96.78% was achieved 
when performing multiclassification detection. Yu-Dong Zhang et al. 
[16] introduced random pooling instead of global pooling and 
maximum pooling based on the traditional deep convolution. The model 
achieved an accuracy of 93.64% and performed better for lung CT 
detection of COVID-19 patients. H. Benbrahim et al. [17] performed 
classification of COVID-19 X-ray images based on the Apache Spark 
framework and using the InceptionV3 and ResNet50 models, which 
achieved a maximum accuracy of 99.01%. Xiang Yu et al. [18] devel
oped a deep learning framework. The CNN network first extracts the 
framework, then reconstructed based on the image, and finally classified 
by the classifier. The accuracy of this framework structure on the 
COVID-19 CT dataset is 99%. Mujeeb Ur Rehman et al. [19] developed a 
supervised learning method. Instead of relying on a single salient 
symptom for diagnosis, this method used multiple symptoms of the 
subject as features for diagnosis and achieved an accuracy of 97% for 
COVID-19 diagnosis. 

The above work focuses on the diagnosis of COVID-19 but has the 
disadvantage of not allowing for an analysis of the extent of the patient’s 
condition. Segmentation of chest CT images of patients with COVID-19 
can help physicians analyze the extent of the patient’s disease and thus 
adopt the best treatment plan for the patient. Adel Oulefki et al. [20] 

developed a method for automatic segmentation and measuring chest 
CT images of COVID-19 patients. The method achieves 0.98 and 0.99 in 
accuracy and specificity, respectively, which is more accurate compared 
to methods such as medical image segmentation (MIS). To solve the 
problem of relying more on real image label information in previous 
deep learning segmentation methods, Xiaoming Liu et al. [21] proposed 
a weakly supervised segmentation method for COVID-19 patient chest 
CT images. Juanjuan He et al. [22] developed an evolvable adversarial 
framework for COVID-19 patients. The method used three different 
mutation-evolving generator networks and incorporated gradient pen
alties into the model to achieve excellent performance in segmenting 
chest CT images of patients with COVID-19. Nan Mu et al. [23] proposed 
a network for segmenting chest CT images of patients with pneumonia 
caused by the SARS-CoV-2 virus. The network fused multiple feature 
information to identify the boundaries of the patient’s lung infection 
accurately and thus outperformed other segmentation models in terms 
of performance. 

With the rapid development of artificial intelligence, deep learning 
has demonstrated its unique capabilities in speech recognition, auto
matic machine translation, and autonomous driving. Deep learning re
lies on using large amounts of data for training, but insufficient data 
have been an unavoidable problem in some specific areas. For example, 
the dataset samples in medical imaging are usually patients suffering 
from painful diseases, so the dataset may be insufficient to protect pa
tient privacy. Therefore, to solve this problem, transfer learning be
comes an essential part. In transfer learning, as pointed out by Ref. [24], 
the training and test data are not required to be independent and 
identically distributed (i.i.d.). Also, we do not have to train the target 
domain model from scratch, significantly reducing the training time and 
the need for data from the target domain. It is now common practice to 
pre-train on the natural-image (e.g., ImageNet [25]) datasets or directly 
use the weights of already trained network models (e.g., ResNet [26], 
DenseNet [27]) and fine-tune them accordingly in the target medical 
imaging domain. However, it is pointed out in Ref. [28] that networks 
pre-trained on large natural image datasets are often over-fitted on the 
target dataset due to the large differences between medical image 
datasets and large natural image datasets in terms of quantity and va
riety. Therefore, in this paper, we will explore a more suitable 
pre-training scheme in the medical image domain. 

