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Abstract

Complex diseases are defined to be determined by multiple genetic and environmental factors alone as well as in inter-
actions. To analyze interactions in genetic data, many statistical methods have been suggested, with most of them relying
on statistical regression models. Given the known limitations of classical methods, approaches from the machine-learning
community have also become attractive. From this latter family, a fast-growing collection of methods emerged that are
based on the Multifactor Dimensionality Reduction (MDR) approach. Since its first introduction, MDR has enjoyed great
popularity in applications and has been extended and modified multiple times. Based on a literature search, we here pro-
vide a systematic and comprehensive overview of these suggested methods. The methods are described in detail, and the
availability of implementations is listed. Most recent approaches offer to deal with large-scale data sets and rare variants,
which is why we expect these methods to even gain in popularity.
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Introduction

In analyzing the susceptibility to complex traits, it is assumed
that many genetic factors play a role simultaneously. In add-
ition, it is highly likely that these factors do not only act inde-
pendently but also interact with each other as well as with
environmental factors. It therefore does not come as a surprise
that a great number of statistical methods have been suggested
to analyze gene–gene interactions in either candidate or gen-
ome-wide association studies, and an overview has been given
by Cordell [1]. The greater part of these methods relies on trad-
itional regression models. However, these may be problematic in
the situation of nonlinear effects as well as in high-dimensional
settings, so that approaches from the machine-learning

community may become attractive. From this latter family, a
fast-growing collection of methods emerged that are based on
the Multifactor Dimensionality Reduction (MDR) approach.

Since its first introduction in 2001 [2], MDR has enjoyed great
popularity. From then on, a vast amount of extensions and
modifications were suggested and applied building on the
general idea, and a chronological overview is shown in the road-
map (Figure 1). For the purpose of this article, we searched two
databases (PubMed and Google scholar) between 6 February
2014 and 24 February 2014 as outlined in Figure 2. From this, 800
relevant entries were identified, of which 543 pertained to
applications, whereas the remainder presented methods’
descriptions. Of the latter, we selected all 41 relevant articles
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introducing MDR or extensions thereof, and the aim of this re-
view now is to provide a comprehensive overview of these
approaches.

Throughout, the focus is on the methods themselves.
Although important for practical purposes, articles that de-
scribe software implementations only are not covered.
However, if possible, the availability of software or program-
ming code will be listed in Table 1. We also refrain from provid-
ing a direct application of the methods, but applications in the
literature will be mentioned for reference. Finally, direct com-
parisons of MDR methods with traditional or other machine
learning approaches will not be included; for these, we refer to
the literature [58–61].

In the first section, the original MDR method will be
described. Different modifications or extensions to that focus
on different aspects of the original approach; hence, they will be
grouped accordingly and presented in the following sections.
Distinctive characteristics and implementations are listed in
Tables 1 and 2.

The original MDR method
Method

Multifactor dimensionality reduction
The original MDR method was first described by Ritchie et al. [2] for
case-control data, and the overall workflow is shown in Figure 3
(left-hand side). The main idea is to reduce the dimensionality of
multi-locus information by pooling multi-locus genotypes into
high-risk and low-risk groups, thus reducing to a one-dimensional
variable. Cross-validation (CV) and permutation testing is used to
assess its ability to classify and predict disease status. For CV, the
data are split into k roughly equally sized parts. The MDR models
are developed for each of the possible k�1

�
k of individuals (training

sets) and are used on each remaining 1=k of individuals (testing
sets) to make predictions about the disease status.

Three steps can describe the core algorithm (Figure 4):

i. Select d factors, genetic or discrete environmental, with
li; i ¼ 1; . . . ; d, levels from N factors in total;

Figure 1. Roadmap of Multifactor Dimensionality Reduction (MDR) showing the temporal development of MDR and MDR-based approaches. Abbreviations and further

explanations are provided in the text and tables.
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ii. within the current training set, represent the selected fac-
tors in d-dimensional space and estimate the case (n1) to
control (n0) ratio rj ¼

n1j

n0j
in each cell cj; j ¼ 1; . . . ;

Qd
i¼1li; and

iii. label cj as high risk (H), if rj exceeds some threshold T (e.g.
T ¼ 1 for balanced data sets) or as low risk otherwise.

These three steps are performed in all CV training sets for
each of all possible d-factor combinations. The models de-
veloped by the core algorithm are evaluated by CV consistency
(CVC), classification error (CE) and prediction error (PE)
(Figure 5). For each d ¼ 1; . . . ;N, a single model, i.e. combination,
that minimizes the average classification error (CE) across the
CEs in the CV training sets on this level is selected. Here, CE is
defined as the proportion of misclassified individuals in the
training set. The number of training sets in which a specific
model has the lowest CE determines the CVC. This results in a
list of best models, one for each value of d. Among these best
classification models, the one that minimizes the average pre-
diction error (PE) across the PEs in the CV testing sets is selected
as final model. Analogous to the definition of the CE, the PE is
defined as the proportion of misclassified individuals in the
testing set. The CVC is used to determine statistical significance
by a Monte Carlo permutation strategy.

The original method described by Ritchie et al. [2] needs a
balanced data set, i.e. same number of cases and controls, with
no missing values in any factor. To overcome the latter limita-
tion, Hahn et al. [75] proposed to add an additional level for
missing data to each factor.

The problem of imbalanced data sets is addressed by Velez
et al. [62]. They evaluated three methods to prevent MDR from
emphasizing patterns that are relevant for the larger set: (1)
over-sampling, i.e. resampling the smaller set with replace-
ment; (2) under-sampling, i.e. randomly removing samples
from the larger set; and (3) balanced accuracy (BA) with and
without an adjusted threshold. Here, the accuracy of a factor
combination is not evaluated by ð1� CEÞ but by the BA as
ðsensitivityþ specifityÞ=2, so that errors in both classes receive
equal weight regardless of their size. The adjusted threshold
Tadj is the ratio between cases and controls in the complete data
set. Based on their results, using the BA together with the ad-
justed threshold is recommended.

