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Abstract: The Timed Up and Go test (TUG) is commonly used to estimate the fall risk in the elderly.
Several ways to improve the predictive accuracy of TUG (cameras, multiple sensors, other clinical
tests) have already been proposed. Here, we added a single wearable inertial measurement unit (IMU)
to capture the residents’ body center-of-mass kinematics in view of improving TUG’s predictive
accuracy. The aim is to find out which kinematic variables and residents’ characteristics are relevant
for distinguishing faller from non-faller patients. Data were collected in 73 nursing home residents
with the IMU placed on the lower back. Acceleration and angular velocity time series were analyzed
during different subtasks of the TUG. Multiple logistic regressions showed that total time required,
maximum angular velocity at the first half-turn, gender, and use of a walking aid were the parameters
leading to the best predictive abilities of fall risk. The predictive accuracy of the proposed new test,
called i + TUG, reached a value of 74.0%, with a specificity of 95.9% and a sensitivity of 29.2%. By
adding a single wearable IMU to TUG, an accurate and highly specific test is therefore obtained. This
method is quick, easy to perform and inexpensive. We recommend to integrate it into daily clinical
practice in nursing homes.

Keywords: TUG; kinematics; fall risk; logistic regression; elderly; inertial sensor

1. Introduction

The proportion of elderly people is steadily increasing. According to the World Health
Organization (WHO) estimates, it will account for 22% of the world’s population by 2050.
Physiological changes caused by ageing result in deterioration of balance, coordination,
and strength, leading to an increased incidence of falls in people over 65 years. Falls are one
of the top five causes of death in this age group and their incidence is particularly increasing
in people living in nursing homes, with an average of 1.7 falls per bed per year compared
to 0.65 in people living independently [1]. In addition, falls lead to more complications
in people living in nursing homes, with 10 to 25% of falls resulting in a fracture or open
wound [2]. The main risk factors for falls are muscle weakness, balance problems, and gait
disturbances [2].

The Timed Up and Go test (TUG) [3] is commonly used in the medical field to predict
fall risk in the elderly. Very simply, TUG consists of measuring the time it takes a person to

Sensors 2022, 22, 2339. https://doi.org/10.3390/s22062339 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22062339
https://doi.org/10.3390/s22062339
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2061-0968
https://orcid.org/0000-0002-7801-036X
https://doi.org/10.3390/s22062339
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062339?type=check_update&version=2


Sensors 2022, 22, 2339 2 of 10

get up from a chair with arms after having heard a “Go”, walk forward three meters at a
comfortable pace, turn around, walk back to the chair, and sit down again. According to
the pioneering study [4], a time greater than 14.0 s indicates a potential fall risk. Obvious
advantages of the TUG are the following. It is quick to perform, it requires no equipment
other than a chair and a stopwatch, and it involves a sequence of movements common to
daily life: getting up, walking, turning, and sitting. In the review [5], it is concluded that
the predictive power of the TUG is greater in people living in institutions than in people
living independently. This conclusion is shared by [6]. However, this test is limited by the
fact that total time is the only parameter measured and that it categorizes fall risk according
to a threshold value that is increasingly controversial in the literature. The threshold used
to identify fallers in nursing homes actually varies between 13.0 and 32.6 s, depending on
the study [5].

Several authors have already proposed ways to improve TUG by adding inertial
sensors to measure acceleration or velocity, by combining it with other clinical tests, or by
using cameras [7–10]. The corresponding tests are often referred to as instrumented TUG
(iTUG). Their predictive performances can be correlated with a gold-standard but more
complex functional tests such as Community Balance and Mobility Scale [11]. Among these
approaches, we think that the addition of wearable inertial measurement units (IMUs,
or inertial sensors) is particularly promising. The information contained in the measured
time series (acceleration and angular velocity) goes well beyond the total time measured in
TUG, making the iTUG a clinical tool that allows detailed analyses of the TUG’s different
subtasks. The use of a single IMU is actually adequate to separate the TUG subtasks with
sufficient accuracy for clinical applications [10,12,13]. From a methodological point of view,
splitting TUG into different subtasks can improve its discriminatory power in various
conditions: obese women [14], children with traumatic brain injury [15], and adults with
vestibular hypofunction [16].