The main goal of self-supervised learning (SSL) is not to rely on 
manual annotation but to learn meaningful representations of input data 
with the help of pretext. Self-supervised learning methods are mainly 
divided into three categories. One is to construct corresponding auxil
iary tasks based on the context information of the data itself. For 
example, Word2sec, the most important algorithm in NLP, uses 
contextual information to make corresponding predictions. In the image 
field [29], seeks the self-supervised context by predicting the rotation of 
the input picture from different angles. The research shows that data 
enhancement brings more training data and improves the robustness of 
the model, which is very beneficial to self-supervised learning. The 
second is to construct corresponding constraints based on timing. For 
example, in Ref. [30], the feature of the adjacent frames in the video is 
constructed as positive samples, and the far apart frames are constructed 
as negative samples for self-supervising constraints. The third is a 
self-supervised learning method based on contrast constraints. This 
method builds representations by learning to encode the similarity or 
dissimilarity of two things, which is the current mainstream method. 
The core idea of this method is to realize self-supervised learning by 
measuring the distance between positive and negative samples, and the 
distance between the sample and the positive sample is much larger than 
the distance between the sample and the negative sample. DIM [31] uses 
the local features of the image as positive samples and other images’ 
local features as negative samples to achieve contrast constraints. CMC 
[32] proposes to take multiple modalities of one sample as positive 
samples and multiple modalities of other samples as negative samples. 
Related researchers put forward the related concepts of memory bank 
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[33] to efficiently access and calculate the loss. MoCo [34] uses mo
mentum to update encoder parameters based on the idea of a memory 
bank, which solves the problem of inconsistent encoding of new and old 
candidate samples. SimCLR [35] makes the model training effect close to 
the supervised model by adopting methods such as increasing nonlinear 
mapping, larger batch size, and data enhancement. MoCo v2 [36] im
proves the data enhancement method based on MoCo, and adds the 
same nonlinear layer to the representation of the encoder during 
training. The model is better than SimCLR under a smaller batch size. 

Compared with the annotation of natural images, the annotation of 
medical images needs to be performed by experts with relevant spe
cialties. In addition, the annotation of medical images requires very 
specialized medical knowledge, and a lot of subjective ideas are added in 
the annotation process. Therefore, there exists a large amount of infor
mation in unlabeled medical images that cannot be utilized. In this 
paper, a new pre-training method based on migration learning and self- 
supervised learning (TS) is proposed. The method effectively alleviates 
the problem of excessive differences between the source and target do
mains in traditional migration learning methods while enabling the in
formation in unlabeled images to be effectively utilized. 

1.3. Our work 

The above methods have achieved good results in diagnosing COVID- 
19, but there are still some problems. 1) In the field of natural images, 
most images are manually annotated by ordinary people. However, due 
to the particularity of the medical image field, the label of the dataset 
must be annotated by experts in the relevant field. Therefore, there is a 
large amount of information in unlabeled images that cannot be used. 2) 
In medical imaging, dataset samples are relatively scarce. 

The general solution is to migrate the model to downstream target 
tasks for fine-tuning after ImageNet pre-training to improve the model’s 
generalization ability and speed up the training speed. However, natural 
and medical images are quite different in type and quantity, so this may 
not be the best pre-training method. 3) The accuracy of the above 
method needs to be further improved. We propose a new CAD method 
for diagnosing suspected COVID-19 patients to solve the above prob
lems. The main contributions of this article are as follows:  

1) To improve the accuracy of the diagnosis of suspected CVOID-19 
cases, we proposed a new hybrid ensemble model (TSRNet) to di
agnose suspected cases.  

2) To solve the problems in the traditional pre-training method and use 
the information in the unlabeled image, we proposed a new pre- 
training method (TS).  

3) To enable the model to better focus on the lesion area, we proposed a 
new convolutional neural network based on attention mechanism 
and deep residual network to extract features.  

4) Our model has the highest accuracy of 99.80% compared to the five 
existing models, which suggests that our proposed model can help 
radiologists diagnose COVID-19 suspected patients more accurately. 

The other subsections of the paper are structured as follows: Section 
2 introduces the dataset required for the experiments, Section 3 presents 
the principles of the methods used and the general structure of the 
model, Section 4 presents the experimental part, and Section 5 con
cludes with a summary. 

