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A B S T R A C T

The proportion of SARS-CoV-2 infections ascertained through healthcare and community testing is generally
unknown and expected to vary depending on natural factors and changes in test-seeking behaviour. Here we
use population surveillance data and reported daily case numbers in the United Kingdom to estimate the rate
of case ascertainment. We mathematically describe the relationship between the ascertainment rate, the daily
number of reported cases, population prevalence, and the sensitivity of PCR and Lateral Flow tests as a function
time since exposure. Applying this model to the data, we estimate that 20%–40% of SARS-CoV-2 infections
in the UK were ascertained with a positive test with results varying by time and region. Cases of the Alpha
variant were ascertained at a higher rate than the wild type variants circulating in the early pandemic, and
higher again for the Delta variant and Omicron BA.1 sub-lineage, but lower for the BA.2 sub-lineage. Case
ascertainment was higher in adults than in children. We further estimate the daily number of infections and
compare this to mortality data to estimate that the infection fatality rate increased by a factor of 3 during the
period dominated by the Alpha variant, and declined in line with the distribution of vaccines. This manuscript
was submitted as part of a theme issue on ‘‘Modelling COVID-19 and Preparedness for Future Pandemics’’.
1. Introduction

Testing for SARS-CoV-2 in the UK aims to accomplish two things
— first, to rapidly confirm suspected cases of COVID-19 disease via
symptomatic testing in order to contain outbreak clusters, and second,
to establish the overall burden of infection by taking a random sample
of the population. Since not all infected individuals receive a test,
and some of those who do will receive a false negative result, the
number of positive diagnostic tests provides a lower estimate of the
number of people exposed to the virus (Russell et al., 2020). In contrast,
random testing can provide an unbiased estimate of prevalence, but is
an inefficient way to rapidly identify infection clusters, and may also
have biases depending on the extent to which a positive test indicates
the true infection status of the individual.

Both types of data are available in the UK: the number of positive
tests from people with suspected infection are published daily on the
UK government dashboard (UK coronavirus dashboard, 2022a), and the
Office for National Statistics COVID-19 Infection Survey (CIS) regularly
publishes estimates of the population prevalence based on unbiased
sampling (Office for national statistics, 2022a). The existence of these
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sources creates an opportunity to answer an important question: what
proportion of all infections are being reported through diagnostic testing?
Knowing this can help to estimate true incidence rates, a quantity
central to understanding how the virus is spreading, and determine the
infection fatality rate (IFR) of the disease.

Here we describe how diagnostic case numbers can be used to model
the proportion of the population testing positive. By calibrating this
model against surveillance data, we estimate the case ascertainment
rate, defined as the proportion of infections that were reported through
diagnostic testing; the incidence, defined as the number of newly
infected individuals each day; and the IFR. Our differs from previous
work as we do not rely on prior assumptions about the IFR to estimate
incidence (Noh and Danuser, 2021; Reese et al., 2020). Moreover, we
estimate the IFR using a data set substantially larger than any that has
previously been used (Meyerowitz-Katz and Merone, 2020).

The model incorporates the different types of test and differences
caused by variants of SARS-CoV-2, which have been shown to result in
higher severity and a different range of clinical symptoms (Wang et al.,
2021; Ong et al., 2021). New variants might have different pathological
vailable online 5 November 2022
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characteristics that could potentially affect the test-seeking behaviour
of those infected, which we expect to directly affect case ascertainment.
Examination of age related and regional variation in case ascertainment
provides a novel way to consider these developments, and to enrich our
understanding of the epidemiology of the virus.

2. Materials and methods

2.1. Data

We are primarily concerned with daily Pillar 1 and 2 case data
(UK coronavirus dashboard, 2022a), hereafter referred to as diagnostic
test cases, which represent tests done in health care settings and the
community, respectively. We use 𝐶𝑞(𝑡) to denote the number of Pillar 1
and 2 cases from test type 𝑞 on day 𝑡. Here, 𝑞 can be PCR or LFD. These
counts come from lab-based PCR tests and lateral flow device (LFD)
testing, as performed in many community settings (UK coronavirus
dashboard, 2022b). We use data provided for the 12 regions of the UK
(9 regions of England and 3 other nations), and the 19 5-year age bands,
which we aggregate into 7 distinct age bands to be consistent with the
CIS data. Since the age bands for the Pillar 1 & 2 data are not perfectly
aligned with those for the CIS data, we first distribute them into 1-
year age brackets, assuming an equal distribution of cases within each
bracket, before re-aggregating.