Extensions and modifications of the original MDR

In the following sections, we will describe the different groups
of MDR-based approaches as outlined in Figure 3 (right-hand
side). In the first group of extensions, the core is a different

Figure 2. Flow diagram depicting details of the literature search. Database search 1: 6 February 2014 in PubMed (www.ncbi.nlm.nih.gov/pubmed) for [(‘multifactor

dimensionality reduction’ OR ‘MDR’) AND genetic AND interaction], limited to Humans; Database search 2: 7 February 2014 in PubMed (www.ncbi.nlm.nih.gov/pubmed)

for [‘multifactor dimensionality reduction’ genetic], limited to Humans; Database search 3: 24 February 2014 in Google scholar (scholar.google.de/) for [‘multifactor

dimensionality reduction’ genetic].
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Table 2. Implementations of MDR-based methods

Method Ref Implementation URL Consist/Sig Cov

MDR [62, 63] Java www.epistasis.org/software.html k-fold CV Yes
[64] R Available upon request, contact authors k-fold CV, bootstrapping No
[65, 66] Java sourceforge.net/projects/mdr/files/mdrpt/ k-fold CV, permutation No
[67, 68] R cran.r-project.org/web/packages/MDR/index.html k-fold CV, 3WS, permutation No
[69] Cþþ/CUDA sourceforge.net/projects/mdr/files/mdrgpu/ k-fold CV, permutation No
[70] Cþþ ritchielab.psu.edu/software/mdr-download k-fold CV, permutation No

GMDR [12] Java www.medicine.virginia.edu/clinical/departments/
psychiatry/sections/neurobiologicalstudies/
genomics/gmdr-software-request

k-fold CV Yes

PGMDR [34] Java www.medicine.virginia.edu/clinical/departments/
psychiatry/sections/neurobiologicalstudies/
genomics/pgmdr-software-request

k-fold CV Yes

SVM-GMDR [35] MATLAB Available upon request, contact authors k-fold CV, permutation Yes
RMDR [39] Java www.epistasis.org/software.html k-fold CV, permutation Yes
OR-MDR [41] R Available upon request, contact authors k-fold CV, bootstrapping No
Opt-MDR [42] Cþþ home.ustc.edu.cn/�zhanghan/ocp/ocp.html GEVD No
SDR [46] Python sourceforge.net/projects/sdrproject/ k-fold CV, permutation No
Surv-MDR [47] R Available upon request, contact authors k-fold CV, permutation Yes
QMDR [48] Java www.epistasis.org/software.html k-fold CV, permutation Yes
Ord-MDR [49] Cþþ Available upon request, contact authors k-fold CV, permutation No
MDR-PDT [50] Cþþ ritchielab.psu.edu/software/mdr-download k-fold CV, permutation No
MB-MDR [55, 71, 72] Cþþ www.statgen.ulg.ac.be/software.html Permutation No

[73] R cran.r-project.org/web/packages/mbmdr/index.html Permutation Yes
[74] R www.statgen.ulg.ac.be/software.html Permutation Yes

Ref¼Reference, Cov¼Covariate adjustment possible, Consist/Sig¼Strategies used to determine the consistency or significance of model.

Figure 3. Overview of the original MDR algorithm as described in [2] on the left with categories of extensions or modifications on the right. The first stage is data input,

and extensions to the original MDR method dealing with other phenotypes or data structures are presented in the section ‘Different phenotypes or data structures’.

The second stage comprises CV and permutation loops, and approaches addressing this stage are given in section ‘Permutation and cross-validation strategies’. The

following stages encompass the core algorithm (see Figure 4 for details), which classifies the multifactor combinations into risk groups, and the evaluation of this clas-

sification (see Figure 5 for details). Methods, extensions and approaches mainly addressing these stages are described in sections ‘Classification of cells into risk

groups’ and ‘Evaluation of the classification result’, respectively.
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Figure 4. The MDR core algorithm as described in [2]. The following steps are executed for every number of factors (d). (1) From the exhaustive list of all possible d-factor

combinations select one. (2) Represent the selected factors in d-dimensional space and estimate the cases to controls ratio in the training set. (3) A cell is labeled as

high risk (H) if the ratio exceeds some threshold (T) or as low risk otherwise.

Figure 5. Evaluation of cell classification as described in [2]. The accuracy of every d-model, i.e. d-factor combination, is assessed in terms of classification error (CE),

cross-validation consistency (CVC) and prediction error (PE). Among all d-models the single model with lowest average CE is selected, yielding a set of best models for

each d. Among these best models the one minimizing the average PE is selected as final model. To determine statistical significance, the observed CVC is compared to

the empirical distribution of CVC under the null hypothesis of no interaction derived by random permutations of the phenotypes.
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approach to classify multifactor categories into risk groups (step
3 of the above algorithm). This group comprises, among others,
the generalized MDR (GMDR) approach. In another group of
methods, the evaluation of this classification result is modified.
The focus of the third group is on alternatives to the original
permutation or CV strategies. The fourth group consists of
approaches that were suggested to accommodate different
phenotypes or data structures. Finally, the model-based MDR
(MB-MDR) is a conceptually different approach incorporating
modifications to all of the described steps simultaneously; thus,
MB-MDR framework is presented as the final group.

It should be noted that many of the approaches do not tackle
one single issue and thus could find themselves in more than
one group. To simplify the presentation, however, we aimed at
identifying the core modification of every approach and group-
ing the methods accordingly.

Classification of cells into risk groups
The GMDR framework

Generalized MDR
As Lou et al. [12] note, the original MDR method has two draw-
backs. First, one cannot adjust for covariates; second, only di-
chotomous phenotypes can be analyzed. They therefore
propose a GMDR framework, which offers adjustment for cova-
riates, coherent handling for both dichotomous and continuous
phenotypes and applicability to a variety of population-based
study designs. The original MDR can be viewed as a special case
within this framework.

The workflow of GMDR is identical to that of MDR, but in-
stead of using the ratio of cases to controls to label each cell and
assess CE and PE, a score is calculated for every individual as
follows: Given a generalized linear model (GLM) l lið Þ ¼ aþ xT

i b

þ zT
i cþ xT

i � zT
i d with an appropriate link function l, where xT

i

codes the interaction effects of interest (8 degrees of freedom in
case of a 2-order interaction and bi-allelic SNPs), zT

i codes the
covariates and xT

i � zT
i codes the interaction between the inter-

action effects of interest and covariates. Then, the residual
score of each individual i can be calculated by Si ¼ yi � l�1ðl̂i Þ,
where l̂i is the estimated phenotype using the maximum likeli-
hood estimations â and ĉ under the null hypothesis of no inter-
action effects (b ¼ d ¼ 0Þ:

Within each cell, the average score of all individuals with
the respective factor combination is calculated and the cell is
labeled as high risk if the average score exceeds some threshold
T, low risk otherwise. Significance is evaluated by permutation.