2. Dataset 

A total of four datasets were used in this experiment. The first is the 
ImageNet dataset, which was established to facilitate the development 
of computer image recognition technology. The dataset is huge and 
contains most of the image categories we will see in our lives. Therefore, 
this dataset is usually regarded as the source domain of transfer learning. 
The second one is the COVID dataset from Ref. [37]. This dataset con
tains 1252 COVID-19 patients and 1229 lung CT images of healthy 
people. Fig. 1 shows a sample example of this dataset. This dataset is 

Fig. 1. Sample dataset example.  

Table 1 
Dataset used in this study.  

Class Train Val Test Total 

Non-COVID 737 246 246 1229 
COVID-19 751 251 250 1252  

Fig. 2. A sample of LUNA dataset.  
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divided into a training set, a validation set, and a test set in the ratio of 
0.6:0.2:0.2. Table 1 lists the relevant detailed data. In addition, the Lung 
Nodule Analysis (LUNA) [38] was used as the source of the unlabeled CT 
data. This dataset has a total of 1000 images and will be used for un
labeled images for self-supervised learning but will not be used as 
negative examples in CVOID-19. Fig. 2 shows a sample example of the 
LUNA dataset. To meet the input requirements of the model, we con
verted all CT images to 224 × 224 × 3 before input. Finally, to verify the 
impact of the difference between the source domain and the target 
domain on transfer learning, the data in Ref. [39] was used as a sec
ondary dataset for validation. 

In order to improve the generalization ability of the network model, 
different data enhancement operations, such as random cropping and 
horizontal flipping, are performed on the COVID dataset to improve the 
robustness of the network model. The specific operations are shown in 
Fig. 3. 

3. Methodology 

3.1. Transfer learning with self-supervised learning (TS) 

Although transfer learning is top-rated in medical imaging, accord
ing to Ref. [40] studies, there are two main problems with transfer 
learning in medical imaging at this stage. One is that pre-trained net
works on ImageNet are usually over-parameterized in downstream 
target tasks. Second, there is a big difference between the dataset image 
in the original task and the target task dataset image. For example, the 
images in the ImageNet dataset are natural images of flowers, birds, fish, 
insects, etc., while the experimental dataset is the chest CT images of 
COVID-19 patients. Secondly, there are many dataset images in the 
natural image dataset. There are 1000 image categories in the ImageNet 
dataset, but fewer dataset images are in the medical imaging field. 

Furthermore, compared with the 1 million images in ImageNet, the 
medical imaging dataset may range from a few thousand to a few hun
dred thousand. Therefore, the characterization information learned by 
the network model on ImageNet may not be well adapted to CT images. 
We doubt the feasibility of transplanting the network model from nat
ural images to chest CT images of COVID-19 patients. 

There are problems in the medical image domain, such as fewer 
datasets and more expensive annotation costs. Meanwhile, the 
commonly used transfer learning methods suffer from the problem of 
large bias between the source and target domain datasets. Therefore, a 
new pre-training method (TS) is proposed to solve the problems in the 
traditional pre-training methods. TS incorporates self-supervised 
learning into transfer learning, enabling the model to learn efficient 
and unbiased representational information on unlabeled datasets. The 
pseudocode of TS is shown in Table 2. 

We adopted a self-supervised learning task based on contrast loss in 
this work. We first constructed a queue dictionary to store relevant 
negative samples. After that, the model is used to determine whether the 
two samples generated by data enhancement are from the same source 
image so that the model can be trained. 

In the comparative self-supervised learning task, image enhance
ment is first performed on the original data to obtain two pictures Zq and 
Zk. Zq is called a query, and Zk is called a key. Use the query encoder Q 
and the key encoder K initialized with the weight εq and the weight εk to 
obtain the potential representation of the query and the keywords Q =

Fq(Zq; εq) and K = Fk(Zk; εk). We mark query and key from the same 

Fig. 3. Data augmentation.  