Using a single IMU placed on a patient’s lower back, Buisseret et al. proposed to
combine the kinematic data of a 6-min walk test (6MWT) and the result of TUG to improve
its predictive accuracy [7]. However, kinematic data of the TUG collected during the latter
study were not analysed, despite evidence that a movement such as a trunk rotation is
an index of balance measurement that requires special attention [8,11,17–21]. Moreover,
among fall-related fractures, hip fractures are the most common. A fall during a turn
increases the risk of hip fracture 8-fold compared to a fall in a straight line [18]. Therefore,
in this study, we propose a detailed analysis of the two half-turns during TUG from a
kinematic point of view by adding to the conventional measures such as duration and
maximum angular velocity a parameter called “jerk”, which is a measure of movement’s
smoothness [22].

The aim of this study is to determine: (1) which general characteristics and kinematic
parameters are relevant to discriminate fallers (F) from non-fallers (NF) in a population of
elderly nursing home residents, based on a dataset previously collected in [7]; (2) which
of the relevant variables are best suited to predict a fall within six months using a logistic
regression-based model—the model will be called i + TUG in the following to differentiate
it from previous attempts called iTUG—and (3) whether i + TUG improves the predictive
power of the TUG by assessing its predictive properties (sensitivity, specificity, and overall
accuracy). Since our methodology seems to be very similar to the [7] proposal, it is
worthwhile to outline here the difference between the present work and the latter. In [7],
the duration of TUG was measured and supplemented by kinematic data from a 6MWT.
A prediction of fall risk was proposed as a decision process that depends on thresholds for
TUG duration and parameters that assess the variability of walk during the 6MWT. Here,
fall risk is predicted only from TUG (duration and kinematic data) using multiple logistic
regressions. Thus, the proposed assessment of fall risk is intended to be much shorter,
with a decision criterion that can be systematically improved.
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2. Materials and Methods
2.1. Population

All residents who participated in this study were at least 65 years old and lived in
four different nursing homes in the Charleroi region (Belgium). All residents or their legal
representatives gave their consent to participate in the study after being informed about
the modalities of the study and the possible side effects. The experimental protocol is in
accordance with the Declaration of Helsinki on Medical Research Involving Human Sub-
jects and was approved by the Academic Bioethics Committee (reference B200-2017-144).
The study was longitudinal and included two evaluations 6 months apart: the first one
in May 2018 and the second one in November 2018. Here, we analyze data previously
collected, part of which has already been analyzed in [7]. No new measurements were
taken and the processed data had not been analyzed in previous studies.

The only inclusion criterion was that residents were at least 65 years old. Residents
with lower limb movement disorders that prevented them from walking, cognitive disor-
ders that prevented them from understanding the instructions given during the experiment,
or cardio-respiratory disorders that prevented them from walking for 6 min were excluded.
Some residents who were originally included in the sample could not be reexamined and
were therefore also excluded if: they had dropped out of the study or had been hospi-
talized during the study period; they had one or more medical conditions that occurred
between the two measurements; their medication had changed in a way that affected the
measurement; and they were no longer alive.

According to all these criteria, 73 residents took part in the study until the end, giving an
initial total of 92 residents. A summary of our resident’s general characteristics can be found
in Table 1. Cognitive status was assessed with Hodkinson Abbreviated Mental test score
(AMTS) [23] that is included in Part 1 of the Fall Risk Assessment Tool [24]. An AMTS score
(on 10) ≥ 9 was considered as an intact status [24] and <7 as a possibility of dementia [25].
Residents with a possibility of dementia or diagnosed with Alzheimer’s disease were not
excluded. The number of residents in faller and non-faller groups with these conditions are
reported in Table 1.

Table 1. General characteristics of the residents. Fallers were identified according to the fall records be-
tween the 6-months interval (t1 and t2). Numerical data are written under the form mean ± standard
deviation (t-test performed) or median [Q1–Q3] (Mann–Whitney test performed). For the age,
the minimum and maximum values in each group are given (second line). Exact Fisher tests were
performed for the categorical data (M/F or Yes/No). p-values for the comparison between fallers
(F) and non-fallers (NF) groups are given in the last column. Total TUG time (TTUG) was assessed
with a stopwatch. Medications included: psychotrope, antiarrhythmic, and diuretics. Hypertension
is defined as a value > 140/90 mmHg.