At the time of writing, the number of cases detected by test type
were available for England, but not provided at the regional level or for
different age bands. We therefore approximate the proportion of cases
that come from each test type by partitioning the total case numbers
according to the proportion calculated at the national scale.

The CIS provides estimates for the estimated percentage of people
testing positive for coronavirus for the 9 regions of England, 3 other
ations of the UK, and 7 age bands in England. Data for nations and
ge bands represent samples collected over 14-day intervals. We take
he 7th day as the representative time point of this estimate. Data for
he nations is provided weekly and so we take it to represent the 4th day
f the 7-day period. Population counts for the 9 regions and the 7 age
ategories were compiled from CIS data (Office for national statistics,
022b).

There is uncertainty in the CIS which we transfer to our own
nalysis as follows. From the CIS, we use the ‘‘rate’’ and 95% confidence
nterval over a series of time points between September 2020 and June
022 (Office for national statistics, 2022a). The exact distributions are
ot provided by the CIS source, so we approximate them with Normal
istributions with mean equal to the CIS rate values and variance
alculated to be as consistent as possible with the CIS confidence
ntervals. We construct a sampled time series by taking a series of
amples from the series of distributions. The sampled time series of
ercentages is then applied to the population to give, 𝑀(𝑡), the total
umber of test-positive people, where 𝑡 is the midpoint of the time
nterval that the data represent. We repeat our analysis on 200 time
eries independently constructed in this way to obtain a distribution of
esults.

The CIS provides an estimate of the proportion of tests that achieve
ifferent testing targets using the TaqPath test (Public Health England,
020). We use these to estimate the proportion of infections that are
rom wild-type, Alpha, Delta and Omicron variants (BA.1 and BA.2 sub-
ineages) of SARS-CoV-2. We consider tests that are negative for the S
arget gene and positive for the two other targets, known as S-gene
arget failure (SGTF), to be a proxy for the Alpha and Omicron BA.1
ariants. Since tests that are positive for S and exactly one of the other
argets (N or ORFab1) may indicate any lineage (Sanderson, 2021), we
iscard those that are negative on the S target and one other target
rom our calculation of the SGTF proportion.

Based on the time points when the SGTF proportion reached locally
aximum or minimum values, we assume the variant class follows from
2

GTF as follows. All infections from the beginning of the pandemic until
November 1st 2020, and all infections up to March 1st 2021 that are
not SGTF, are of the wild-type variants. Infections that are SGTF are of
the Alpha variant if they were reported between November 1st 2020
and November 1st 2021, and the Omicron BA.1 sub-lineage if they we
reported after November 1st 2021. Infections that are not SGTF are
assumed to be the Delta variant if they were reported between March
1st 2021 and January 9th 2022, and the Omicron BA.2 sub-lineage
if they we reported after January 9th 2022. We therefore consider 5
variant classes of interest: Wild-type, Alpha, Delta, Omicron BA.1 and
omicron BA.2 whose proportions we denote using 𝑝𝑤, 𝑝𝐴, 𝑝𝛥, 𝑝𝑜1, 𝑝𝑜2,
espectively.

The number of deaths in England of individuals who have tested
ositive for coronavirus within 28 days is provided in 5-year age
ands (UK coronavirus dashboard, 2022c). As with the case num-
ers, these data were first distributed into 1-year age brackets assum-
ng an equal distribution of cases within each bracket, before being
e-aggregated into age bands consistent with the CIS.

.2. Modelling the time from exposure to the time of positive test

We define two random variables, 𝑋 and 𝑇 , representing the time
n individual was exposed and the time they received a positive test,
espectively. Assuming daily time steps, we express the probability that
n individual who received a positive test from a sample taken at time
+ was first exposed to the virus at time 𝑥,

( 𝑋 = 𝑥 | 𝑇 = 𝑡+ ) =
𝑃 ( 𝑋 = 𝑥 & 𝑇 = 𝑡+ )

∑

𝑖≥0
𝑃 ( 𝑋 = 𝑡+ − 𝑖 & 𝑇 = 𝑡+ )

. (1)

The joint probability distribution 𝑃 ( 𝑋 = 𝑥 & 𝑇 = 𝑡+ ) can be pieced
together from various sources by considering the sequence of events
that result in an individual testing positive.

