
SOFTWARE Open Access

metamicrobiomeR: an R package for
analysis of microbiome relative abundance
data using zero-inflated beta GAMLSS and
meta-analysis across studies using random
effects models
Nhan Thi Ho1,2*, Fan Li3, Shuang Wang4 and Louise Kuhn1

Abstract

Background: The rapid growth of high-throughput sequencing-based microbiome profiling has yielded tremendous
insights into human health and physiology. Data generated from high-throughput sequencing of 16S rRNA gene
amplicons are often preprocessed into composition or relative abundance. However, reproducibility has been lacking
due to the myriad of different experimental and computational approaches taken in these studies. Microbiome studies
may report varying results on the same topic, therefore, meta-analyses examining different microbiome studies to
provide consistent and robust results are important. So far, there is still a lack of implemented methods to properly
examine differential relative abundances of microbial taxonomies and to perform meta-analysis examining the
heterogeneity and overall effects across microbiome studies.

Results: We developed an R package ‘metamicrobiomeR’ that applies Generalized Additive Models for Location, Scale
and Shape (GAMLSS) with a zero-inflated beta (BEZI) family (GAMLSS-BEZI) for analysis of microbiome relative
abundance datasets. Both simulation studies and application to real microbiome data demonstrate that GAMLSS-
BEZI well performs in testing differential relative abundances of microbial taxonomies. Importantly, the estimates
from GAMLSS-BEZI are log (odds ratio) of relative abundances between comparison groups and thus are
analogous between microbiome studies. As such, we also apply random effects meta-analysis models to pool
estimates and their standard errors across microbiome studies. We demonstrate the meta-analysis examples and
highlight the utility of our package on four studies comparing gut microbiomes between male and female
infants in the first six months of life.

Conclusions: GAMLSS-BEZI allows proper examination of microbiome relative abundance data. Random effects
meta-analysis models can be directly applied to pool comparable estimates and their standard errors to
evaluate the overall effects and heterogeneity across microbiome studies. The examples and workflow using
our ‘metamicrobiomeR’ package are reproducible and applicable for the analyses and meta-analyses of other
microbiome studies.

Keywords: Microbiome, Relative abundance, GAMLSS, Zero-inflated beta, Meta-analysis, Random effect, Pooling
estimates, Infant, Gender
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Background
The rapid growth of high-throughput sequencing-based
microbiome profiling has yielded tremendous insights
into human health and physiology. However, interpre-
tation of microbiome studies have been hampered by a
lack of reproducibility in part due to the variety of diffe-
rent study designs, experimental approaches, and
computational methods used [1, 2]. Microbiome studies
may report varying results on the same topic. Therefore,
meta-analyses examining different microbiome studies
are critical to provide consistent robust results.
Although many methods for microbiome differential
abundance analysis have been proposed, methods for
meta-analysis remain underdeveloped. Meta-analysis
studies pooling individual sample data across studies for
pooled analysis of all samples or processing of all
samples together followed by analysis of each study
separately have revealed some consistent microbial
signatures in certain conditions such as inflammatory
bowel disease (IBD) and obesity [3–9]. Software has
been developed for the analysis and meta-analysis of
microbiome data [10]. However, these studies do not
explicitly model microbiome relative abundance data
using an appropriate statistical method and do not
examine between-group comparison overall pooled
effects in the meta-analysis.
Data generated from high-throughput sequencing of

16S rRNA gene amplicons are often preprocessed into
relative abundance. Microbiome relative abundances are
compositional data which range from zero to one and
are generally zero-inflated. To test for differences in
relative abundance of microbial taxonomies between
groups, methods such as bootstrapped non-parametric
t-tests or Wilcoxon tests (not suitable for longitudinal
data and covariate adjustment) [11–13] and linear or
linear mixed effect models (LM) [14, 15] (suitable for
longitudinal data and covariate adjustment) have been
widely used. However, these methods do not address the
actual distribution of the microbial taxonomy relative
abundance data, which resemble a zero-inflated beta
distribution. Transformations (e.g. arcsin square root) of
relative abundance data to make it resemble continuous
data to use in LM has been proposed by Morgan et al.
(implemented in MaAsLin software) [16] and has been
widely used to test for differential relative abundances
[17–20]. However, this adjustment does not address
the inflation of zero values in microbiome relative
abundance data.
Various methods for the analysis of differential

abundance based have been proposed. For example, the
zero-inflated Gaussian distribution mixture model regards
zero values as under-sampling and account for it by pos-
terior probability estimates and fit counts after accounting
for under-sampling by a log-normal distribution [21]. The