Parameter F NF p

Residents (n) 24 49
Age (years) 84 ± 9 83 ± 8 0.646

66–96 65–96
Medication 4 [2–5] 3 [2–5]

FRAT 11 [10–14] 10 [8–12]
TTUG (s) 24.5 ± 8.5 21.5 ± 8.1 0.096

Gender (M/F) 6/18 22/27 0.128
Walking aid required (Yes/No) 15/9 21/28 0.140

Post-stroke hemiparesis (Yes/No) 2/21 4/45 0.677
Possibility of dementia (Yes/No) 3/21 9/40 0.739

Alzheimer disease (Yes/No) 5/19 14/35 0.577
Previous heart surgery (Yes/No) 8/16 9/40 0.238

Diabetic polyneuropathy (Yes/No) 3/21 8/41 1
Hip or knee replacement (Yes/No) 3/21 9/40 0.739
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2.2. Protocol

This study was conducted in two phases. An initial measurement, conducted in May
2018 (t1), included: (1) a collection of information about each resident, such as medications,
presence and type of a walking aid, medical history (fracture, prosthesis, disease, . . . );
(2) the placement of a DYSKIMOT inertial sensor [7] in the back of each subject at the level
of the fourth lumbar vertebra; and (3) a TUG and a 6MWT performed by each resident.
The latter test is not taken into account in the present study. TUG data recording began
when the “Go” instruction was given and stopped when the participant sat again on the
chair. Hence, total TUG time (TTUG) was directly measured from the length of the time
series. After this initial measurement, nursing home staff were asked to record resident falls
over a 6-month period. In November 2018 (t2), based on data collected by on-site medical
staff, a fall survey was conducted on each resident and they were classified as faller (F) or
non-faller (NF). Nursing staff were regularly reminded to record residents’ falls through
several telephone contacts.

The DYSKIMOT sensor and its placement have been discussed in detail in [7], to which
we refer the interested reader. Here, we summarize some key points for completeness.
The DYSKIMOT sensor (3 cm × 3 cm, 10.44 g) is based on the commercially available
IMU (LSM9DS1, SparkFun Electronics, Niwot, CO, USA), which integrates a triaxial ac-
celerometer, a gyroscope, a magnetometer and a thermometer. The IMU was attached to
the resident’s back at the level of the fourth lumbar vertebra using an elastic strap. The mea-
sured time series are the three components of acceleration,~a(t), and angular velocity, ~ω(t),
in the sensor’s frame with a sample frequency of 100 Hz. Time series were recorded on a
computer via the DYSKIMOT software (v. 2.1). The sensor was placed such that the three
axes of its frame correspond to the anterio-posterior (AP), medio-lateral (ML) and vertical
(V) directions when the resident is standing at rest.

Our data analysis was based on aAP, giving the acceleration in the walking direction,
and on ωV , giving rotation velocity during the two half-turns. These two time series
contained the clearest signal in all residents and were used to determine the different
subtasks of TUG. Typical traces of the AP acceleration (aAP) and of the V angular velocity
(ωV) during TUG are shown in Figure 1.

Figure 1. Typical traces of the AP acceleration (aAP) and of the V angular velocity (ωV) during TUG.
Acceleration is expressed in a fraction of g = 9.81 m s−2, and angular velocity is expressed in ◦ s−1.
White/gray areas highlight the different subtasks of the TUG. Arrows indicate the peak angular
velocity during the two half-turns. Horizontal grey dashed lines show zero value.
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2.3. Division of the TUG into Subtasks and Selected Kinematic Parameters

For each resident, we divided the TUG into 6 subtasks by visual inspection of aAP(t)
and ωV(t), as illustrated in Figure 1: (1) the get-up phase occurred between the beginning
of the TUG and the end of the aAP peak (i.e., when aAP comes back to a 0 value after the
peak); (2) the walk phase, where ωV has an oscillatory behaviour around 0; (3) the first
half-turn, corresponding to the first peak in ωV , i.e., when ωV stops oscillating around 0 to
exhibit a global positive or negative trend; (4) the walk back phase, identified as the first
one; (5) the second half-turn, identified as the first one; (6) the sit phase, until the end of the
time series. A sharp peak in aAP is observed in this phase when the resident’s back hits the
chair back.