First, we consider the time the individual was exposed to the virus
and acquired the infection. We denote the prior probability that the
infection was acquired at time 𝑥 by 𝐵(𝑥). Next, we consider the time
between exposure and the time that they received a test. For symp-
tomatic cases we assume that the test occurs shortly after symptom
onset, i.e. the time since exposure 𝜏 = 𝑡+ − 𝑥 is equal to the sum of
the incubation period and a delay parameter 𝛿𝑘 that we assume to be a
fixed quantity. The subscript 𝑘 ∈ {PCR,LFD} represents the type of test
being performed, and we have chosen 𝛿LFD = 0, and 𝛿PCR = 1 (which
we later test in a sensitivity analysis).

The probability of a test on day 𝑡+ is thus 𝑅(𝑡+ − 𝛿𝑘 − 𝑥) where
𝑅(𝑖) is the probability that the duration of the incubation period is
𝑖, which we assume to be Log-normal with a mean of 5.5 days and
dispersion parameter 1.52 (Lauer et al., 2020; Xin et al., 2021). To get
a probability distribution expressing the length of the incubation period
in discrete days, we integrate over consecutive intervals of length
1. For simplicity, cases ascertained independently of symptoms, for
example those found through screening, contact tracing, or on hospital
admission, are assumed to follow the same distribution.

Once the individual has acquired the infection and has had a test,
the test must be positive to become an ascertained infection. The
probability of testing positive varies as a function, 𝑆𝑘(𝜏), of the time
since exposure 𝜏 = 𝑡+ − 𝑥. We use the functions provided by Hellewell
et al. (2021) and shown in Fig. 1. The PCR curve is similar in shape to
the shedding profile found in other studies (He et al., 2020; Long et al.,
2020; Wölfel et al., 2020; Smith et al., 2021) with viral load typically
peaking at day 3−5 and persisting for a mean duration of 17 days (Cevik
et al., 2020). Variation is associated with severity of illness but not
age or sex (Chen et al., 2021; Yonker et al., 2021; Jones et al., 2020).
Studies that look for a difference between asymptomatic and symp-
tomatic infections do not report consistent results (Kissler et al., 2020;
Long et al., 2020). While one study with a small sample found that
the Alpha variant had a longer viral course than the wild type (Kissler
et al., 2021a), studies generally show that shedding profiles do not
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Fig. 1. (A) The test sensitivity as a function of time from Hellewell et al. (2021). The function, 𝑆(𝜏) gives the probability that a PCR test will be positive if performed on an
infected person 𝜏 days after exposure. (B) The incubation period probability distribution from Lauer et al. (2020), shown here are the probability of symptom onset on each day
since exposure.
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differ significantly between variants (Ke et al., 2021b; Kissler et al.,
2021b). In contrast, vaccination has been shown to reduce incidence
of high shedding rates and duration of shedding (Kissler et al., 2021b;
Pritchard et al., 2021; Ke et al., 2021a; Antonelli et al., 2021) which
we address in a later section.

We express the probability that an infected individual was exposed
on day 𝑥 and tested positive on day 𝑡+ by multiplying the probabilities
mentioned above,

𝑃 ( 𝑋 = 𝑥 & 𝑇 = 𝑡+ ) = 𝐵(𝑥)𝑅(𝑡+ − 𝑥 − 𝛿𝑘)𝑆𝑘(𝑡+ − 𝑥). (2)

If we assume an uninformative prior probability, 𝐵(𝑥), of exposure on
day 𝑥, then substituting Eq. (2) into Eq. (1) gives

𝑃𝑞( 𝑋 = 𝑥 | 𝑇 = 𝑡+ ) =
𝑅(𝑡+ − 𝑥 − 𝛿𝑞)𝑆𝑞(𝑡+ − 𝑥)

∑

𝑖≥0 𝑅(𝑖 − 𝛿𝑞)𝑆𝑞(𝑖)
. (3)

Substituting 𝜏 = 𝑡+−𝑥, and using the notation 𝑃𝑞(𝜏) = 𝑃𝑞(𝑋 = 𝑡+−𝜏|𝑇 =
𝑡+), we have

𝑃𝑞(𝜏) =
𝑅(𝜏 − 𝛿𝑞)𝑆𝑞(𝜏)

∑

𝑖≥0 𝑅(𝑖 − 𝛿𝑞)𝑆𝑞(𝑖)
, (4)

giving the probability distribution of time between exposure and test
for the set of ascertained cases corresponding to the test types 𝑞 ∈
{PCR,LFD}.