Table 2 
TS pseudocode. 
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image as a positive pair and query and key from different images as a 
negative pair. We use the queue as a dictionary to store a set of keywords 
{Kj} from different images. According to the first-in-first-out feature of 
the queue, the oldest batch of keys will be used as negative keys and 
replaced by new queries. This mechanism prevents irregular sampling of 
negative sampling. We are given the pair (Qi,Ki) obtained from the new 
image. The contrast loss can be expressed as [41]: 

Loss= − log
exp(

Qi ⋅Ki
τ )

exp(
Qi ⋅Ki

τ ) +
∑N− 1

j=1
exp(

Qi ⋅Kj
τ )

(1)  

where Qi.Ki represents the representation vector corresponding to the 
sample and the positive example, and Qi.Kj represents the representation 
vector corresponding to the sample and the negative example. The 
numerator part of this function will close the distance between the 
sample and the positive example, while the denominator part, which 
encourages the vector similarity between the sample and the negative 
example to be as low as possible, pushes away the distance between the 
sample and the negative example. 

We set the queue size to 512 and add a multilayer perceptron with 
2048 hidden units to the model structure. In addition, in specific ex
periments, the optimizer uses the stochastic random gradient descent 
method. 

h= encoder(Z) (2)  

Q=F(Z)=W(2)σ(W(1)h) (3)  

Here encoder is the neural network that extracts the representation in
formation from the image sample and Z is the image sample. Equation 
(3) shows that the representation information h extracted by the encoder 
is projected by a multilayer perceptron to obtain Q, where σ is the ReLU 
nonlinear activation function. 

σ =max(0, x) (4)  

Qi ⋅ Ki =
QT

i ⋅Ki

‖Qi‖‖Ki‖
(5) 

In this study, the parameter εq of the query encoder Fq is updated by 
back propagation, while the parameter εk of the key encoder Fk is 
updated by momentum. εq and εk are updated using the following rules: 

εq = εq − α δLoss

δεq

(6)  

εk =mεk + (1 − m)εq (7)  

where m = 0.999 is the momentum coefficient and α is the learning rate 
of the query encoder. The specific reasons are as follows. In the initial 
end-to-end self-supervised learning approach, the parameters of the 
query encoder Fq and the key encoder Fk are updated at each step. Since 
the input of the key encoder Fk is a negative sample of batch (i.e., N-1), 
the number of inputs cannot be too large. Therefore, the dictionary 
cannot be too large, and the batch size cannot be too large. 

Now, the key encoder Fk is updated using the momentum method, 
which does not involve backpropagation, so the number of negative 
samples of the input can be large. Specifically, the queue size can be 
larger than the mini-batch, which is a hyperparameter. The queue is 
gradually updated in each iteration, and the current mini-batch samples 
are listed, as are the oldest mini-batch samples in the queue, i.e., the 
more negative samples, the better, of course. The form of momentum 
update allows the dictionary to contain more negative samples. In 
addition, the update of the key encoder Fk is extremely slow (m = 0.999 
very close to 1), so the update of the key encoder Fk is equivalent to 
looking at many negative samples. 

In addition, in the original end-to-end self-supervised learning 
approach, the representations of all samples are stored in the dictionary, 
and the K obtained from the latest Q sampling may be the K obtained 
from the encoders encoded several steps ago, thus losing the consistency 
problem. However, in this paper, the encoder Fk is updated by mo
mentum m for each step. Although the update is slow, the query encoder 

Fig. 4. The structure of the proposed RANet.  
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Fq and key encoder Fk are updated for each step, so the consistency 
problem is solved. 

3.2. RANet 

The attention mechanism is a kind of data processing in machine 
learning, widely used in natural language processing, image recognition, 
and other fields. The attention mechanism operates through a neural 
network to generate a mask that evaluates the rating of the current point 
to be attended. Attention mechanisms are divided into three categories: 
(1) Channel attention mechanisms generate a mask for the channel and 
score it. (2) Spatial attention mechanism: the mask is generated for the 
space and scored. (3) Hybrid attention mechanism: scoring both channel 
and spatial attention. 

The convolutional block attention module (CBAM) [42] was pro
posed by Sanghyun Woo et al., in 2018. Compared with SENet [43], 
which only focuses on the channel attention mechanism, CBAM com
bines both spatial and channel attention mechanisms to achieve better 
results than SENet. 