Given a balanced case-control data set without any covari-
ates and setting T ¼ 0, GMDR is equivalent to MDR.

There are several extensions within the suggested frame-
work, enabling the application of GMDR to family-based study
designs, survival data and multivariate phenotypes by imple-
menting different models for the score per individual.

Pedigree-based GMDR
In the first extension, the pedigree-based GMDR (PGMDR) by Lou
et al. [34], the score statistic sij ¼ tij gij � g ijÞ

�
uses both the

genotypes of non-founders j (gij) and those of their ‘pseudo non-
transmitted sibs’, i.e. a virtual individual with the correspond-
ing non-transmitted genotypes (g ij) of family i. In other words,
PGMDR transforms family data into a matched case-control
data. If transmitted and non-transmitted genotypes are the
same, the individual is uninformative and the score sij is 0,
otherwise the transmitted and non-transmitted contribute tij

and �tij to the corresponding components of sij. To allow for
covariate adjustment or other coding of the phenotype, tij can
be based on a GLM as in GMDR. Under the null hypotheses of no
association, transmitted and non-transmitted genotypes are
equally frequently transmitted so that sij ¼ 0. As in GMDR, if the
average score statistics per cell exceed some threshold T, it is
labeled as high risk.

Obviously, creating a ‘pseudo non-transmitted sib’ doubles
the sample size resulting in higher computational and memory
burden. Therefore, Chen et al. [76] proposed a second version of
PGMDR, which calculates the score statistic sij on the observed
samples only. The non-transmitted pseudo-samples contribute
to construct the genotypic distribution under the null hypoth-
esis. Simulations show that the second version of PGMDR is
similar to the first one in terms of power for dichotomous traits
and advantageous over the first one for continuous traits.

Support vector machine PGMDR
To improve performance when the number of available samples
is small, Fang and Chiu [35] replaced the GLM in PGMDR by a
support vector machine (SVM) to estimate the phenotype per in-
dividual. The score per cell in SVM-PGMDR is based on geno-
types transmitted and non-transmitted to offspring in trios, and
the difference of genotype combinations in discordant sib pairs
is compared with a specified threshold to determine the risk
label.

Unified GMDR
The unified GMDR (UGMDR), proposed by Chen et al. [36], offers
simultaneous handling of both family and unrelated data. They
use the unrelated samples and unrelated founders to infer the
population structure of the entire sample by principal compo-
nent analysis. The top components and possibly other covari-
ates are used to adjust the phenotype of interest by fitting a
GLM. The adjusted phenotype is then used as score for unre-
lated subjects including the founders, i.e. sij ¼ ~yij. For offspring,
the score is multiplied with the contrasted genotype as in
PGMDR, i.e. sij ¼ ~yij gij � g ijÞ

�
. The scores per cell are averaged

and compared with T, which is in this case defined as the mean
score of the complete sample. The cell is labeled as high risk if
the average score of the cell is above the mean score, as low risk
otherwise.

Cox-MDR
In another line of extending GMDR, survival data can be ana-
lyzed with Cox-MDR [37]. The continuous survival time is trans-
formed into a dichotomous attribute by considering the
martingale residual from a Cox null model with no gene–gene
or gene–environment interaction effects but covariate effects.
Then the martingale residuals reflect the association of these
interaction effects on the hazard rate. Individuals with a posi-
tive martingale residual are classified as cases, those with a
negative one as controls. The multifactor cells are labeled de-
pending on the sum of martingale residuals with corresponding
factor combination. Cells with a positive sum are labeled as
high risk, others as low risk.

Multivariate GMDR
Finally, multivariate phenotypes can be assessed by multivari-
ate GMDR (MV-GMDR), proposed by Choi and Park [38]. In this
approach, a generalized estimating equation is used to estimate
the parameters and residual score vectors of a multivariate GLM
under the null hypothesis of no gene–gene or gene–environment
interaction effects but accounting for covariate effects.
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Aggregation of the elements of the score vector gives a prediction
score per individual. The sum over all prediction scores of indi-
viduals with a certain factor combination compared with a
threshold T determines the label of each multifactor cell.

Further approaches

In addition to the GMDR, other methods were suggested that
handle limitations of the original MDR to classify multifactor
cells into high and low risk under certain circumstances.

Robust MDR
The Robust MDR extension (RMDR), proposed by Gui et al. [39],
addresses the situation with sparse or even empty cells and
those with a case-control ratio equal or close to T. These condi-
tions result in a BA near 0:5 in these cells, negatively influencing
the overall fitting. The solution proposed is the introduction of
a third risk group, called ‘unknown risk’, which is excluded
from the BA calculation of the single model. Fisher’s exact test
is used to assign each cell to a corresponding risk group: If the
P-value is greater than a, it is labeled as ‘unknown risk’.
Otherwise, the cell is labeled as high risk or low risk depending
on the relative number of cases and controls in the cell. Leaving
out samples in the cells of unknown risk may lead to a biased
BA, so the authors propose to adjust the BA by the ratio of sam-
ples in the high- and low-risk groups to the total sample size.
The other aspects of the original MDR method remain
unchanged.

Log-linear model MDR
Another approach to deal with empty or sparse cells is proposed
by Lee et al. [40] and called log-linear models MDR (LM-MDR).
Their modification uses LM to reclassify the cells of the best
combination of factors, obtained as in the classical MDR. All
possible parsimonious LM are fit and compared by the good-
ness-of-fit test statistic. The expected number of cases and con-
trols per cell are provided by maximum likelihood estimates of
the selected LM. The final classification of cells into high and
low risk is based on these expected numbers. The original MDR
is a special case of LM-MDR if the saturated LM is selected as
fallback if no parsimonious LM fits the data sufficient.