2.3. Estimating the ascertainment rate

We define the ascertainment rate as the proportion of SARS-CoV-2
nfections that result in a positive PCR or LFD test and are recorded
n the Pillar 1 & 2 case data. We introduce the time-dependent ascer-
ainment rate 𝜽, a vector whose 𝑥th element, 𝜃𝑥, is the proportion of
nfections that occurred at time 𝑥 that get reported through diagnostic
esting at any subsequent time. We also consider the incidence, 𝐼(𝑥),
efined as the number of newly acquired infections on day 𝑥.

The number of ascertained cases that were exposed at time 𝑥 can
e expressed in two ways: first, by multiplying the incidence by the
scertainment rate, and second by expressing the number of reported
ases that were exposed on day 𝑥 as a function of the daily case counts.
quating the two gives

𝑥𝐼(𝑥) =
∑

𝑞

∑

𝜏≥0
𝐶𝑞(𝑥 + 𝜏)𝑃𝑞(𝜏). (5)

e estimate the number of individuals in the population who would
est positive (by PCR) on day 𝑡, if tested, by summing over all infections
imes and weighting by the probability that each one is test-positive on
ay 𝑡

̂ (𝑡) =
∑

𝐼(𝑡 − 𝑘)𝑆𝑃𝐶𝑅(𝑘). (6)
3

𝑘≥0 e
ombining with Eq. (5) we can express this as a function of time and
he unknown vector of parameters 𝜽

̂ (𝑡;𝜽) =
∑

𝑘≥0
(𝑆𝑃𝐶𝑅(𝑘)∕𝜃𝑡−𝑘)

∑

𝑞

∑

𝜏≥0
𝐶𝑞(𝑡 − 𝑘 + 𝜏)𝑃𝑐 (𝜏). (7)

e estimate ascertainment by finding the vector 𝜽 that minimizes the
ifference between the estimated and observed values,

= argmin
𝐲

∑

𝑡∈

|

|

𝑀(𝑡) − �̃�(𝑡; 𝐲)|
|

(8)

here  is the set of time points for which we have empirical estimates
f prevalence. Eq. (8) combines the daily diagnostic case counts, the
opulation positivity from surveillance, the incubation period distribu-
ion, and the time-dependent test sensitivity of PCR and LFD tests, to
rovide an estimate of the proportion of infections being reported at
ime 𝑡.

In practice, we estimate 𝜃𝑥 at weekly time points and use linear
nterpolation to create a daily time series. The solution to Eq. (8) is
ound numerically using the optimize.minimize from the scipy library in
ython. The optimization is made more efficient by inputting an initial
uess based on an approximation to 𝜃 given by

𝑡 = 𝑀(𝑡 + 9)−1
∑

𝑞

∑

𝑘≥0
𝑆𝑃𝐶𝑅(𝑘)

∑

𝑗≥0
𝐶𝑞(𝑡 − 𝑘 + 𝑗)𝑃𝑞(𝑗). (9)

ote that this equation uses the reported prevalence shifted forward
y 9 days which is approximately the time since exposure of someone
ho received a positive test result through random surveillance. We
stimate the credible interval for 𝜃 by substituting the upper and lower
ounds of the credible interval for 𝑀(𝑡) into Eq (8). The validity of
his method is demonstrated in a supplementary analysis in which it is
ested on synthetic data.