In this paper, a novel convolutional neural network based on atten
tion mechanism and deep residual network (RANet) is designed. The 
specific structure and hyperparameters of the network are shown in 
Fig. 4. We label the similar parts of the network as five stages. Afterward, 
we insert the CBAM between stage0 and stage1, insert another CBAM 
after stage4, and add the transposed convolution layer and the max- 
pooling layer before the final fully-connected layer. In subsequent 
related experiments, we will conduct comparative experiments with 
other classic convolutional neural networks to prove the effectiveness of 
the proposed RANet. 

3.3. Classifier 

Extreme learning machine (ELM) is a single-hidden-layer feedfor
ward neural network algorithm proposed by Prof. Guangbin Huang in 
2004. Like the traditional single-hidden neural network structure, ELM 
has only a three-layer structure, containing an input layer, an interme
diate hidden layer, and a final output layer. BPNN is the most famous 
classical feedforward neural network. Still, it often stays at local ex
tremes because gradient descent is a greedy algorithm that cannot jump 
out of locally optimal solutions. 

ELM uses a new training algorithm that randomly generates input 
weights and deviations during training while deriving output weights 

based on the generalized inverse matrix principle. As a result, the 
training time of ELM is significantly reduced compared to traditional 
neural networks based on gradient descent algorithms. 

The network structure of the ELM is shown in Fig. 5. The structure of 
the Schmidt neural network (SNN) is similar to that of ELM. The output 
bias of the ELM is always 0, but the output bias of the SNN may not be 0. 

Fig. 5. Structure of ELM  Fig. 6. Structure of SNN.  

Fig. 7. TSRNet overall architecture diagram.  

J. Sun et al.                                                                                                                                                                                                                                      



Computers in Biology and Medicine 146 (2022) 105531

7

The structure of the SNN is shown schematically in Fig. 6. Since the 
feature variables extracted by RANet are highly correlated, the classifier 
may not be satisfactory if all feature variables are used to fit the clas
sifier. Therefore, we optimize the data using data downscaling and 
feature selection. 

3.4. TSRNet 

We propose a new CAD system (TSRNet) for COVID-19 diagnosis to 
solve the problems of traditional pre-training methods in the field of 
medical images and improve the accuracy of diagnosis of suspected 
COVID-19 patients. The overall structure of the TSRNet is shown in 
Fig. 7. We first pre-trained the RANet by TS method and then fine-tuned 
the pre-trained RANet on the target dataset for feature extraction. Due to 
the high similarity of the features extracted by RANet, we use two 
different optimization methods for the extracted features, data down
scaling and feature selection, to achieve better results for the classifier. 
For data dimensionality reduction, we use two algorithms, principal 
component analysis (PCA) and independent component analysis (ICA). 
The solution steps of PCA are generally to obtain the covariance matrix 
of the data first, then calculate the eigenvalues and eigenvariables of the 
covariance matrix, and finally select the final principal component 
based on the contribution of the eigenvalues. PCA extracts the features 
unrelated to each other, while ICA extracts the features independent of 
each other. We use the ReliefF algorithm for feature selection, a feature 
weighting algorithm. First, each feature is given a different weight ac
cording to its relevance to the category, and features with weights less 
than a certain threshold will be removed. Since the feature selection 
algorithm generally selects in a small number of feature spaces, we will 
add a 10-node fully connected layer to the output layer of RANet. After 
that, we perform the final classification by Extreme Learning Machine 
(ELM) and Schmidt Neural Network (SNN). Finally, we find the best 
model solution by comparing and analyzing the results. 

4. Experiments 

4.1. Performance measures 

This study used five evaluation metrics to evaluate the proposed 
method: accuracy, recall, F1-score, accuracy, and AUC. They are defined 
as follows: 

Pression=
TP

TP + FP
× 100% (8)  

Recall=
TP

TP + FN
× 100% (9)  

F1 − score =
2TP

2TP + FP + FN
× 100% (10)  

Accuracy=
TP + TN

TP + FN + TN + FP
× 100% (11) 

AUC (Area under Curve): indicates the area under the Roc (receiver 
operating characteristic) curve, and its value is between 0.5 and 1. The 
larger the value of AUC, the greater the probability that the current 
model ranks positive cases over negative cases, and the better the clas
sification effect. Among them, TP (true positive) represents that the 
predicted attribute is COVID-19, and the true attribute is CVOID-19. TN 
(true negative) represents that the predicted attribute is normal, and the 
true attribute is normal. FP (false positive) indicates a predicted attri
bute of COVID-19 and a true attribute of normal. FN (false negative) 
indicates that the true attribute is COVID-19, but the predicted attribute 
is normal. 