Odds ratio MDR
The naı̈ve Bayes classifier used by the original MDR method is
replaced in the work of Chung et al. [41] by the odds ratio (OR) of
each multi-locus genotype to classify the corresponding cell as
high or low risk. Accordingly, their method is called Odds Ratio
MDR (OR-MDR). Their approach addresses three drawbacks of
the original MDR method. First, the original MDR method is
prone to false classifications if the ratio of cases to controls is
similar to that in the entire data set or the number of samples
in a cell is small. Second, the binary classification of the original
MDR method drops information about how well low or high risk
is characterized. From this follows, third, that it is not possible
to identify genotype combinations with the highest or lowest
risk, which might be of interest in practical applications. The

authors propose to estimate the OR of each cell by ĥ j ¼
n1j
�

n1
n0j
�

n0

. If

ĥ j exceeds a threshold T, the corresponding cell is labeled as

high risk, otherwise as low risk. If T ¼ 1, MDR is a special case of

OR-MDR. Based on ĥ j, the multi-locus genotypes can be ordered

from highest to lowest OR. Additionally, cell-specific confidence

intervals for ĥ j can be approximated either by usual asymptotic

methods or by bootstrapping, hence giving evidence for a truly
low- or high-risk factor combination. Significance of a model
still can be assessed by a permutation strategy based on CVC.

Optimal MDR
Another approach, called optimal MDR (Opt-MDR), was pro-
posed by Hua et al. [42]. Their method uses a data-driven in-
stead of a fixed threshold to collapse the factor combinations.

This threshold is chosen to maximize the v2 values among all
possible 2� 2 (case-control�high-low risk) tables for each factor

combination. The exhaustive search for the maximum v2 values
can be done efficiently by sorting factor combinations according
to the ascending risk ratio and collapsing successive ones only.

This reduces the search space from 2

Qd
i¼1

li�1
possible 2� 2 tables

to
Qd

i¼1li � 1. In addition, the CVC permutation-based estimation
of the P-value is replaced by an approximated P-value from a
generalized extreme value distribution (EVD), similar to an ap-
proach by Pattin et al. [65] described later.

MDR stratified populations
Significance estimation by generalized EVD is also used by Niu
et al. [43] in their approach to control for population stratifica-
tion in case-control and continuous traits, namely, MDR for
stratified populations (MDR-SP). MDR-SP uses a set of unlinked
markers to calculate the principal components that are con-
sidered as the genetic background of samples. Based on the first
K principal components, the residuals of the trait value (y�i ) and

genotype (x�ij) of the samples are calculated by linear regression,

thus adjusting for population stratification. Thus, the adjust-
ment in MDR-SP is used in each multi-locus cell. Then the test

statistic T2
j per cell is the correlation between the ad-

justed trait value and genotype. If T2
j > 0, the corresponding

cell is labeled as high risk, or as low risk otherwise. Based
on this labeling, the trait value for each sample is predicted
(ŷi) for every sample. The training error, defined asP

i in training data set ŷi � y�i
� �2

=
P

i in training data set y�i
� �2, is used to

identify the best d-marker model; specifically, the model with

the smallest average PE, defined as
P

i in testing data set ŷi � y�i
� �2

=P
i in testing data set ðy�i Þ

2 in CV, is selected as final model with its

average PE as test statistic.

Pair-wise MDR
In high-dimensional (d > 2Þ contingency tables, the original
MDR method suffers in the scenario of sparse cells that are not
classifiable. The pair-wise MDR (PWMDR) proposed by He et al.
[44] models the interaction between d factors by ð d2 Þ two-
dimensional interactions. The cells in every two-dimensional
contingency table are labeled as high or low risk depending on
the case-control ratio. For every sample, a cumulative risk score
is calculated as number of high-risk cells minus number of low-
risk cells over all two-dimensional contingency tables. Under
the null hypothesis of no association between the selected SNPs
and the trait, a symmetric distribution of cumulative risk scores
around zero is expected in cases as well as in controls. In case
of an interaction effect, the distribution in cases will tend to-
ward positive cumulative risk scores, whereas it will tend to-
ward negative cumulative risk scores in controls. Hence, a
sample is classified as a case if it has a positive cumulative risk
score and as a control if it has a negative cumulative risk score.
Based on this classification, the training and PE can be
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calculated in CV. The statistical significance of a model can be
assessed by a permutation strategy based on the PE.

Evaluation of the classification result

One essential part of the original MDR is the evaluation of factor
combinations regarding the correct classification of cases and
controls into high- and low-risk groups, respectively. For each
model, a 2� 2 contingency table (also called confusion matrix),
summarizing the true negatives (TN), true positives (TP), false
negatives (FN) and false positives (FP), can be created. As men-
tioned before, the power of MDR can be improved by imple-
menting the BA instead of raw accuracy, if dealing with
imbalanced data sets.

In the study of Bush et al. [77], 10 different measures for clas-
sification were compared with the standard CE used in the ori-
ginal MDR method. They encompass precision-based and
receiver operating characteristics (ROC)-based measures (F-
measure, geometric mean of sensitivity and precision, geomet-
ric mean of sensitivity and specificity, Euclidean distance from
an ideal classification in ROC space), diagnostic testing meas-
ures (Youden Index, Predictive Summary Index), statistical
measures (Pearson’s v2 goodness-of-fit statistic, likelihood-ratio
test) and information theoretic measures (Normalized Mutual
Information, Normalized Mutual Information Transpose). Based
on simulated balanced data sets of 40 different penetrance
functions in terms of number of disease loci (2–5 loci), heritabil-
ity (0.5–3%) and minor allele frequency (MAF) (0.2 and 0.4), they
assessed the power of the different measures. Their results
show that Normalized Mutual Information (NMI) and likeli-
hood-ratio test (LR) outperform the standard CE and the other
measures in most of the evaluated situations. Both of these
measures take into account the sensitivity and specificity of an
MDR model, thus should not be susceptible to class imbalance.
Out of these two measures, NMI is easier to interpret, as its val-
ues range from 0 (genotype and disease status independent) to
1 (genotype completely determines disease status). P-values can
be calculated from the empirical distributions of the measures
obtained from permuted data.