After identification, the durations of the subtasks were recorded: Tget−up, Twalk, Tturn−1,
Twalk back, Tturn−2 and Tsit. Then, a more detailed assessment of half-turns was realised,
since it is known to be strongly related to participant’s stability [18]. Maximal angular
velocities (in absolute values) were recorded during the first, ωmax

V1 , and second half-turns,
ωmax

V2 (Figure 1). Finally, dimensionless jerks were calculated during the first, J1, and second,
J2, half-turns as follows [22]:

Ji = ln

(
T3

turn−i

ωmax 2
Vi

∫ bi

ai

j2(t) dt

)
, (1)

where j = dωV
dt , i = 1, 2, and where ai, bi are the time values giving the beginning and

end of half-turn i, respectively. The derivative was computed by finite differentiation. We
recall that dimensionless jerk is a measure of motion’s smoothness. The smaller the Ji,
the smoother the motion. We hypothesized that NF would reach smaller durations and
jerks, and larger maximal angular velocities than F.

2.4. Statistical Analysis

First, we evaluated the differences between the F and the NF groups, with significance
level α of 0.05. For this purpose, t-tests were used for continuous variables, Mann–Whitney
tests were used for ordinal variables (scores), and exact Fisher tests were used for categori-
cal variables.

Second, based on the results of the above analyses, models predicting falls in our pop-
ulation were designed by resorting to multiple logistic regression. The logistic regression
model is given by the following equation:

ln
(

P
1 − P

)
= β0 +

n

∑
j=1

β jXj, (2)

where Xj are the n selected parameters, and where β0, β j are fitted on the collected data via
multiple logistic regression. Once the β j are fitted on the data, Equation (2) becomes a classi-
fication tool: given a set of parameters Xi, measured on one participant, the output P leads
either to the value 0 (no predicted fall) or 1 (predicted fall). The model prediction, i.e., fall or
no fall, were then compared with the actual falls of the participants. Note that several mod-
els were actually used, differing in the number of selected parameters, n, see below. Model
performance was measured by computing sensitivity, Se = True positive

False negative + True positive , speci-

ficity, Sp =
True negative

False positive + True negative and accuracy, Acc =
True positive + True negative

Total . Five
models (Mi with i between 0 to 4) were built for different parameter selections:

• (M0) only X1 = TTUG parameter used when comparing F and NF groups (TUG in
Table 2);

• (M1) all parameters with p < 0.05 used when comparing F and NF groups (kinTUG
in Table 2): X1 = ωmax

V1 ;
• (M2) all parameters with p < 0.1 used when comparing F and NF groups (iTUG in

Table 2): X1 = ωmax
V1 and X2 = TTUG;
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• (M3) all parameters with p < 0.2 used when comparing F and NF groups (i + TUG
in Table 2): X1 = ωmax

V1 , X2 = TTUG, X3 = Walking aid required (Yes = 1, No = 0) and
X4 = Gender (M = 1, F = 0);

• (M4) all parameters with p < 0.3 when comparing F and NF groups (i + TUG2 in
Table 2): X1 = ωmax

V1 , X2 = TTUG, X3 = Walking aid required, X4 = Gender, X5 = Tturn−1
and X6 = J1.

Age was not included in our models because of its large p-value. It therefore has no
ability to discriminate between F and NF in our sample, although a positive correlation
between age and TTUG has been found in recent works [26,27].

Table 2. First seven rows: βi coefficients fitted from model (2). The first row gives β0. Last three rows:
performance indicators of the models (Se: sensitivity, Sp: specificity, Acc: accuracy).

Parameters M0 M1 M2 M3 M4
Xi (TUG) (kinTUG) (iTUG) (i + TUG) (i + TUG2)

β0 −1.709 1.423 0.822 1.207 1.553
ωmax

V1 −0.0245 −0.0213 −0.0208 −0.0231
TTUG 0.0434 0.0139 −0.0046 0.0197

Walking aid required 0.403 0.333
Gender −0.637 −0.649

J1 −0.0027
Tturn−1 − 0.124

Performance Indicators
Se (%) 8.3 8.3 12.5 29.2 20.8
Sp (%) 95.9 91.8 91.8 95.9 91.8
Acc (%) 67.1 64.4 65.7 74.0 68.5

t-tests, Mann–Whitney tests, exact Fisher tests and multiple logistic regressions were
performed using SigmaPlot software (v. 14.0, Systat Software, San Jose, CA, USA).

3. Results
3.1. Population

The general characteristics of the residents are presented in Table 1. The ratio of
females to males is 3 to 1 in the F group, compared with 1.2 to 1 in the NF group. The two
groups did not differ significantly in any of the recorded parameters. TTUG is higher in F
than NF as expected, with a p-value under the M2-threshold (Table 2). Walking aid and
gender reached p-values below the M3-threshold (Table 2).