Ratio Approach for Identifying Differential Abundance
(RAIDA) method uses the ratio between the counts of
features in each sample to address possible problems asso-
ciated with counts on different scales within and between
conditions and accounts for ratios with zeros using a
modified zero-inflated lognormal (ZIL) model treating the
zeros as under-sampling [22]. Other methods adapted
from the RNA-seq field that account for zero inflation and
utilize Poisson or negative binomial models have shown
some promise in differential abundance testing of micro-
biome datasets [23, 24]. These aforementioned methods
treat the dispersion as a nuisance parameter and do not
allow the dispersion to depend on covariates. Recently,
Chen et al. proposed an omnibus test based on a zero-in-
flated negative model (ZINB) that allows differential ana-
lysis not only for feature abundance but also prevalence
and dispersion [25]. However, the downside of these
count-based methods is the increased complexity due to
modeling the counts.
Here, we developed an R package ‘metamicrobiomeR’

that applies Generalized Additive Models for Location,
Scale and Shape (GAMLSS) with a zero-inflated beta
(BEZI) family (GAMLSS-BEZI) for the analysis of micro-
bial taxonomy relative abundance data. GAMLSS is a
general framework for fitting regression type models in
which the response variable can be any distribution [26].
With BEZI family, this model allows direct and proper
examination of microbiome relative abundance data,
which resemble a zero-inflated beta distribution. In
principle, this model is similar to the two-part mixed
effect model proposed by Chen et al. [27] in that the
presence/absence of the taxon in the samples is modeled
with a logistic component and the non-zero abundance
of the taxon is modeled with a Beta component. Both
logistic and beta components allow covariate adjustment
and address longitudinal correlations with subject-spe-
cific random effects. The GAMLSS-BEZI is based on the
broadly applicable established GAMLSS framework that
can be flexibly implemented and applied to different
types of data and study designs (e.g. cross-sectional and
longitudinal). This is especially useful for later meta-ana-
lysis across different studies. The performance of
GAMLSS-BEZI was evaluated using simulation studies
and real microbiome data. Importantly, the estimates
(regression coefficients) from GAMLSS-BEZI are log
(odds ratio) of being in the case group (as compared to
be in the control group) with changes in relative
abundance of a specific bacterial taxon and thus are
analogous across microbiome studies and can be directly
combined using standard meta-analysis approaches. As
such, we apply random effects meta-analysis models to
pool the estimates and standard errors as part of the
‘metamicrobiomeR’ package. This approach allows exa-
mination of study-specific effects, heterogeneity between
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studies, and the overall pooled effects across studies.
Finally, we provide examples and sample workflows for
both components of the ‘metamicrobiomeR’ package.
Specifically, we use GAMLSS-BEZI to compare relative
abundances of the gut microbial taxonomies of male
versus female infants’ ≤6 months of age while adjusting
for feeding status and infant age at time of sample
collection and demonstrate the application of the
random effects meta-analysis component on four studies
of the infant gut microbiome.

Implementation
GAMLSS-BEZI for the analysis of bacterial taxa relative
abundance and bacterial predicted functional pathway
relative abundance data
Relative abundances of bacterial taxa at various taxo-
nomic levels (from phylum to genus or species) are
obtained via the “summarize_taxa.py” script in QIIME1
[13]. Bacterial functional pathway abundances (e.g.
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway level 1 to 3) are obtained from metagenome
prediction analysis using PICRUSt [28]. In the taxa.com-
pare function, all bacterial taxa or pathway data are first
filtered to retain features with mean relative abundance
≥ relative abundance threshold (e.g. ≥0.005%) and with
prevalence ≥ prevalence threshold (e.g. present in ≥5%
of the total number of samples). This pre-filtering step
has been shown to improve performance of various
differential abundance detection strategies [29]. A
filtered data matrix is then modeled by GAMLSS-BEZI
and (μ) logit link and other default options using the R
package ‘gamlss’ version 5.0–5 [26]. For longitudinal
data, subject-specific random effects can be added to the
model. We only include subject random intercepts as in
practice this is often sufficient to address the longitu-
dinal correlations [30]. However, it is possible to extend
the model to include random slopes depending on the
specific research content. For performance evaluation,
LM and LM with arcsin squareroot transformation
(LMAS) were also implemented in the function taxa.-
compare. In addition, we also implemented different ap-
proaches to deal with compositional effects including
Centered Log Ratio (CLR) transformation [31] with vari-
ous zero-replacement options [32] and Geometric Mean
of Pairwise Ratios (GMPR) normalization [33]. Multiple
testing adjustment can be done using different methods
(False Discovery Rate (FDR) control by default). Below is
an example call of the taxa.compare function:
taxa.compare (taxtab = taxtab, propmed.rel = “gamlss”,

transform = “none”, comvar = “gender”, adjustvar = c(“age.-
sample”,“feeding”),longitudinal = “yes”, percent.filter =
0.05, relabund.filter = 0.00005, p.adjust.method = “fdr”).
For subsequent meta-analysis, the output from taxa.-

compare comprises matrices containing coefficients,

standard errors, p-values and multiple testing adjusted
p-values of all covariates in the models for each bacterial
taxon or pathway.

Meta-analysis across studies using random effects models
The adjusted regression coefficient estimates from
GAMLSS-BEZI are log (odds ratio) of being in the case
group (as compared to be in the control group) with
changes in relative abundances of a specific bacterial
taxa or a pathway and thus are analogous across micro-
biome studies. Therefore, standard meta-analysis ap-
proaches can be directly applied. In the meta.taxa
function, random effects meta-analysis models pooling
adjusted estimates and standard errors with inverse
variance weighting and the DerSimonian–Laird esti-
mator for between-study variance are implemented to
estimate the overall effects, corresponding 95% con-
fidence intervals (CIs) and heterogeneity across studies.
A fixed effect meta-analysis model is also implemented
for comparison. Meta-analysis is performed only for taxa or
pathways observed in ≥ a specified percentage threshold
(e.g. 50%) of the total number of included studies. An
example call to meta.taxa using the output data matrices
combined from multiple calls to the taxa.compare function
is shown below:
meta.taxa (taxcomdat = combined.taxa.compare.-