As seen from the ROC curves in Fig. 8, our model again shows strong 
performance. Compared with other models, the AUC value of our pro
posed model is 1.0, which indicates that our model performs better in 
performing image classification. In summary, the comprehensive model 
proposed in this paper can perform the diagnostic task of COVID-19 with 
high accuracy, which can assist the radiology department in diagnosing 
suspicious individuals and facilitate subsequent treatment and corre
sponding isolation. 

In addition, the confusion matrix was used in this experiment to 

Fig. 8. ROC curves.  
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evaluate the model’s performance. In the confusion matrix, the columns 
of the matrix represent the predicted attributes of the sample, and the 
rows of the matrix represent the true attributes of the sample. 

4.2. Experimental settings 

Thanks to your suggestion, we have supplemented the experimental 
setup in subsection 4.2 and marked it in yellow. All network models in 

this study were pre-trained on a server with 64 GB RAM, CPU Intel Xeon 
Silver 4214, and GPU Quadro RTX 8000. All subsequent experiments 
were performed on RTX 2060 GPUs. In addition, all networks used for 
feature extraction were generated based on the PyTorch [44] frame
work. We use the scikit-learn [45] for feature dimensionality reduction. 
Finally, we get the classification results through the classifier imple
mented in Python. 

4.3. Evaluation of RANet 

To verify the effectiveness of our proposed RANet, we conducted a 
comparison experiment with ResNet50. The network in this experiment 
was pre-trained on the ImageNet dataset only. The experimental results 
are shown in Table 3. The error rate of RANet in image recognition is 
reduced by 30.92% compared to the ResNet network, proving that the 
network will also outperform the traditional ResNet50 network as a 
feature extractor. Fig. 9 shows the visualization of RANet and ResNet50 

Table 3 
Classification result.  

ImageNet Pretrained Precision Recall F1 Accuracy 

ResNet50 98.74% 95.93% 97.32% 97.38% 
RANet 99.58% 96.75% 98.14% 98.19% 
RANet + ELM 100% 98.37% 99.18% 99.19% 
RANet + PCA + ELM 100% 99.18% 99.59% 99.59%  

Fig. 9. Grad-CAM visualization of ResNet50 with RANet.  

Fig. 10. Confusion matrix.  
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on the same layer of Grad-CAM. By comparison, we find that ResNet50 
always focuses on regions unrelated to the lesion area. 

In contrast, RANet can accurately focus on the lesion region, sug
gesting that RANet can detect COVID-19 more accurately than 
ResNet50. After that, we conducted more in-depth experiments to verify 
the effect of the optimized classifier. The confusion matrix plot for the 
experiments is shown in Fig. 10. All the data on this plot are the results of 
the test set. We found that the model’s accuracy in performing correct 
classification improved by 1% after adding the classifier. After the PCA 
data downscaling, the model’s accuracy reached 99.59%. The results 
show that both data downscaling and classifiers are beneficial to 
improving the model structure’s accuracy, but adding classifiers to the 
model structure is more effective than data downscaling. 

4.4. Evaluation of transfer learning 

To verify the effectiveness of transfer learning and to validate the 
effect of the difference between source and target domain data on 
transfer learning, we selected pre-trained RANet networks under 
different datasets for the corresponding tests. (a) We randomly initialize 
the parameters of the RANet network. (b) We pre-trained RANet on the 
ImageNet dataset and then fine-tuned it accordingly on the target 
dataset. (c) We pre-trained RANet on the [39] dataset and then 
fine-tuned it accordingly in the downstream task. (d) We first 
pre-trained the RANet network on the ImageNet dataset, then trans
ferred it to the [39] dataset for training, and finally fine-tuned the 
network on the target dataset. The experimental results are shown in 
Table 4. We found that transfer learning can greatly improve the net
work’s performance on the target dataset compared to the random 
initialization of the network in Fig. 11. In addition, since the ImageNet 
dataset is more different from the target dataset in terms of number and 
type, the [39] dataset is closer to the target dataset. 