.4. Time-independent ascertainment rate

Motivated by the possibility that variants of concern may have
ifferent pathological characteristics to each other or elicit different
est-seeking responses, we estimate ascertainment rates for each variant
lass. Unlike the previous section these rates are constant for each
ariant in each region and age band. We let  = {𝑤,𝐴, 𝛥, 𝑜1, 𝑜2} to
enote the wild-type, Alpha, Delta, Omicron BA.1 and Omicron BA.2
ariants, respectively, and 𝝓 = (𝜙𝑤, 𝜙𝐴, 𝜙𝛥, 𝜙𝑜1, 𝜙𝑜2) where 𝜙𝑣 denotes
he time-independent rate for variant class 𝑣. Recalling that 𝑝𝑣(𝑡) is the
roportion of infections caused by variants of class 𝑣, we use a revised
stimate of 𝑀(𝑡) that weights the contribution of each variant class by
ts proportion

̃ (𝑡;𝝓) =
∑

𝑣∈
𝑝𝑣(𝑡)�̂�(𝑡;𝜙𝑣) (10)

e can then estimate by taking the value that minimizes the absolute
̃ ′
rror between 𝑀(𝑡) and 𝑀(𝑡) taking only the time points  up to
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March 1st 2021 when SGTF positive tests were associated with the
Delta variant. Specifically, the time-independent ascertainment rates
are estimated by numerically solving

𝝓 = argmin
𝒚

∑

𝑡∈ ′

|

|

𝑀(𝑡) − �̃�(𝑡; 𝒚)|
|

(11)

2.5. Infection fatality rate

The infection fatality rate (IFR) is defined as the proportion of
individuals infected who then die as a direct result of the infection. For
a given monthly mortality figure, we count the corresponding number
of infections from 𝐼(𝑥) summed over all corresponding exposure dates.
We include a 21 day time from exposure to death (5 days to symptom
onset and 16 days between onset and death) to be consistent with
previous studies and the time between peaks in case and death data
in England (Hu et al., 2021). For example, the IFR for September is
the number of recorded deaths in that month divided by the number
of infections that occurred between August 10th and September 10th.

2.6. Effect of vaccination on ascertainment rate

We apply different test sensitivity functions to the proportion of
infections that are in individuals who have received a vaccine and those
who have not. Here we first describe how the proportion of infections
that are in vaccinated, and unvaccinated, people is estimated. We then
describe how this was accommodated into our analysis.

Vaccine effectiveness is defined as

𝑒 = 1 −
𝑃 (𝐼|𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑)
𝑃 (𝐼|𝑢𝑛𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑)

. (12)

It varies depending on the time since vaccination, the number of doses,
the specific vaccine given, and the outcome measured e.g. infection,
symptoms, hospitalization. Effectiveness is lowest when the measured
outcome is infection of any kind, regardless of symptoms. This is
estimated to be 𝑒 = 0.56 (56%) (Pritchard et al., 2021). We choose to
se this low value to avoid underestimating the effect of vaccines; lower
stimates of effectiveness results in higher proportions of infections that
re subject to the effects of the vaccine.

We want to know the proportion of infections on day 𝑡 that are in
he population of people that have received the vaccine by day 𝑡, which

we denote with 𝜋(𝑡). We have that 𝑃 (𝐼|𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑) = 𝜋(𝑡)𝐼(𝑡)∕𝑉 (𝑡)
here 𝐼(𝑡) is the number of new infections on day 𝑡 and 𝑉 (𝑡) is the

number of people vaccinated by day 𝑡. Similarly 𝑃 (𝐼|𝑢𝑛𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑) =
(1 − 𝜋(𝑡))𝐼(𝑡)∕(𝑁 − 𝑉 (𝑡)) where 𝑁 is the population. Substituting into
Eq. (12) gives

𝜋(𝑡) =
(1 − 𝑉 (𝑡))𝑒
1 − 𝑒𝑉 (𝑡)

(13)

Vaccination has been reported to reduce the time until viral clear-
ance of those infected (Kissler et al., 2021b). It was reported that
the time from viral peak to viral clearance was 2 days shorter for
vaccinated individuals. To model this we assume that there is no viral
shedding detectable by either PCR or LFD test 10 or more days after
exposure, shortening the time to viral clearance considerably more
than the reported effect to ensure we do not underestimate the effect
of vaccines in this sensitivity analysis. For infections in vaccinated
people we denote these modified functions using 𝑆′

𝑞(𝜏), and 𝑃 ′(𝜏) for
the equivalent of Eq. (6) with S′ substituted for S. The modified version
of Eq. (7) is

𝜃𝑥𝐼(𝑥) = (1 − 𝜋(𝑡))
∑

𝑞

∑

𝜏≥0
𝐶𝑞(𝑥 + 𝜏)𝑃𝑞(𝜏) + 𝜋(𝑡)