output, summary.measure = “RR”, pool.var = “id”, study-
lab = “study”, backtransform = FALSE, percent.meta = 0.5,
p.adjust.method = “fdr”).
The output from meta.taxa consists of pooled esti-

mates, standard errors, 95% CI, pooled p-values and
multiple testing adjusted pooled p-values of all covari-
ates for each bacterial taxon or pathway. The metatab.-
show function displays the meta-analysis outputs from
meta.taxa as table, heatmap, forest plot or combined
dataset to be used by the meta.niceplot function to gen-
erate nicer looking integrated heatmap-forest plot.
All implemented functions in the ‘metamicrobiomeR’

package are summarized and illustrated in Additional file 1.

Results and discussion
Performance of GAMLSS-BEZI: simulation studies
Simulation studies were performed to evaluate type I
error and power of GAMLSS-BEZI for testing diffe-
rential relative abundances of microbial taxonomies as
compared to linear/linear mixed models with arcsin
squareroot transformation (LMAS) (implemented in
MaAsLin software [16]). LMAS was chosen for compa-
rison with GAMLSS-BEZI because it is a commonly
used approach for microbiome differential relative abun-
dance testing and similarly to GAMLSS-BEZI, it allows
covariate adjustment and can be used for longitudinal or
non-longitudinal data. Simulations of zero-inflated beta
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distribution of microbiome relative abundance data were
based on the R package “gamlss.dist” version 5.0–3.
In brief, beta distribution (denoted as Beta(μ, ϕ)) has a

density function:

f y; μ;ϕð Þ ¼ Γ ϕð Þ
Γ μϕð ÞΓ 1−μð Þϕð Þ y

μϕ−1 1−yð Þ 1−μð Þϕ−1; y∈ 0; 1ð Þ ð1Þ

where 0 ≤ μ ≤ 1, ϕ > 0 and Γ (.) is the gamma function. If
y~Beta(μ, ϕ), then E(y) = μ and Var(y) = μ(1 − μ)/(ϕ + 1),
in which the variance of the dependent variable is
defined as a function of the distribution mean μ and the
precision parameter ϕ [34].
Zero-inflated beta distribution is a mixture of beta

distribution and a degenerate distribution in a known
value c = 0. A parameter α is added to the beta distri-
bution to account for the probability of observations at
zero producing a mixture density [34]:

f y; α; μ;ϕð Þ ¼ α; if y ¼ 0;
1−αð Þ f y; μ;ϕð Þ; if y∈ 0; 1ð Þ;

�
ð2Þ

Type I error
We considered three sample sizes mimicking case-control
microbiome studies with small (number of controls [n1] =
number of cases [n2] = 10), medium (n1 = n2 = 100) and large
(n1 = n2 = 500) scales. For each sample size, relative abun-
dances of a bacterial species were simulated with the same
parameters of a zero-inflated beta distribution for case and
control groups (μ1 = μ2 = 0.5, α1 = α2 = 0.5, ϕ1= ϕ2 = 5). The
simulation was repeated 1000 times. Type I error was calcu-
lated for three different alpha levels of 0.01, 0.05 and 0.1.
Type I error of GAMLSS-BEZI or LMAS was defined as the
proportion of simulations with p-values of GAMLSS-BEZI
or LMAS less than the corresponding alpha level over 1000
simulations for each sample size. We noted that Type I er-
rors were well controlled in both GAMLSS-BEZI and LMAS
(Table 1).

Receiver operating characteristic (ROC) curve and power
We then evaluated the performance of GAMLSS-BEZI
vs. LMAS for identifying bacterial species with dif-
ferential relative abundance between cases and con-
trols. Two types of simulations were performed. First,

relative abundances of 800 bacterial species were sim-
ulated in which 400 species had no difference between
control and case groups (the same parameters of
zero-inflated beta distribution for control and case
groups: μ1 = μ2 = Uniform [0.0005,0.3], α1 = α2 = Uniform
[0.1,0.9], ϕ1= ϕ2 = 5) and 400 species with a true difference
between control and case groups. Specifically, four set-
tings for the 400 species with true differences between
control and case groups were considered with 100
species for each setting:

1) μ1 = Uniform [0.0005,0.3] vs. μ2 = μ1 + 0.1
2) μ1 = Uniform [0.0005,0.3] vs. μ2 = μ1 + 0.2
3) μ1 = Uniform [0.0005,0.3] vs. μ2 = μ1 + 0.3
4) μ1 = Uniform [0.0005,0.3] vs. μ2 = μ1 + 0.4

Other parameters (α, ϕ) were set the same for control
and case groups (α1 = α2 = Uniform [0.1,0.9], ϕ1= ϕ2 = 5).
A sample size of n = 100 for both case and control
groups was used.
Performance of GAMLSS-BEZI and LMAS was eva-

luated based on the receiver operating characteristic
(ROC) curve for identifying species with differential
abundance between case and control groups. The ana-
lysis for the ROC curves and area under the curve
(AUC) was done using the R package ‘pROC’ version
1.10.0. Under these settings, GAMLSS-BEZI (AUC =
95.6, 95% CI = [94.2, 97.1%]) significantly outperformed
LMAS (AUC = 92.9, 95% CI = [91.1, 94.7%]) (DeLong’s
test p-value < 2.2e-16) (Fig. 1a).
We also performed simulations to evaluate power of