Namkung et al. [78] take up these results and compare BA,
NMI and LR with a weighted BA (wBA) and several measures for
ordinal association. The wBA, inspired by OR-MDR [41], incorp-
orates weights based on the ORs per multi-locus genotype:

wj ¼ jlog ĥ jja; ĥ j ¼
n1j
�

n0j
n1 =n0

. The number of cases and controls in

each cell cj is adjusted by the respective weight, and the BA is

calculated using these adjusted numbers. Adding a small con-
stant should prevent practical problems of infinite and zero
weights. In this way, the effect of a multi-locus genotype on dis-
ease susceptibility is captured. Measures for ordinal association
are based on the assumption that good classifiers produce more
TN and TP than FN and FP, thus resulting in a stronger positive
monotonic trend association. The possible combinations of TN
and TP (FN and FP) define the concordant (discordant) pairs,
and the c-measure estimates the difference between the prob-
ability of concordance and the probability of discordance:

c ¼ TP�TN�FP�FN
TP�TNþFP�FN. The other measures assessed in their study,

Kandal’s sb, Kandal’s sc and Somers’ d, are variants of the
c-measure, adjusting the effects of tied pairs or table size.
Comparisons of all these measures on a simulated data sets re-
garding power show that sc has similar power to BA, Somers’ d
and c perform worse and wBA, sc, NMI and LR improve MDR per-
formance over all simulated scenarios. The improvement is

larger in scenarios with small sample sizes, larger numbers of
SNPs or with small causal effects. Among these measures, wBA
outperforms all others.

Two other measures are proposed by Fisher et al. [79]. Their
metrics do not incorporate the contingency table but use the
fraction of cases and controls in each cell of a model directly.
Their Variance Metric (VM) for a model is defined as
PQd

i¼1
li

j¼1
nj=nðnj1 =nj

� n1=nÞ
2, measuring the difference in case frac-

tions between cell level and sample level weighted by the frac-
tion of individuals in the respective cell. For the Fisher Metric

(FM), a Fisher’s exact test is applied per cell on nj1 n1 � nj1
nj0 n0 � nj0

� �
,

yielding a P-value pj, which reflects how unusual each cell is.

For a model, these probabilities are combined as
PQd

i¼1 li
j¼1 �2log pj. The higher both metrics are the more likely it is

that a corresponding model represents an underlying biological
phenomenon. Comparisons of these two measures with BA and
NMI on simulated data sets also used in [62] show that in most
situations VM and FM perform significantly better.

Most applications of MDR are realized in a retrospective de-
sign. Thus, cases are overrepresented and controls are
underrepresented compared with the true population, resulting
in an artificially high prevalence. This raises the question
whether the MDR estimates of error are biased or are truly ap-
propriate for prediction of the disease status given a genotype.
Winham and Motsinger-Reif [64] argue that this approach is ap-
propriate to retain high power for model selection, but prospect-
ive prediction of disease gets more challenging the further the
estimated prevalence of disease is away from 50% (as in a bal-
anced case-control study). The authors recommend using a
post hoc prospective estimator for prediction. They propose two
post hoc prospective estimators, one estimating the error from
bootstrap resampling (CEboot), the other one by adjusting the ori-
ginal error estimate by a reasonably accurate estimate for popu-
lation prevalence p̂D(CEadj). For CEboot, N bootstrap resamples of

the same size as the original data set are created by randomly
sampling cases at rate p̂D and controls at rate 1� p̂D. For each
bootstrap sample the previously determined final model is
reevaluated, defining high-risk cells with sample prevalence

greater than pD, with CEbooti
¼ 1

n FPþ FNð Þ; i ¼ 1; . . . ;N. The final

estimate of CEboot is the average over all CEbooti
. The adjusted ori-

ginal error estimate is calculated as CEadj ¼ 1
n ð

1�p̂D
n0 =n
�FPþ p̂D

n1 =n
�FNÞ.

A simulation study shows that both CEboot and CEadj have lower

prospective bias than the original CE, but CEadj has an extremely

high variance for the additive model. Hence, the authors recom-
mend the use of CEboot over CEadj.

Extended MDR
The extended MDR (EMDR), proposed by Mei et al. [45], evaluates
the final model not only by the PE but additionally by the v2

statistic measuring the association between risk label and dis-
ease status. Furthermore, they evaluated three different permu-
tation procedures for estimation of P-values and using 10-fold
CV or no CV. The fixed permutation test considers the final
model only and recalculates the PE and the v2 statistic for this
specific model only in the permuted data sets to derive the em-
pirical distribution of those measures. The non-fixed permuta-
tion test takes all possible models of the same number of
factors as the selected final model into account, thus producing
a separate null distribution for each d-level of interaction. The
third permutation test is the standard method used in the
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original MDR (omnibus permutation), creating a single null dis-
tribution from the best model of each randomized data set.
They found that 10-fold CV and no CV are fairly consistent in
identifying the best multi-locus model, contradicting the results
of Motsinger and Ritchie [63] (see below), and that the non-fixed
permutation test is a good trade-off between the liberal fixed
permutation test and conservative omnibus permutation.

Alternatives to original permutation or CV

The non-fixed and omnibus permutation tests described above
as part of the EMDR [45] were further investigated in a compre-
hensive simulation study by Motsinger [80]. She assumes that
the final goal of an MDR analysis is hypothesis generation.
Under this assumption, her results show that assigning signifi-
cance levels to the models of each level d based on the omnibus
permutation strategy is preferred to the non-fixed permutation,
because FP are controlled without limiting power.

Because the permutation testing is computationally expen-
sive, it is unfeasible for large-scale screens for disease associ-
ations. Therefore, Pattin et al. [65] compared 1000-fold omnibus
permutation test with hypothesis testing using an EVD. The ac-
curacy of the final best model selected by MDR is a maximum
value, so extreme value theory might be applicable. They used
28 000 functional and 28 000 null data sets consisting of 20 SNPs
and 2000 functional and 2000 null data sets consisting of 1000
SNPs based on 70 different penetrance function models of a pair
of functional SNPs to estimate type I error frequencies and
power of both 1000-fold permutation test and EVD-based test.
Additionally, to capture more realistic correlation patterns and
other complexities, pseudo-artificial data sets with a single
functional factor, a two-locus interaction model and a mixture
of both were created. Based on these simulated data sets, the
authors verified the EVD assumption of independent and identi-
cally distributed (IID) observations with quantile–quantile plots.
Despite the fact that all their data sets do not violate the IID as-
sumption, they note that this might be a problem for other real
data and refer to more robust extensions to the EVD. Parameter
estimation for the EVD was realized with 20-, 10- and 5-fold per-
mutation testing. Their results show that using an EVD gener-
ated from 20 permutations is an adequate alternative to
omnibus permutation testing, so that the required computa-
tional time thus can be reduced importantly.