3.2. F versus NF Comparison

The comparison results for kinematic parameters are presented in Table 3. ωmax
V1 was

significantly different in both groups, with a higher mean value in NF. The same trend is
observed for ωmax

V2 but with a non-significant p-value. Only ωmax
V1 has a p-value below the

M1-threshold (Table 2). J2 and Tturn−1 can be included in M4 (Table 2), while the other
parameters will not be further considered.

3.3. Multiple Logistic Regressions

Results from the multiple logistic regressions are shown in Table 2. It is readily observed
that M3 (i + TUG) reaches the best performances (grey area), and that adding extra parameters
(M4) does not improve M3.
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Table 3. Comparison of kinematic parameters between fallers (F) and non-fallers (NF) groups.
Data are written under the form mean ± standard deviation. p-values for the comparison between
F and NF groups are given in the last column; parameters are ordered by increasing p-values,
with significant values in bold font.

Parameters Xi F NF p

ωmax
V1 (◦ s−1) 82.0 ± 19.0 92.9 ± 23.4 0.031

J1 12.0 ± 2.3 11.6 ± 2.8 0.203
Tturn−1 (s) 5.2 ± 2.2 4.9 ± 2.5 0.293

J2 12.0 ± 3.2 11.4 ± 3.9 0.304
ωmax

V2 (◦ s−1) 96.3 ± 24.5 106.2 ± 35.0 0.315
Tget−up (s) 4.8 ± 3.5 4.0 ± 2.2 0.338

Tsit (s) 3.7 ± 3.4 3.1 ± 1.9 0.545
Tturn−2 (s) 4.3 ± 2.3 3.8 ± 2.0 0.569
Twalk (s) 4.2 ± 2.2 4.0 ± 3.0 0.634

Twalk back (s) 3.9 ± 2.7 4.0 ± 4.1 0.773

4. Discussion

Our clinical challenge was to improve the predictive ability of the well-known TUG
in two ways: (1) by instrumenting it to assess multiple quantitative kinematic parameters
specific to the different subtasks of the TUG and (2) by including qualitative features of
the residents. Our multiple logistic regressions led to the development of an i + TUG
(M3-model in Table 2) for predicting fall risk in our sample that included the parameters of:
a TUG with TTUG, an iTUG with ωmax

V1 , and walking aid and gender characteristics.
Thirty-six residents used walking aids to compensate for postural instability and/or

mobility decline (F = 11 and NF = 26). In our sample, the postural instability and/or
mobility decline typically have several causes, which include diabetic polyneuropathy
(F = 3 and NF = 8), Alzheimer’s disease (F = 5 and NF = 14), and post-stroke hemiparesis
(F = 2 and NF = 4). No residents with Parkinson’s disease were included, but this condition
was not an exclusion criteria.

The predictive ability of a fall risk test is a critical component of evidence-based
patient care, especially among elderly nursing home residents. The indicators of predictive
performance we obtained for i + TUG are better than those for TUG, which shows how
interesting it is to add additional information to TUG. Our model can be compared with
previously proposed models. In [28], the limited predictive ability of TUG for identifying F
in a sample of community-dwelling older adults was already pointed out. They showed a
sensitivity of 32% (versus 29.2% with our i + TUG) and a specificity of 73% (95.9%).

In a preliminary study conducted with the same sample of residents [7], we improved
the discriminative and predictive qualities of TUG by adding kinematic data collected
during a 6MWT. The addition of kinematic factors increased the accuracy of the test from
65.7% to 73.9%, with a sensitivity of 85% and a specificity of 50%. Here, we have shown that,
based on data collected with the same sensor in the same sample, it is possible to achieve the
same predictive accuracy using only data collected during i + TUG. Combining the results
of our previous study [7] and the findings obtained here, it appears that an instrumented
6MWT (i6MWT) and the i + TUG developed here are highly complementary, with one test
having a high sensitivity and the other high specificity. Because sensitivity refers to the
test’s potential to identify F residents and specificity refers to the test’s potential to identify
NF residents, we recommend that, in daily clinical practice and long-term monitoring of
nursing home residents, each resident should undergo an i + TUG in the first instance to
rule out that he/she is at risk for falls. If the i + TUG can not rule out that he/she is at risk
for falls, an i6MWT must also be performed to confirm that he/she is indeed at risk.