GAMLSS-BEZI vs. LMAS for different effect sizes of
differential relative abundances between case and
control groups. Three settings for differential relative
abundances (effect sizes) of one bacterial species were
considered: 1) μ1 = 0.5 vs. μ2 = 0.4; 2) μ1 = 0.5 vs. μ2 =
0.3; and 3) μ1 = 0.5 vs. μ2 = 0.2. Other parameters were
set the same for case and control groups (α1 = α2 = 0.5,
ϕ1= ϕ2 = 5). A sample size of n = 100 for both case and
control groups was used and the relative abundance
of a bacterial species was simulated in each setting.
The simulations were repeated 1000 times. Power of
GAMLSS-BEZI or LMAS was calculated as the pro-
portion of simulations with p-values of GAMLSS-

Table 1 Type I error of GAMLSS-BEZI and LMAS

Sample size GAMLSS-BEZI LMAS GAMLSS-BEZI LMAS GAMLSS-BEZI LMAS

Alpha level = 0.01 Alpha level = 0.05 Alpha level = 0.1

10 0.014 0.012 0.061 0.050 0.114 0.099

100 0.010 0.010 0.051 0.050 0.103 0.098

500 0.010 0.011 0.052 0.052 0.104 0.103

GAMLSS-BEZI Generalized Additive Models for Location, Scale and Shape (GAMLSS) with a zero inflated beta (BEZI) family, LMAS linear model with arcsin square
root transformation (implemented in the software MaAsLin)
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BEZI or LMAS < 0.05 over the total number of 1000 si-
mulations. Under these settings, power of GAMLSS-BEZI
was better than power of LMAS (Fig. 1b).

Performance of GAMLSS- BEZI: application to real
microbiome data
Type I error
We evaluated the type I error of GAMLSS-BEZI and
LMAS using published data from a cohort study of 50
healthy Bangladeshi infants, which included longitudinal
gut microbiome data from 996 stool samples collected
monthly from birth to 2 years of life [14]. We used data
from a subset of samples collected around birth as a
cross-sectional dataset (50 samples) and data from all
samples as a longitudinal dataset (996 samples). For each
dataset, we randomly split the samples into two groups
(case vs. control) and compared relative abundances of
all bacterial taxa at all taxonomic levels (272 taxa from
phylum to genus levels in total) between these two

random groups using GAMLSS-BEZI and LMAS. The
procedure was repeated 1000 times. Type I error was
calculated for three different alpha levels of 0.01, 0.05 and
0.1. For each taxon, the type I error of GAMLSS-BEZI or
LMAS was defined as the proportion of random splits
with p-values of GAMLSS-BEZI or LMAS less than the
corresponding alpha level over 1000 random splits. We
noted that type I errors were well controlled in both
GAMLSS-BEZI and LMAS (Table 2).

Computation time
The running time of GAMLSS-BEZI for testing all bac-
terial taxa at all taxonomic levels from phylum to genus
(272 taxa in total) on a standard laptop were 6.4 s for
the cross-sectional dataset (50 samples) and 12.4 s for
the longitudinal dataset (996 samples), respectively.
This indicates that the GAMLSS-BEZI algorithm is
computationally efficient.

a b

Fig. 1 ROC curve and power of GAMLSS-BEZI vs. LMAS. a. ROC curve of GAMLSS-BEZI and LMAS for identifying species with differential
abundance between case and control groups. b. Power of GAMLSS-BEZI vs. LMAS for different effect sizes of differential relative abundances
between case and control groups. GAMLSS-BEZI: Generalized Additive Models for Location, Scale and Shape (GAMLSS) with a zero inflated beta
(BEZI) family; LMAS: linear model with arcsin squareroot transformation (implemented in the software MaAsLin); ROC curve: Receiver operating
characteristic curve; AUC: area under the curve

Table 2 Type I error of GAMLSS-BEZI and LMAS on real microbiome data

Taxonomic level GAMLSS-BEZI LMAS GAMLSS-BEZI LMAS GAMLSS-BEZI LMAS

Alpha level = 0.01 (median (IQR)) Alpha level = 0.05 (median (IQR)) Alpha level = 0.1 (median (IQR))

Cross-sectional microbiome data

Phylum (5 taxa) 0.010 (0.007, 0.017) 0.007 (0.003, 0.010) 0.043 (0.043, 0.050) 0.040 (0.033, 0.043) 0.100 (0.093, 0.113) 0.090 (0.073, 0.090)

Family (33 taxa) 0.000 (0.000, 0.003) 0.000 (0.000, 0.007) 0.007 (0.000, 0.043) 0.033 (0.007, 0.050) 0.070 (0.003, 0.103) 0.083 (0.053, 0.107)

Longitudinal microbiome data

Phylum (5 taxa) 0.007 (0.002, 0.012) 0.010 (0.008, 0.013) 0.047 (0.030, 0.060) 0.067 (0.063, 0.080) 0.110 (0.075, 0.123) 0.117 (0.113, 0.132)