∑

𝑞

∑

𝜏≥0
𝐶𝑞(𝑥 + 𝜏)𝑃 ′

𝑞 (𝜏) (14)

and finally the modified Eq. (8) is

�̂�(𝑡) = (1 − 𝜋(𝑡))
∑

𝑘≥0
𝐼(𝑡 − 𝑘)𝑆𝑃𝐶𝑅(𝑘) + 𝜋(𝑡)

∑

𝑘≥0
𝐼(𝑡 − 𝑘)𝑆′

𝑃𝐶𝑅(𝑘). (15)

3. Results

The percentage of cases ascertained estimated with Eq. (8) varies
by time, region, and age band (Fig. 2). These results are sensitive to
4

variation in surveillance data, particularly when infection levels are
low and there is less data to inform the estimate. For example, from
the time that the infection survey began until September 2020, which is
not shown in the figure, the results are highly variable and occasionally
produce estimates of ascertainment that are above 100%. In general,
when case rates are low we see an increase in variability due to the
smaller sample size, whereas when case rates are relatively high the
estimated ascertainment rate becomes more reliable.

Case ascertainment is related to the proportion of infections that
lead to symptomatic infection. This is apparent from the low ascertain-
ment rates observed in the lowest age categories, which are known to
be less likely to develop symptoms (Poletti et al., 2021). There were
notable increases after March 2021 in school age children, possibly
indicating that the mass testing in that age category that coincided with
school reopening caused a higher detection rate of asymptomatic infec-
tions. Similarly, since vaccination is effective at preventing infections
from becoming symptomatic, the decreasing ascertainment rate seen
in the two highest age bands from January to April 2021 may have
resulted from vaccination in those groups.

Increases from April to June 2021 occur in every group and appear
to coincide with the rise in cases of the Delta variant. While this
could imply that the Delta variant is more likely to cause symptomatic
infection, it could also be the result of behavioural factors as restrictions
to physical contact were being removed and lateral flow tests were
being more widely used. There is similarity between the time series
of age bands that are close to each other, whereas changes in the
ascertainment rate in any given region appears to be unaffected by
neighbouring regions (Fig. S.3).

To compare regions, ages, and different phases of the pandemic, we
consider 5 different variant classes: the wild-type that existed before
the emergence of the Alpha variant, the Alpha and Delta variants,
and the BA.1 and BA.2 sub-lineages of the Omicron variant, where
we have used S-gene target failure to approximate the proportion of
cases belonging to each class. Modelling a different time-independent
ascertainment rate for each variant provides remarkable agreement
between the modelled population prevalence and the value reported
by the surveillance study (Fig. S.1). The best-fit ascertainment rates
are shown in Fig. 3. Differences between variants may reflect varying
symptomatic responses, or they may reflect other behavioural factors
that have changed over time.

The ascertainment rate for the wild-type is lower than the rate for
the Alpha, Delta and Omicron BA.1 variants across almost all age bands
and regions of the UK. While the difference between Alpha, Delta and
Omicron BA.1 is less clear, it is typically the case that ascertainment
increased for the Delta variant over the Alpha and increased again
for the Omicron BA.1 variant before decreasing substantially for the
Omicron BA.2 variant during a time when free access to LFD and PCR
tests was no longer available. Ascertainment rates are lowest in the
youngest age band and increases with age up to the 25 to 34 band.
During times when free access to testing was widely available, around
30% to 40% of infections were ascertained. This is lower than the
percentage of infections that are symptomatic, estimated to be around
70% (Buitrago-Garcia et al., 2020; Sah et al., 2021), implying that a
considerable number of symptomatic infections do not get ascertained.

We calculate the IFR for each month for the 4 oldest age bands
(Fig. 4). We have chosen not to show lower ages as the low numbers
of deaths in these groups make the results highly variable do not
provide a reliable estimate of the true IFR. Within the 4 age bands for
which data are sufficient, the IFR increases with age. The increasing
trend in IFR for the two oldest age bands in November 2020 may be
a combination of higher severity of the Alpha variant (Davies et al.,
2021), the increased pressure on the healthcare system, or a seasonal
affect on immunity. The subsequent reduction is close to what we
would expect to see given that the vaccines give some protection
against infection; while vaccines reduced the number of deaths con-

siderably, they simultaneously reduced the number of infected people.
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Fig. 2. Ascertainment rate in the 7 age bands and 12 regions of the UK expressed as a percentage, from Eq. (8). Presented are the median and confidence intervals from the
distribution of solutions to Eq. (8) over 200 samplings of the surveillance data, 𝑀(𝑡). Incidence, 𝐼(𝑡), is shown as a percentage of the population.
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or instance, using 90% effectiveness of vaccines against death and
6% against infection (Sheikh et al., 2021; Pritchard et al., 2021), one
an calculate from the definition of effectiveness that the IFR of the
accinated population should be 22% of the IFR for the unvaccinated.