Therefore, transfer learning performance is better when the source 
domain data is closer to the target domain data. Finally, the [39] dataset 
has a single data type and small data volume. Therefore, after 
pre-training the network model on the large dataset, transferring it to a 

smaller dataset closer to the target domain data, and pre-training it 
again, the network will learn more unbiased information about the 
image representation. The performance will be improved again on the 
target dataset. 

4.5. Evaluation of TS 

As seen in Section 4.4, pre-training the network model on the 
ImageNet dataset and then transferring it to a dataset similar to the 
target dataset for pre-training again will facilitate the network model to 
learn unbiased image representation information, which is more bene
ficial for downstream tasks. However, these pre-training processes are 
performed under supervised learning. Therefore, to enable the network 
model to exploit the information of unlabeled images, we consider 
introducing self-supervised learning in the pre-training of the model. 

This section tests the role of self-supervised learning in transfer 
learning. We use TSRNet and DenseNet169 to test together under the 
same experimental conditions to avoid experimental chance. The ex
periments are divided into three groups. The first set of experiments was 
conducted under the TS pre-training method. The second set of experi
ments was just pre-training of the network on the ImageNet dataset. The 
third set of experiments was just a random initialization of the network. 
After that, the pre-trained networks from the three sets of experiments 
are fine-tuned as feature extractors on the target dataset. Finally, the 
final classification results are obtained by downscaling and classifier 
classification. 

As shown by Table 5, the TSRNet accuracy of the scheme of Exper
iment 2 reaches 99.59%, which is 0.6% higher compared with the model 
accuracy of the scheme of Experiment 3. In contrast, the model accuracy 
in the scheme of Experiment 1 reached 99.80%, which is 0.21% higher 
compared to the model accuracy of Experiment 2. In performing self- 
supervised learning, we learn with the help of data from the target 
task without using any labels. In contrast, transfer learning under su
pervised learning is performed with the help of data labels, which makes 
the parameters in the network model more biased towards the source 
data and labels. Thus, by incorporating self-supervised learning into 
transfer learning, the model structure learns more unbiased image rep
resentations than transfer learning under supervision, which is more 
beneficial for fine-tuning the target data. 

4.6. Comparison with state-of-the-art approaches 

To verify the overall effectiveness of TSRNet, we compared it with 
five models (DarkCOVIDNet [7], Deep-COVID [46], NAGNN [47], 
COVID-ResNet [48], Patch-based CNN [49]). The results are shown in 
Fig. 12. In terms of accuracy, compared with the existing models 
(DarkCOVIDNet: 98.80%; Deep-COVID: 97.58%; NAGNN: 97.86%; 
COVID-ResNet: 97.78%; Patch-based CNN: 88.90%), TSRNet has the 
highest accuracy of 99.80%. In terms of other indicators, TSRNet still 

Table 4 
The classification effect of RANet under different transfer learning methods.  

Transfer learning method Precision Recall Accuracy 

Random initialization 99.57% 93.50% 96.57% 
Pre-training on ImageNet 99.58% 96.75% 98.19% 
Pre-training on CT 99.80% 97.32% 98.39% 
Pre-training on ImageNet and CT 99.91% 97.56% 98.54%  

Fig. 11. Transfer learning performance of RANet.  

Table 5 
Classification results under different pre-training methods.  