Family (33 taxa) 0.003 (0.000, 0.008) 0.010 (0.007, 0.013) 0.043 (0.036, 0.053) 0.050 (0.043, 0.064) 0.097 (0.082, 0.110) 0.107 (0.089, 0.117)

GAMLSS-BEZI Generalized Additive Models for Location, Scale and Shape (GAMLSS) with a zero inflated beta (BEZI) family, LMAS linear model with arcsin square
root transformation (implemented in the software MaAsLin); IQR interquartile range. For longitudinal data, subject random intercepts were added to the models
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Detecting differential abundance
We evaluated the performance of GAMLSS-BEZI vs.
LMAS in detecting differential relative abundances using
published data from a cohort study of 50 healthy
Bangladeshi infants described above [14]. This study
included longitudinal monthly data regarding the infants’
breastfeeding practices (exclusive, non-exclusive), dur-
ation of exclusive breastfeeding, infant age (months) at
solid food introduction, and occurrence of diarrhea
around the time of stool sample collection. We com-
pared the performance of GAMLSS-BEZI vs. LMAS in
detecting differential relative abundances between various
grouping variables in three examples below.
Example 1: Comparison of longitudinal monthly gut

bacterial relative abundances at phylum level between
non-exclusively breastfed (non-EBF) vs. exclusively breast-
fed (EBF) infants from birth to ≤ 6 months of age
Figure 2 (produced using the function taxa.mean.plot

of our ‘metamicrobiomeR’ package; more details in
Additional file 1) shows the longitudinal monthly
average of relative abundance of bacterial phyla in non-
EBF and EBF infants from birth to 6 months of age. A
higher abundance of Proteobacteria, Firmicutes, and
Bacteroidetes as well as a lower abundance of Actino-
bacteria are observed in non-EBF versus EBF infants.

GAMLSS-BEZI is able to detect a significant difference
in all four of these phyla whereas LMAS can only detect
a significant difference in three phyla (Table 3).
Example 2: Comparison of longitudinal monthly gut

bacterial relative abundances at phylum level between
infants from 6months to 2 years of age introduced to
solid food after 5 months vs. before 5 months
Figure 3 shows the longitudinal monthly average of

relative abundance of bacterial phyla in two groups of
infants from 6months to 2 years of age who were intro-
duced to solid food after 5 months vs. those before 5
months of life. Lower relative abundances of Firmicutes,
Bacteroidetes and higher relative abundance of Acti-
nobacteria are observed in infants with solid food intro-
duction after 5 months. GAMLSS-BEZI detects all three
of these differences whereas LMEM can only detect a
significant difference in one phylum (Table 4).
Example 1 and 2 demonstrate the increased sensi-

tivity of GAMLSS-BEZI in detecting bacterial taxa with
observed differential relative abundances as compared
to LMAS.
Example 3: Comparison of longitudinal monthly gut

bacterial relative abundances at phylum level in infants
from 6months to 2 years of age with vs. without diarrhea
stratified by duration of exclusive breastfeeding (EBF)

Fig. 2 Relative abundances of bacterial phyla in non-exclusively breastfed vs. exclusively breastfed infants ≤6 months of age. Data from
Bangladesh study
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Figure 4 shows the average of relative abundance of bac-
terial phyla in groups of infants from 6months to 2 years
of age with vs. without diarrhea around the time of stool
sample collection stratified by duration of EBF. In infants
who received less than two months of EBF, a higher
abundance of Firmicutes and a lower abundance of
Actinobacteria is observed in the groups of infants with
diarrhea vs. those without diarrhea (Fig. 4, upper panel).
GAMLSS-BEZI detects a significant difference in both
Firmicutes and Actinobacteria. In contrast, in infants who
received more than two months of EBF, no difference in
relative abundance of any bacterial phylum is observed

between those with diarrhea vs. those without diarrhea
(Fig. 4, lower panel) and GAMLSS-BEZI does not
report any significant difference (Table 5). This example
demonstrates that GAMLSS-BEZI detects differential
abundances when there is observed difference and does not
report difference when there is no observed difference.

Illustration of meta-analysis examples with real
microbiome data from four studies
We used gut microbiome data from four published
studies to demonstrate the application of random

Table 3 Results of GAMLSS-BEZI and LMAS: real microbiome data example 1

GAMLSS-BEZI LMAS

Bacterial phyla Estimate 95% Lower
limit

95% Upper
limit

p-value FDR adjusted p-
value

Estimate 95% Lower
limit

95% Upper
limit

p-value FDR adjusted p-
value

Actinobacteria −0.37 − 0.65 − 0.10 0.0083 0.0166 −0.13 − 0.23 − 0.03 0.0088 0.0207

Bacteroidetes 0.26 0.00 0.53 0.0499 0.0499 0.03 0.00 0.05 0.0292 0.0390

Firmicutes 0.24 0.00 0.47 0.0468 0.0499 0.07 0.00 0.14 0.0668 0.0668

Proteobacteria 0.37 0.11 0.64 0.0053 0.0166 0.10 0.02 0.17 0.0103 0.0207

Data from Bangladesh study. Comparison of longitudinal monthly gut bacterial relative abundances at phylum level between non-exclusively breastfed (non-EBF)
vs. exclusively breastfed (EBF) infants from birth to ≤6months of age using GAMLSS-BEZI vs. LMAS. Significant p-values (< 0.05) are in bold
GAMLSS-BEZI Generalized Additive Models for Location, Scale and Shape (GAMLSS) with a zero inflated beta (BEZI) family, LMAS linear model with arcsin square
root transformation (implemented in the software MaAsLin), FDR false discovery rate