One major drawback of the omnibus permutation strategy
used by MDR is its inability to differentiate between models cap-
turing nonlinear interactions, main effects or both interactions
and main effects. Greene et al. [66] proposed a new explicit test
of epistasis that provides a P-value for the nonlinear interaction
of a model only. Grouping the samples by their case-control sta-
tus and randomizing the genotypes of each SNP within each
group accomplishes this. Their simulation study, similar to that
by Pattin et al. [65], shows that this approach preserves the
power of the omnibus permutation test and has a reasonable
type I error frequency. One disadvantage of their approach is
the additional computational burden resulting from permuting
not only the class labels but all genotypes.

The internal validation of a model based on CV is computa-
tionally expensive. The original description of MDR recom-
mended a 10-fold CV, but Motsinger and Ritchie [63] analyzed
the impact of eliminated or reduced CV. They found that elimi-
nating CV made the final model selection impossible. However,
a reduction to 5-fold CV reduces the runtime without losing
power.

The proposed method of Winham et al. [67] uses a three-way
split (3WS) of the data. One piece is used as a training set for
model building, one as a testing set for refining the models
identified in the first set and the third is used for validation of
the selected models by obtaining prediction estimates. In detail,
the top x models for each d in terms of BA are identified in the
training set. In the testing set, these top models are ranked
again in terms of BA and the single best model for each d is se-
lected. These best models are finally evaluated in the validation
set, and the one maximizing the BA (predictive ability) is chosen
as the final model. Because the BA increases for larger d, MDR
using 3WS as internal validation tends to over-fitting, which is
alleviated by using CVC and choosing the parsimonious model
in case of equal CVC and PE in the original MDR. The authors
propose to address this problem by using a post hoc pruning
process after the identification of the final model with 3WS. In
their study, they use backward model selection with logistic re-
gression. Using an extensive simulation design, Winham et al.
[67] assessed the impact of different split proportions, values of
x and selection criteria for backward model selection on conser-
vative and liberal power. Conservative power is described as the
ability to discard false-positive loci while retaining true associ-
ated loci, whereas liberal power is the ability to identify models
containing the true disease loci regardless of FP. The results of
the simulation study show that a proportion of 2:2:1 of the split
maximizes the liberal power, and both power measures are
maximized using x¼ #loci. Conservative power using post hoc
pruning was maximized using the Bayesian information criter-
ion (BIC) as selection criteria and not significantly different
from 5-fold CV. It is important to note that the choice of selec-
tion criteria is rather arbitrary and depends on the specific goals
of a study. Using MDR as a screening tool, accepting FP and min-
imizing FN prefers 3WS without pruning. Using MDR 3WS for
hypothesis testing favors pruning with backward selection and
BIC, yielding equivalent results to MDR at lower computational
costs. The computation time using 3WS is approximately five
time less than using 5-fold CV. Pruning with backward selection
and a P-value threshold between 0:01 and 0:001 as selection cri-
teria balances between liberal and conservative power.

As a side effect of their simulation study, the assumptions
that 5-fold CV is sufficient rather than 10-fold CV and addition
of nuisance loci do not affect the power of MDR are validated.
MDR performs poorly in case of genetic heterogeneity [81, 82],
and using 3WS MDR performs even worse as Gory et al. [83]
note in their study. If genetic heterogeneity is suspected, using
MDR with CV is recommended at the expense of computation
time.

Different phenotypes or data structures

In its original form, MDR was described for dichotomous traits
only. Some extensions to different phenotypes have already
been described above under the GMDR framework but several
extensions on the basis of the original MDR have been proposed
additionally.

Survival Dimensionality Reduction
For right-censored lifetime data, Beretta et al. [46] proposed the
Survival Dimensionality Reduction (SDR). Their method re-
places the classification and evaluation steps of the original
MDR method. Classification into high- and low-risk cells is
based on differences between cell survival estimates and whole
population survival estimates. If the averaged (geometric mean)
normalized time-point differences are smaller than 1, the cell is
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labeled as high risk, otherwise as low risk. To measure the ac-
curacy of a model, the integrated Brier score (IBS) is used.
During CV, for each d the IBS is calculated in each training set,
and the model with the lowest IBS on average is selected. The
testing sets are merged to obtain one larger data set for valid-
ation. In this meta-data set, the IBS is calculated for each prior
selected best model, and the model with the lowest meta-IBS is
selected final model. Statistical significance of the meta-IBS
score of the final model can be calculated via permutation.
Simulation studies show that SDR has reasonable power to de-
tect nonlinear interaction effects.

Surv-MDR
A second method for censored survival data, called Surv-MDR
[47], uses a log-rank test to classify the cells of a multifactor
combination. The log-rank test statistic comparing the survival
time between samples with and without the specific factor
combination is calculated for every cell. If the statistic is posi-
tive, the cell is labeled as high risk, otherwise as low risk. As for
SDR, BA cannot be used to assess the quality of a model.
Instead, the square of the log-rank statistic is used to choose
the best model in training sets and validation sets during CV.
Statistical significance of the final model can be calculated via
permutation. Simulations showed that the power to identify
interaction effects with Cox-MDR and Surv-MDR greatly de-
pends on the effect size of additional covariates. Cox-MDR is
able to recover power by adjusting for covariates, whereas Surv-
MDR lacks such an option [37].

Quantitative MDR
Quantitative phenotypes can be analyzed with the extension
quantitative MDR (QMDR) [48]. For cell classification, the mean
of each cell is calculated and compared with the overall mean
in the complete data set. If the cell mean is greater than the
overall mean, the corresponding genotype is considered as high
risk and as low risk otherwise. Clearly, BA cannot be used to as-
sess the relation between the pooled risk classes and the pheno-
type. Instead, both risk classes are compared using a t-test and
the test statistic is used as a score in training and testing sets
during CV. This assumes that the phenotypic data follows a
normal distribution. A permutation strategy can be incorpo-
rated to yield P-values for final models. Their simulations show
a comparable performance but less computational time than for
GMDR. They also hypothesize that the null distribution of their
scores follows a normal distribution with mean 0, thus an em-
pirical null distribution could be used to estimate the P-values,
reducing the computational burden from permutation testing.