We tested the robustness of these results against reasonable changes
n the assumptions of our model. Firstly, viral clearance may occur
ore rapidly in individuals who have been vaccinated (Kissler et al.,
021b). While we cannot model this effect precisely, making liberal
ssumptions about vaccine effectiveness and its effect on the test-
ensitivity profile (see Section 2.6) gives results that are lower by a few
5

v

ercent (Fig. S.2). The most substantial effect is observed in older age
ands. Similarly, the IFR presented in Fig. 4 may be an overestimate
uring times when vaccine coverage is high. Fig. S.4 shows the range
f values that are plausible given the duration of viral shedding in
accinated individuals.

Secondly, the model assumed a delay between symptom onset and
eceiving a PCR test of 𝛿PCR = 1 day. We do not have observational
vidence to support this and 𝛿PCR = 2 is also reasonable. Repeating the
nalysis with 𝛿PCR = 2 yields a mean increase (across all age bands and
ariants) of 0.05 percentage points with a standard deviation of 0.89
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Fig. 3. Estimates of time-independent ascertainment rates 𝝓 = (𝜙𝑤 , 𝜙𝐴 , 𝜙𝛥 , 𝜙𝑜1 , 𝜙𝑜2). Presented are the median and confidence intervals from the distribution of solutions to Eq. (11)
over 200 samplings of the surveillance data, 𝑀(𝑡).

Fig. 4. Infection fatality rate (IFR). The estimated percentage of infections that cause mortality. The shaded region shows the 95% confidence interval computed by using 𝐼(𝑥)
computed from the upper and lower estimates of prevalence given by the surveillance data. Dashed lines show the population in the respective age band that had received at least
one dose of a COVID-19 vaccine.
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Fig. S.1. The percentage of people who would test positive if tested. Comparison of the ONS CIS to the modelled value based on reported cases and the estimated ascertainment
rates given in Fig. 3.
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to the results reported in Fig. 3, suggesting relatively low sensitivity to
this modelling decision.

Thirdly, since the time between exposure and receiving a test in
our model is based on the time of symptom onset, it does not correctly
describe cases ascertained from tests that are not related to symptoms.
The main route of case ascertainment in the UK was community testing,
which was advised primarily for those who are experiencing symptoms
(Pillar 2 constitutes around 80 to 95% of cases depending on the time
period). However, if the main route of case ascertainment was instead
through contact tracing or asymptomatic screening, then the methods
would need to be adapted to accommodate this.

Additionally, we assumed that the proportion of cases reported from
LFD tests, as opposed to PCR, for England could be applied across
all age bands and regions, whereas in reality they are unlikely to
be proportioned equally. Repeating our analysis under the extreme
assumption that 100% of community and healthcare reported cases are
from LFD tests results in an mean decrease of 0.08 percentage points
with a standard deviation of 1.75, again demonstrating low sensitivity
to this modelling assumption.

Finally, some empirical estimates of test sensitivity are higher than
the maximum of 𝑆PCR and 𝑆LFD (Arevalo-Rodriguez et al., 2020; Brüm-

er et al., 2021). Repeating our analysis using an adjusted versions
PCR and 𝑆LFD that are linearly scaled so that 𝑆PCR peaks at 1, we

ind ascertainment rates increase by a mean of 7.5 percentage points
7

ith standard deviation of 3.4, suggesting that any inaccuracy in I
ur assumption about test sensitivities could substantially affect the
utcomes presented here.

. Discussion

The extensive efforts in the United Kingdom to monitor the COVID-
9 epidemic have provided the opportunity to quantify a critically
mportant parameter – the ascertainment rate – defined as the likeli-
ood that an infected individual will get tested and receive a positive
iagnosis. Here we compared the daily reported number of cases to an
nbiased estimate of population prevalence to estimate the proportion
f cases that are ascertained through community testing and healthcare.
e also computed the daily number of new infections and from this
ere able to track the infection fatality ratio across time.