Fig. 3 Relative abundances of bacterial phyla in infants from 6months to 2 years of age with solid food introduction after 5 months vs. before 5
months. Data from Bangladesh study
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effects models for meta-analysis across microbiome
studies. These four studies include: 1) a cohort of healthy
infants in Bangladesh [14] (the data of this study was also
used in the three examples demonstrating the performance
of GAMLSS-BEZI above); 2) a cross-sectional study of
Haiti infants negative for HIV who were exposed or
unexposed to maternal HIV [11]; 3) a cohort of healthy
infants in the USA (California and Florida [CA_FL])
[12]; and 4) a small cohort of healthy infants in the
USA (North Carolina [NC]) [35]. More details about
the four studies included in the meta-analysis are
described in Table 6. We illustrate the example of

meta-analysis comparing relative abundances of gut
bacterial taxa and bacterial predicted functional path-
ways between male vs. female infants ≤6 months of age
adjusting for feeding status and infant age at the time
of stool sample collection across these four studies
(total number of stool samples = 610 [female = 339,
male = 271]).

Relative abundances of gut bacterial taxa
Meta-analysis results are visually displayed using the
functions metatab.show and meta.niceplot of our ‘meta-
microbiomeR’ package (Additional file 1). The adjusted

Table 4 Results of GAMLSS-BEZI and LMAS: real microbiome data example 2

GAMLSS-BEZI LMAS

Bacterial phyla Estimate 95% Lower
limit

95% Upper
limit

p-value FDR adjusted p-
value

Estimate 95% Lower
limit

95% Upper
limit

p-
value

FDR adjusted p-
value

Actinobacteria 0.19 0.04 0.34 0.0119 0.0208 0.05 −0.06 0.16 0.3451 0.3451

Bacteroidetes −0.26 −0.42 − 0.10 0.0018 0.0070 −0.05 − 0.09 −0.01 0.027 0.1079

Firmicutes −0.16 −0.30 − 0.03 0.0156 0.0208 −0.04 − 0.12 0.04 0.3168 0.3451

Proteobacteria 0.14 −0.02 0.30 0.0861 0.0861 0.02 −0.02 0.07 0.2916 0.3451

Data from Bangladesh study. Comparison of longitudinal monthly gut bacterial relative abundances at phylum level between infants from 6months to 2 years of
age with solid food introduction after 5 months vs. before 5months of age using GAMLSS-BEZI vs. LMAS. Significant p-values (< 0.05) are in bold
GAMLSS-BEZI Generalized Additive Models for Location, Scale and Shape (GAMLSS) with a zero inflated beta (BEZI) family, LMAS linear model with arcsin square
root transformation (implemented in the software MaAsLin), FDR false discovery rate

Fig. 4 Relative abundance of bacterial phyla in infants from 6months to 2 years of age with diarrhea vs. without diarrhea at the time of stool
sample collection stratified by duration of exclusive breastfeeding (EBF). Data from Bangladesh study
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estimates (log (odds ratio) of one gender group for
changes in relative abundance) from GAMLSS-BEZI for
each bacterial taxon of each of the four studies and the
pooled adjusted estimates across studies (meta-analysis)
are displayed as a heatmap (Fig. 5 left panel). Different
significant levels of p-values are denoted for each taxon
of each study. The adjacent forest plot displays the
pooled adjusted estimates and their 95% CI with diffe-
rent colors and shapes to reflect the magnitude of pooled
p-values (Fig. 5 right panel).
The running time for meta-analysis using both ran-

dom effects and fixed effects models across four studies
for all bacterial taxa (328 taxa available in at least 2 stud-
ies) from phylum to genus levels was 3.7 s on a standard
laptop. This indicates that the meta-analysis algorithm is
computationally efficient.
Across the four studies, there is a large heterogeneity

in the difference (log (odds ratio)) of gut bacterial taxa
relative abundances between male vs. female infants ≤6
months of age after adjusting for feeding status and age
of infants at sample collection (Fig. 5, Additional file 1).
For example, at the phylum level, relative abundance of
Actinobacteria is significantly higher in male vs. female
infants in two studies with small sample sizes (Haiti and
North Carolina) while two other studies with larger
sample size (Bangladesh and US (CA_FL) shows non-
significant results in opposite directions. In addition,
differential relative abundance of Proteobacteria is sig-
nificant in two studies but in opposite directions (higher
in male infants in the USA (CA_FL) study while lower
in male infants in the Haiti study as compared to female

infants). Moreover, at the genus level, each study shows
significant differential relative abundances of different
bacterial genera between male vs. female infants and the
effects of many genera are in opposite directions
between studies. Since the results are heterogeneous or
opposite between studies and thus difficult to interpret,
meta-analysis across studies is necessary to evaluate the
overall consistent effects.
On the other hand, there are also some consistent

effects across studies. For example, phylum Bacteroi-
detes is consistently decreased in male vs. female infants
across four studies. However, the decrease is not signifi-
cant in any study (Fig. 5a). Therefore, meta-analysis
across studies is also important to evaluate if there is an
overall significant effect.
Meta-analysis of the four studies shows no significant

differential relative abundance of any bacterial phylum
between male vs. female infants (Fig. 5a). At the genus
level, meta-analyses show four genera with significant
consistent differential relative abundances (pooled
p-value < 0.05) between male vs. female infants. After
adjusting for multiple testing, only genus Coprococcus
remains significantly higher in male vs. female infants
(FDR adjusted pooled p-value< 0.0001) (Fig. 5b).