Ord-MDR
A natural generalization of the original MDR is provided by Kim
et al. [49] for ordinal phenotypes with l classes, called Ord-MDR.
Each cell cj is assigned to the phenotypic class that maximizes
nl j=nl

, where nl is the overall number of samples in class l and nlj

is the number of samples in class l in cell j. Classification can be
evaluated using an ordinal association measure, such as
Kendall’s sb:

Additionally, Kim et al. [49] generalize the CVC to report mul-
tiple causal factor combinations. The measure GCVCK counts
how many times a certain model has been among the top K
models in the CV data sets according to the evaluation measure.
Based on GCVCK, multiple putative causal models of the same
order can be reported, e.g. GCVCK > 0 or the 100 models with
largest GCVCK:

MDR with pedigree disequilibrium test
Although MDR is originally designed to identify interaction ef-
fects in case-control data, the use of family data is possible to a
limited extent by selecting a single matched pair from each
family. To profit from extended informative pedigrees, MDR
was merged with the genotype pedigree disequilibrium test
(PDT) [84] to form the MDR-PDT [50]. The genotype-PDT statistic
is calculated for each multifactor cell and compared with a
threshold, e.g. 0, for all possible d-factor combinations. If the
test statistic is greater than this threshold, the corresponding
multifactor combination is classified as high risk and as low risk
otherwise. After pooling the two classes, the genotype-PDT stat-
istic is again computed for the high-risk class, resulting in the
MDR-PDT statistic. For each level of d, the maximum MDR-PDT
statistic is selected and its significance assessed by a permuta-
tion test (non-fixed). In discordant sib ships with no parental
data, affection status is permuted within families to maintain
correlations between sib ships. In families with parental geno-
types, transmitted and non-transmitted pairs of alleles are per-
muted for affected offspring with parents.

Edwards et al. [85] included a CV strategy to MDR-PDT. In
contrast to case-control data, it is not straightforward to split
data from independent pedigrees of various structures and sizes
evenly. For each pedigree in the data set, the maximum infor-
mation available is calculated as sum over the number of all
possible combinations of discordant sib pairs and transmitted/
non-transmitted pairs in that pedigree’s sib ships. Then the
pedigrees are randomly distributed into as many parts as
required for CV, and the maximum information is summed up
in each part. If the variance of the sums over all parts does not
exceed a certain threshold, the split is repeated or the number
of parts is changed. As the MDR-PDT statistic is not comparable
across levels of d, PE or matched OR is used in the testing sets of
CV as prediction performance measure, where the matched OR
is the ratio of discordant sib pairs and transmitted/non-trans-
mitted pairs correctly classified to those who are incorrectly
classified. An omnibus permutation test based on CVC is per-
formed to assess significance of the final selected model.

MDR-Phenomics
An extension for the analysis of triads incorporating discrete
phenotypic covariates (PC) is MDR-Phenomics [51]. This method
uses two procedures, the MDR and phenomic analysis. In the
MDR procedure, multi-locus combinations compare the number
of times a genotype is transmitted to an affected child with the
number of times the genotype is not transmitted. If this ratio
exceeds the threshold T ¼ 1:0, the combination is classified as
high risk, or as low risk otherwise. After classification, the good-
ness-of-fit test statistic, called C statistic, is calculated, testing
the association between transmitted/non-transmitted and
high-risk/low-risk genotypes. The phenomic analysis procedure
aims to assess the effect of PC on this association. For this, the
strength of association between transmitted/non-transmitted
and high-risk/low-risk genotypes in the different PC levels is
compared using an analysis of variance model, resulting in an F
statistic. The final MDR-Phenomics statistic for each multi-
locus model is the product of the C and F statistics, and signifi-
cance is assessed by a non-fixed permutation test.

Aggregated MDR
The original MDR method does not account for the accumulated
effects from multiple interaction effects, due to selection of only
one optimal model during CV. The Aggregated Multifactor
Dimensionality Reduction (A-MDR), proposed by Dai et al. [52],
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makes use of all significant interaction effects to build a gene
network and to compute an aggregated risk score for prediction.
Cells cj in each model are classified either as high risk if n1j

�
nj

ex-
ceeds n1=n or as low risk otherwise. Based on this classification,
three measures to assess each model are proposed: predispos-
ing OR (ORp), predisposing relative risk (RRp) and predisposing
v2(v2

p), which are adjusted versions of the usual statistics. The
unadjusted versions are biased, as the risk classes are condi-
tioned on the classifier. Let x ¼ OR, relative risk or v2, then ORp,
RRp or v2

p¼ x=F�1
0 ðF xð ÞÞ. Here, F0ðxÞ is estimated by a permuta-

tion of the phenotype, and F xð Þ is estimated by resampling a
subset of samples. Using the permutation and resampling data,
P-values and confidence intervals can be estimated. Instead of a
fixed a ¼ 0:05, the authors propose to select an â � 0:05 that
maximizes the area under a ROC curve (AUC). For each â, the
models with a P-value less than â are selected. For each sample,
the number of high-risk classes among these selected models is
counted to obtain an aggregated risk score. It is assumed that
cases will have a higher risk score than controls. Based on the
aggregated risk scores a ROC curve is constructed, and the AUC
can be determined. Once the final a is fixed, the corresponding
models are used to define the ‘epistasis enriched gene network’
as adequate representation of the underlying gene interactions
of a complex disease and the ‘epistasis enriched risk score’ as a
diagnostic test for the disease. A considerable side effect of this
method is that it has a large gain in power in case of genetic het-
erogeneity as simulations show.

The MB-MDR framework

Model-based MDR
MB-MDR was first introduced by Calle et al. [53] while address-
ing some major drawbacks of MDR, including that important
interactions could be missed by pooling too many multi-locus
genotype cells together and that MDR could not adjust for main
effects or for confounding factors. All available data are used to
label each multi-locus genotype cell. The way MB-MDR carries
out the labeling conceptually differs from MDR, in that each cell
is tested versus all others using appropriate association test
statistics, depending on the nature of the trait measurement
(e.g. binary, continuous, survival). Model selection is not based
on CV-based criteria but on an association test statistic (i.e. final
MB-MDR test statistics) that compares pooled high-risk with
pooled low-risk cells. Finally, permutation-based strategies are
used on MB-MDR’s final test statistic.