TS 

Experiment 1 Precision Recall F1 Accuracy AUC 

TSRNet 100% 99.59% 99.79% 99.80% 1 
DenseNet169 100% 99.19% 99.59% 99.60% 1 

Only ImageNet Pretrained 
Experiment 2 Precision Recall F1 Accuracy AUC 

TSRNet 100% 99.18% 99.59% 99.59% 0.9996 
DenseNet169 99.59% 98.78% 99.18% 99.19% 0.9992 

Random Initialization 
Experiment 3 Precision Recall F1 Accuracy AUC 

TSRNet 100% 97.96% 98.97% 98.99% 0.9998 
DenseNet169 97.98% 98.37% 98.17% 98.19% 0.9999  
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has a great advantage. This indicates that our model has the outstanding 
ability both in performing discrimination as a whole and still excels in 
performing specificity discrimination, which suggests that our method 
shows a stronger ability to diagnose patients with suspected COVID-19. 

4.7. Ablation experiment 

In the previous subsections, we validate the effectiveness of our 
proposed model. Also, we demonstrated that incorporating self- 
supervised learning into transfer learning as a model pre-training 
method can significantly improve the model’s accuracy. In addition, 
our model consists of three components after pretraining: (feature 
extraction, feature dimension reduction, and classifier). These three 
components can be replaced with each other using different compo
nents. To verify the effectiveness of the combination between different 
components, we designed three sets of experiments: (a) keeping the 
feature downscaling and classifier unchanged and replacing the feature 
extractor; (b) fixing the feature extractor and classifier and choosing a 
different feature downscaling algorithm (since ReliefF is a feature se
lection algorithm that acts on small samples, we replace the output of 
RANet during the experiments with dimensionality to 10); (c) we fix the 
feature extractor with the classifier accordingly and choose a different 
classifier for validation. 

The network components in this experiment were pre-trained on the 
ImageNet dataset to maintain experimental rigor. The experimental 
results are shown in Fig. 13. Our proposed model (TSRNet) has the 
highest accuracy for COVID-19 diagnosis, which proves the effectiveness 
of our proposed method. 1) The model using different components still 
achieves high performance. 2) The comprehensive performance of our 
proposed model has reached the best. 3) Changing different classifier 
components has a relatively large impact on the classification results. As 
shown in Fig. 13, our proposed TSRNet has an accuracy of 99.59% when 

using ELM as the classifier, but 99.08% when the classifier is replaced 
with SNN. Therefore, we have to choose the best classifier when 
designing the model. In addition, the experiment is still not perfect. We 
uniformly set the number of features after feature dimensionality 
reduction to 4, which may not be the best value. We will further 
investigate this value in the follow-up work. 

5. Conclusion 

Since image labeling in medical images needs to be labeled accord
ingly by experts, this task is very costly and labor-intensive. To enable 
the network model to exploit the information in unlabeled data and 
improve the classification model’s accuracy, we propose a hybrid model 
(TSRNet). The model first incorporates self-supervised learning into 
transfer learning to replace the traditional pre-training process under 
supervised learning. The pre-trained model is used as a feature extractor 
to fine-tune the feature extraction on the target dataset. Finally, data 
dimensionality reduction and classifier classification obtain the final 
classification results. Compared with the existing (DarkCOVIDNet: 
98.08%; Patch-based CNN: 88.90%; NAGNN: 97.86%; Deep-COVID: 
97.58%; COVID-ResNet: 97.78%) models, our model achieves an accu
racy of 99.80%. This indicates that our model can complete the detec
tion of new coronary pneumonia with high accuracy, thus helping 
doctors diagnose suspected patients more accurately and thus prevent
ing the spread of the epidemic. 

However, our proposed approach still has some drawbacks. The first 
is the interpretability of the CNN model, although Grad-CAM was able to 
show that the model’s predictions for chest CT images were derived from 
the relevant lesion regions. Secondly, our model can only predict 
whether a patient is sick or not; however, segmentation of chest CT 
images of COVID-19 patients can help physicians analyze the extent of 
the patient’s disease and thus adopt the best treatment plan for the 

Fig. 12. Comparison of experimental results.  
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patient. Therefore, we will try this aspect in our future work. Finally, the 
pre-training scheme in this study is more resource-consuming. There
fore, we will optimize it to reduce the demand on hardware resources in 
future work. 
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