Relative abundances of bacterial predicted functional
(KEGG) pathways
Across the four studies, there is also a large hetero-
geneity in the difference (log (odds ratio)) of relative
abundances of gut bacterial predicted functional KEGG
pathways between male vs. female infants ≤6 months of

Table 5 Results of GAMLSS-BEZI and LMAS: real microbiome data example 3

GAMLSS-BEZI LMAS

Bacterial phyla Estimate 95% Lower
limit

95% Upper
limit

p-value FDR adjusted p-
value

Estimate 95% Lower
limit

95% Upper
limit

p-value FDR adjusted p-
value

In infants with duration of EBF≤ 2 months (diarrhea vs. no diarrhea comparison)

Actinobacteria −0.73 −1.12 −0.34 0.0003 0.0011 −0.12 −0.23 0.0 0.0424 0.0848

Bacteroidetes −0.29 −0.68 0.10 0.1524 0.2032 0.06 −0.12 0.01 0.0852 0.1136

Firmicutes 0.49 0.15 0.84 0.0055 0.0109 0.11 0.01 0.2 0.0269 0.0848

Proteobacteria
−0.17 −0.54 0.20 0.3729 0.3729 0.00 −0.07 0.08 0.9060 0.9060

In infants with duration of EBF > 2months (diarrhea vs. no diarrhea comparison)

Actinobacteria 0.02 −0.42 0.46 0.9243 0.9243 0.00 −0.10 0.10 0.9626 0.9989

Bacteroidetes 0.07 −0.41 0.56 0.7680 0.9243 0.01 −0.07 0.09 0.8101 0.9707

Firmicutes −0.02 −0.40 0.36 0.9142 0.9243 −0.01 −0.13 0.12 0.8927 0.9707

Proteobacteria
0.12 −0.33 0.56 0.6043 0.9243 0.02 −0.06 0.11 0.5875 0.9191

Data from Bangladesh study. Comparison of longitudinal monthly gut bacterial relative abundances at phylum level in infants from 6months to 2 years of age
with diarrhea vs. no diarrhea at the time of stool sample collection stratified by duration of exclusive breastfeeding (EBF). Significant p-values (< 0.05) are in bold
EBF exclusive breastfeeding, GAMLSS-BEZI Generalized Additive Models for Location, Scale and Shape (GAMLSS) with a zero inflated beta (BEZI) family, LMAS linear
model with arcsin squareroot transformation (implemented in the software MaAsLin); FDR false discovery rate
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a

b

Fig. 5 (See legend on next page.)
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age after adjusting for feeding status and age of infants
at sample collection (Fig. 6). For example, at level 2 of
KEGG pathway, the USA (CA_FL) study (with relatively
large sample size) shows many pathways with significant
differential relative abundances between male vs. female
infants. The other three studies varyingly show signifi-
cantly differential relative abundances in some of these
pathways. However, the effects of almost all of these
pathways in the USA (CA_FL) study are in opposite
directions with the effects of these pathways in any of
the other three studies. Therefore, it is difficult to inter-
pret the results regarding male vs. female pathway diffe-
rential relative abundances. As such, meta-analysis
across studies is important to examine the overall con-
sistent effects. Meta-analysis of four included studies
shows only one KEGG pathway at level 2 with signifi-
cant consistent differential relative abundance between
male vs. female infants (pooled p-value < 0.05). However,
after adjusting for multiple testing, no KEGG pathway
(at both level 2 and level 3) remains significantly diffe-
rent between genders (Fig. 6, Additional file 1).
Difference in gut microbial composition between

genders has been reported in adults [36, 37] and in some
neonatal studies albeit with small sample sizes [38, 39].
However, the reported findings have largely varied
between these studies. Our analyses also showed hetero-
geneous results among the four studies included. This
highlights the importance of meta-analyses to evaluate
overall consistent results across studies. Our meta-ana-
lyses of four studies showed virtually no difference in
gut bacterial community and predicted functional path-
ways between male vs. female infants’ ≤6 months of age
after adjusting for feeding status and infant age at time
of sample collection as well as after adjusting for mul-
tiple testing. There was one exception: relative abundance
of Coprococcus was significantly higher in male vs. female
infants. Coprococcus has been implicated in many con-
ditions including hypertension and autism [40, 41], and
the detected difference in our study may provide some in-
sights into the known sex differences in health outcomes.

In addition, random effects meta-analysis models can
also be generally applied to other microbiome mea-
sures such as microbial alpha diversity and micro-
biome age. To make the estimates for these positive
continuous microbiome measures comparable across
studies, these measures should be standardized to have
a mean of 0 and standard deviation of 1 before be-
tween-group-comparison within each study. Random
effects meta-analysis models can then be applied to
pool the “comparable” estimates and their standard er-
rors across studies. Meta-analysis results of these mea-
sures can be displayed as standard meta-analysis forest
plots (Additional file 1).