The mean TTUG was 24.5 s for F and 21.5 s for NF, both values that are close to the 22.5 s
found in [4] and the 22.1 s found in [29]. Furthermore, the inclusion of kinematic data from
a single wearable IMU sensor allowed for computing TUG’s subtask durations. It appears
that our mean Tget−up (4.3 ± 2.7 s) is higher than the value reported in [9] (2.1 ± 0.3 s). This
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discrepancy can be explained by the fact that the get-up movement is first initiated by a
trunk tilt (ωML, not studied here) and terminated by a hip extension (aAP). We chose the
latter way of identifying the get-up phase, while, in [9], they chose the former. Our larger
value can also be explained by the age of our sample. As shown in [30], there is indeed a
relationship between sarcopenia in the elderly and the long time it takes them to get up.

A clear finding in our study is that ωmax
V1 is significantly higher in NF. This result is

consistent with previous findings. In the study [18] that led to the development of the “Dite
Turn test”, it was shown that elderly people who are more prone to fall turn more slowly
and unsteadily. They highlighted four characteristics of the turn performed in the TUG that
distinguish F from NF: the time required to turn, i.e., Tturn−i that we found to be higher in
F, but also indirectly ωmax

Vi ; the number of steps to complete the turn; the stable appearance
of the subject during the turn and the fact that the subject makes a smooth transition
between the turning and walking subtasks. The number of steps was not measured in
this work. However, the smoothness/stable appearance of the movement was evaluated
using Ji. We found that Ji is decreased in NF, i.e., their motion is smoother in agreement
with the observation of [18], although the difference is not significant. In [19,20], it is also
highlighted that the duration and velocity of rotation measured by an inertial sensor during
a 7-day period were increased in F. The i + TUG is able to reach the same conclusion within
a much shorter time period. Same conclusions about ωmax

Vi have been found in [19]. As for
our results, the jerk was measured during the first and second half-turns. It would have
been interesting to extend the measurement to the end and the beginning of walking in
the case of the first half-turn, and to the end of walking and the beginning of the transition
to the sitting position in the case of the second half-turn. Indeed, it was shown in [13]
that the strategies for approaching the half-turn differ between young and old participants
regarding velocity. Interestingly, ωmax

V2 is not significantly different between F and NF.
This could be due to greater variability in our sample. As pointed out in [31], the second
half-turn requires more cognitive skills, different motor planning, and greater visual skills
because of the need to anticipate the sitting phase.

We acknowledge that our sample size may be considered small for a geriatric popula-
tion, which is a limitation of our study. In addition, our measurements were performed
in nursing homes and may not be representative of the majority of the elderly popula-
tion. TUG assesses only the person’s global mobility; other risk factors such as visual or
cognitive impairment, or polymedication [5] need to be considered to capture the entire
clinical picture. To address this limitation, it would be interesting to combine the results
of the i + TUG with other tests, such as the Falls Risk Assessment Tool (FRAT), which
takes into account the other risk factors mentioned above. Our sample was not designed
to examine age effects on fall risk because both F and NF have similar means and a large
range of ages. However, age increases TTUG [27], and presumably the fall risk. A review
paper [32] found that people aged 85 years or older in the United States are four times more
likely to be injured in falls than a population aged 65 to 74 years. Lower limb weakness
and, more generally, sarcopenia may be partly responsible for this [33,34]. Knee extensor
muscle strength was not assessed. Since knee extensor muscle strength could identify the
elderly at risk of falling [35], these missing data are also a limitation of our study. Note
that the threshold of 85-years in the review [32] is close to the mean age of our sample,
illustrating the importance of predicting fall risk in very old people. A wider spread of
age would be required, which is an interesting perspective. Finally, we excluded residents
with cognitive disorders that prevented them from understanding the instructions given
during the experiment. However, even a mild cognitive impairment could affect the iTUG
subtasks [31]. Our protocol does not allow us to determine the impact of mild cognitive
impairment on our findings.

5. Conclusions

We have shown that integrating kinematic data collected with a single low-cost IMU
during TUG and general resident characteristics can improve the accuracy of fall risk predic-
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tion. The new i + TUG achieves 74% versus 67% for the TUG. The i + TUG is highly specific
(95.9%) and quick to perform; it may be implemented on a smartphone. We recommend
integrating the i + TUG into the test battery commonly performed in nursing homes to rule
out residents at risk for falls with a high degree of confidence.

It should be kept in mind that the management of an elderly resident in a nursing
home must be multifactorial. The i + TUG must therefore be integrated to optimize a care
and diagnostic approach that does not neglect the psychosocial and behavioural aspects
and always focuses on the resident/caregiver duo.
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