Initially, MB-MDR used Wald-based association tests, three
labels were introduced (High, Low, O: not H, nor L), and the raw
Wald P-values for individuals at high risk (resp. low risk) were
adjusted for the number of multi-locus genotype cells in a risk
pool. MB-MDR, in this initial form, was first applied to real-life
data by Calle et al. [54], who illustrated the importance of using
a flexible definition of risk cells when looking for gene-gene
interactions using SNP panels. Indeed, forcing every subject to
be either at high or low risk for a binary trait, based on a particu-
lar multi-locus genotype may introduce unnecessary bias and is
not appropriate when not enough subjects have the multi-locus
genotype combination under investigation or when there is
simply no evidence for increased/decreased risk. Relying on
MAF-dependent or simulation-based null distributions, as well
as having 2 P-values per multi-locus, is not convenient either.
Therefore, since 2009, the use of only one final MB-MDR test
statistic is advocated: e.g. the maximum of two Wald tests, one
comparing high-risk individuals versus the rest, and one com-
paring low risk individuals versus the rest.

Since 2010, several enhancements have been made to the
MB-MDR methodology [74, 86]. Key enhancements are that
Wald tests were replaced by more stable score tests. Moreover,
a final MB-MDR test value was obtained via multiple options
that allow flexible treatment of O-labeled individuals [71]. In
addition, significance assessment was coupled to multiple test-
ing correction (e.g. Westfall and Young’s step-down MaxT [55]).
Extensive simulations have shown a general outperformance of
the method compared with MDR-based approaches in a variety
of settings, in particular those involving genetic heterogeneity,
phenocopy, or lower allele frequencies (e.g. [71, 72]). The modu-
lar built-up of the MB-MDR software makes it an easy tool to be
applied to univariate (e.g., binary, continuous, censored) and
multivariate traits (work in progress). It can be used with (mix-
tures of) unrelated and related individuals [74]. When exhaust-
ively screening for two-way interactions with 10 000 SNPs and
1000 individuals, the recent MaxT implementation based on
permutation-based gamma distributions, was shown to give a
300-fold time efficiency compared to earlier implementations
[55]. This makes it possible to perform a genome-wide exhaust-
ive screening, hereby removing one of the major remaining con-
cerns related to its practical utility.

Recently, the MB-MDR framework was extended to analyze
genomic regions of interest [87]. Examples of such regions in-
clude genes (i.e., sets of SNPs mapped to the same gene) or func-
tional sets derived from DNA-seq experiments. The extension
consists of first clustering subjects according to similar region-
specific profiles. Hence, whereas in classic MB-MDR a SNP is the
unit of analysis, now a region is a unit of analysis with number
of levels determined by the number of clusters identified by the
clustering algorithm. When applied as a tool to associate gene-
based collections of rare and common variants to a complex
disease trait obtained from synthetic GAW17 data, MB-MDR for
rare variants belonged to the most powerful rare variants tools
considered, among those that were able to control type I error.

Discussion and conclusions

When analyzing interaction effects in candidate genes on com-
plex diseases, procedures based on MDR have become the most
popular approaches over the past decade. Considering the var-
iety of extensions and modifications, this does not come as a
surprise, since there is almost one method for every taste. More
recent extensions have focused on the analysis of rare variants
[87] and large-scale data sets, which becomes feasible through
more efficient implementations [55] as well as alternative esti-
mations of P-values using computationally less expensive per-
mutation schemes or EVDs [42, 65]. We therefore expect this
line of methods to even gain in popularity. The challenge rather
is to select a suitable software tool, because the various versions
differ with regard to their applicability, performance and com-
putational burden, depending on the kind of data set at hand,
as well as to come up with optimal parameter settings. Ideally,
different flavors of a method are encapsulated within a single
software tool. MBMDR is one such tool that has made important
attempts into that direction (accommodating different study
designs and data types within a single framework). Some guid-
ance to select the most suitable implementation for a particular
interaction analysis setting is provided in Tables 1 and 2.

Even though there is a wealth of MDR-based methods, a
number of issues have not yet been resolved. For instance, one
open question is how to best adjust an MDR-based interaction
screening for confounding by common genetic ancestry. It has
been reported before that MDR-based methods lead to increased
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type I error rates in the presence of structured populations [43].
Similar observations were made regarding MB-MDR [55]. In prin-
ciple, one may select an MDR method that allows for the use of
covariates and then incorporate principal components adjust-
ing for population stratification. However, this may not be ad-
equate, since these components are typically selected based on
linear SNP patterns between individuals. It remains to be inves-
tigated to what extent non-linear SNP patterns contribute to
population strata that may confound a SNP-based interaction
analysis. Also, a confounding factor for one SNP-pair may not
be a confounding factor for another SNP-pair. A further issue is
that, from a given MDR-based result, it is often difficult to disen-
tangle main and interaction effects. In MB-MDR there is a clear
option to adjust the interaction screening for lower-order ef-
fects or not, and hence to perform a global multi-locus test or a
specific test for interactions. Once a statistically relevant
higher-order interaction is obtained, the interpretation remains
difficult. This in part due to the fact that most MDR-based meth-
ods adopt a SNP-centric view rather than a gene-centric view.
Gene-based replication overcomes the interpretation difficulties
that interaction analyses with tagSNPs involve [88]. Only a lim-
ited number of set-based MDR methods exist to date.

In conclusion, current large-scale genetic projects aim at col-
lecting information from large cohorts and combining genetic,
epigenetic and clinical data. Scrutinizing these data sets for
complex interactions requires sophisticated statistical tools,
and our overview on MDR-based approaches has shown that a
variety of different flavors exists from which users may select a
suitable one.

Key Points

	 For the analysis of gene–gene interactions, MDR has
enjoyed great popularity in applications. Focusing on
different aspects of the original algorithm, multiple
modifications and extensions have been suggested that
are reviewed here.
	 Most recent approaches offer to deal with large-scale

data sets and rare variants, which is why we expect
these methods to even gain in popularity.
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