Conclusion
Our metamicrobiomeR package implemented GAMLSS-
BEZI for analysis of microbiome relative abundance
data and random effects meta-analysis models for
meta-analysis across microbiome studies. The advan-
tages of GAMLSS-BEZI are: 1) it directly address the
distribution of microbiome relative abundance data
which resemble a zero-inflated beta distribution; 2) it
has better power to detect differential relative
abundances between groups than the commonly used
approach LMAS; 3) the estimates from
GAMLSS-BEZI are log (odds ratio) of relative abun-
dances of bacterial taxa between comparison groups
and thus are directly analogous across studies.
Random effects meta-analysis models can be directly
applied to pool the adjusted estimates and their
standard errors across studies. This approach allows
examination of study-specific effects, heterogeneity
between studies, and the overall pooled effects across
microbiome studies. The examples and workflow using
our “metamicrobiomeR” package are reproducible and
applicable for the analysis and meta-analysis of other
microbiome studies. The R package ‘metamicrobiomeR’
we developed will help researchers to readily conduct
microbiome meta-analysis appropriately.

(See figure on previous page.)
Fig. 5 Meta-analysis for the difference in relative abundances of gut bacterial taxa between male vs. female infants ≤6 months of age. a:
Phylum level: heatmap of log (odds ratio) (log (OR)) of relative abundances of all gut bacterial phyla between male vs. female infants for
each study and forest plot of pooled estimates across all studies with 95% confidence intervals (95% CI). b: Genus level: heatmap of log
(OR) of relative abundances of all gut bacterial genera between male vs. female infants for each study and forest plot of pooled
estimates across all studies with 95% CI. All log (OR) estimates of each bacterial taxa from each study were from Generalized Additive
Models for Location Scale and Shape (GAMLSS) with beta zero inflated family (BEZI) and were adjusted for feeding status and age of
infants at sample collection. Pooled log (OR) estimates and 95% CI (forest plot) were from random effect meta-analysis models with
inverse variance weighting and DerSimonian–Laird estimator for between-study variance based on the adjusted log (OR) estimates and
corresponding standard errors of all included studies. Bacterial taxa with p-values for differential relative abundances < 0.05 are denoted
with * and those with p-values < 0.0001 are denoted with **. Pooled log (OR) estimates with pooled p-values< 0.05 are in red and those
with false discovery rate (FDR) adjusted pooled p-values < 0.1 are shown as triangles. Missing (unavailable) values are in white. USA:
United States of America; CA: California; FL: Florida; NC: North Carolina
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Availability and requirements
Project name: metamicrobiomeR.
Project home page: https://github.com/nhanhocu/

metamicrobiomeR
Operating system(s): Platform independent.
Programming language: R.
Other requirements: R 3.4.2 or higher.
License: GNU GPL v. 2.
Any restrictions to use by non-academics: none.

Additional file

Additional file 1: A summary of implemented functions and tutorial for
the ‘metamicrobiomeR’ package. (HTML 2364 kb)

Abbreviations
BEZI: Zero inflated beta; CA: California; CI: Confidence interval; CLR: Centered
Log Ratio; EBF: Exclusive breastfeeding (or exclusively breastfed); FDR: False
Discovery Rate; FL: Florida; GAMLSS: Generalized Additive Models for
Location, Scale and Shape; GAMLSS-BEZI: Generalized Additive Models for

Fig. 6 Meta-analysis for the difference in relative abundances of gut microbial KEGG pathways between male vs. female infants ≤6 months of
age. Heatmap of log (odds ratio) (log (OR)) of relative abundances of gut microbial KEGG pathways at level 2 between male vs. female infants for
each study and forest plot of pooled estimates of all studies with 95% confidence intervals (95% CI). All log (OR) estimates of each pathway from
each study were from Generalized Additive Models for Location Scale and Shape (GAMLSS) with beta zero inflated family (BEZI) and were
adjusted for feeding status and age of infants at sample collection. Pooled log (OR) estimates and 95%CI (forest plot) were from random effect
meta-analysis models with inverse variance weighting and DerSimonian–Laird estimator for between-study variance based on the adjusted log
(OR) estimates and corresponding standard errors of all included studies. Pathways with p-values for differential relative abundances < 0.05 are
denoted with * and those with p-values < 0.0001 are denoted with **. Pooled log (OR) estimates with pooled p-values< 0.05 are in red and those
with false discovery rate (FDR) adjusted pooled p-values < 0.1 are shown as triangles. KEGG: Kyoto Encyclopedia of Genes and Genomes; USA:
United States of America; CA: California; FL: Florida; NC: North Carolina
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Location, Scale and Shape with a zero inflated beta family; GMPR: Geometric
Mean of Pairwise Ratios; KEGG: Kyoto Encyclopedia of Genes and Genomes;
LM: Linear/linear mixed effect models; LMAS: Linear/linear mixed effect
models with arcsin squareroot transformation; NC: North Carolina; Non-
EBF: Non exclusive breastfeeding (or non exclusively breastfed); RAIDA: Ratio
Approach for Identifying Differential Abundance; USA: United States of
America; ZIL: Zero-inflated lognormal; ZINB: Zero-inflated negative model
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