Variation in case ascertainment may result from differences in
linical presentation, public perception, availability of testing, or many
ther possible reasons. It was revealed to be related to age, with infec-
ions in the youngest age bands being the least likely to be diagnosed.
nfections related to the Alpha, Delta, and Omicron BA.1 variants were
ore likely to be ascertained compared to variants that were circulating

arlier in the pandemic (the wild type) or during a time when access to
ree tests was no longer available (BA.2). The IFR showed substantial
ariation across time, increasing substantially into winter 2020 before
eclining with the distribution of vaccines.

Ascertainment appears to be dependent on the SARS-CoV-2 variant.

t is not possible to determine the extent to which this variation is
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Fig. S.2. Ascertainment rates shown in Eq. (8) compared to the equivalent value that incorporates the effect of vaccination. Modelling assumptions have been made to provide
he largest reasonable deviation from the original ascertainment estimate with the data available. Therefore it is likely that a precise treatment of vaccination in the model would
ield a result within the shaded area between the curves.
aused by changes in symptomatic response or by external factors
hat may alter the propensity of the individual to seek a test. After
ccounting for the effects of the different variants on the ascertain-
ent rate, we have shown that the two data sources are largely in

greement with each other. This suggests a consistency in test-seeking
ehaviour over time periods of months, highlighting the reliability of
he diagnostic test data as measure of epidemic severity. In general,
hen cases are increasing, it is because infections are increasing, not
ecause people have become more likely to receive a tests, although
hanges in test-seeking do occur on longer time scales.

The challenge when comparing the trend seen in random survey
ata to that seen in reported community cases is that the former is
measure of prevalence and the latter a measure of incidence. Our
ethodology resolves this by modelling the relationship between the

wo. Our method is related to the deconvolution approach previously
used to estimate the incidence of other infectious diseases (Brookmeyer
et al., 1994). Indeed, this approach could be applied directly to the
surveillance data to estimate incidence, however, it would not reflect
changes in incidence that occur on a sub-weekly time-scale. Because
our method utilizes the daily resolution of the case data, it captures the
daily variation in incidence while achieving almost perfect consistency
between the two data sources.
8

The estimation of infection incidence performed here offers an
alternative to methods that use serological data (Shioda et al., 2021).
This allows for more accurate representation of key metrics related to
epidemic control such as the reproduction rate, generation time, case
doubling rates, hospitalization and fatality rates. Our analysis revealed
considerable variability in the IFR that goes beyond that expected from
age and vaccination status alone. The three-fold increase in IFR in
the 70+ age band beginning in November 2020 suggests that multiple
factors contribute to the risk of death from infection and therefore
there may be multiple ways to minimize mortality in future winter
seasons. The subsequent decline adds to the body of evidence showing
the effectiveness of vaccinations.

Our results are dependent on a number of simplifying assumptions.
We have applied a model that assumes all individuals experience
similar viral dynamics once infected, and the time for between exposure
and receiving a test follows the same distribution regardless of age or
location. We have assumed that testing occurs at the time of symptom
onset plus an additional delay, however, since LFD tests are expected
to be used for asymptomatic screening the time between exposure and
receiving an LFD test may be shorter than we have assumed. This would
particularly affect children during periods when LFD testing was widely
used in schools.
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Fig. S.3. Correlations between the ascertainment rate time series of (A) all age bands
and (B) all regions. Values show the Pearson correlation coefficient, 𝑟. Correlations
where 𝑟 < 0 or 𝑝 > 0.05 are not displayed.

We highlight that the methods here may be translated to a variety of
current and future epidemiological studies. As the COVID-19 pandemic
9

has expanded the scale and scope of health surveillance data to an
unprecedented level, the methods required to parse such data, and
create interpretations useful to inform decision makers and increase
public awareness, need also to adapt. The methods presented here
are novel, although built from established mathematical concepts, and
this reflects constant requirement to re-evaluate and refresh the set of
mathematical and statistical tools available to analysts as the landscape
of public health continues to evolve.
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Appendix A. Supporting information

See Figs. S.1–S.4.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jtbi.2022.111333. Validation of methods
on synthetic data.
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