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For several decades there has been accumulating evidence implicating type I interferons
(IFNs) as key elements of the immune response. Therapeutic approaches incorporating
different recombinant type I IFN proteins have been successfully employed to treat a
diverse group of diseases with significant and positive outcomes. The biological activities
of type I IFNs are consequences of signaling events occurring in the cytoplasm and
nucleus of cells. Biochemical events involving JAK/STAT proteins that control
transcriptional activation of IFN-stimulated genes (ISGs) were the first to be identified
and are referred to as “canonical” signaling. Subsequent identification of JAK/STAT-
independent signaling pathways, critical for ISG transcription and/or mRNA translation,
are denoted as “non-canonical” or “non-classical” pathways. In this review, we summarize
these signaling cascades and discuss recent developments in the field, specifically as they
relate to the biological and clinical implications of engagement of both canonical and non-
canonical pathways.

Keywords: interferon, signaling, MAP kinase signaling, signal transducer and activator of transcription, mammalian
target of rapamycin, mRNA translation, SARS-CoV-2, COVID-19
INTRODUCTION

Established cellular signaling pathways have been referred to in the context of canonical or
“classical” and non-canonical or “non-classical” signaling cascades that control distinct outcomes
in the cell. A canonical pathway indicates the conventional protein signaling, typically considered
the main effect or, maybe more appropriately, the first effect discovered and elucidated; non-
canonical pathways are alternative pathways to the canonical, but that should not imply less
importance (1). Perhaps, the most well-described signaling in terms of canonical and non-canonical
pathways is Wnt signaling, specifically the canonical b-catenin pathway (2). Additionally,
inflammation and immunoregulatory related pathways such as nuclear factor-kB (NF-kB) and
interferon (IFN) signaling are described as canonical and non-canonical (3, 4). Recent discoveries of
additional non-canonical pathways, some that interconnect with canonical signaling, add to the
complexity surrounding different biological outcomes.
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The IFNs are cytokines that can be divided into three groups:
type I (IFNa, IFNb, IFNd, IFNϵ, IFNk, IFNt, IFNw, and IFNz),
type II (IFNg), and type III (IFNl) (5). Type I IFNs were first
discovered in 1957, followed by type II in 1965, while much more
recently, in 2003, type III IFNs were identified (6–8). Type I IFNs
have the most family members. The predominant type I IFN
subtypes studied are IFNa and IFNb, partially due to IFNd,
IFNt, and IFNz not having human homologs, more specific
cellular sources of IFNϵ and IFNk, mainly female reproductive
organs and keratinocytes, respectively, and IFNw being studied
more in felines (5, 9, 10). The roles of IFNa and IFNb in antiviral
responses have been most reported, but these type I IFNs also
have significant relevance in cancer and autoimmune diseases
(11–13).

Production of type I IFNs is induced by pathogen-associated
molecular patterns, viral RNA or DNA fragments, and is
associated with activation of pattern recognition receptors (11).
Once activated, the receptors initiate signal transduction that
involves adapter proteins, eventually leading to activation and
translocation of IFN regulatory factor 3 (IRF3) and NF-kB,
which promote type I IFN production either directly or
indirectly through IRF7 (11). IFNa is mainly produced by
plasmacytoid dendritic cells (pDCs), whereas IFNb is
ubiquitously produced by immune cells (13).

Following transcriptional activation and mRNA translation,
type I IFNs are secreted from immune cells and, on neighboring
cells, bind to the two cellular receptor subunits IFNa receptor 1
(IFNAR1) and IFNAR2, which are associated with tyrosine
kinases TYK2 and Janus kinase 1 (JAK1), respectively (9).
Dimerization of the receptor initiates the autophosphorylation
of JAK1, which phosphorylates and activates signal transducers
and activators of transcription 1 (STAT1) and STAT2 proteins,
which form a complex with IRF9, resulting in a well-
characterized complex, IFN-stimulated gene factor 3 (ISGF3).
ISGF3 translocates to the nucleus where it binds to IFN-
stimulated response elements (ISREs) in the promoters of
genes, leading to transcription of IFN stimulated genes (ISG)
(14). Additionally, JAKs can phosphorylate and initiate the
formation of phosphorylated STAT complexes of STAT1 and
STAT3 homodimers, where the STAT1 homodimer is associated
with a pro-inflammatory response, mediated by binding to
gamma activated sequences (GAS), and the STAT3
homodimer indirectly inhibits inflammatory gene expression,
restraining pro-inflammatory responses (15). These JAK/STAT
IFN-signaling pathways are considered the canonical pathways.
In addition, type I IFNs have also been reported to activate the
formation of STAT2:STAT3 heterodimers and a STAT5:CrkL
complex, invoking transcriptional activation of ISGs (16, 17).

Non-canonical type I IFN signaling pathways are similarly
activated by IFNs binding to the extracellular regions of the
dimeric IFNAR1 and IFNAR2 complex, leading to JAK1/TYK2
activation, but diverge from that point, specifically, not involving
STAT activation by the JAKs. Evidence points to the regulation of
STATs by non-canonical modifiers, with serine phosphorylation
of STATs versus the tyrosine phosphorylation by JAK1/TYK2
(18). The main non-canonical IFN pathways identified thus far are
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the MAP kinase (MAPK) and phosphoinositide 3-kinases (PI3K)/
mammalian target of rapamycin (mTOR) pathways, but there are
other non-canonical modifiers such as SIRT2 and the Schlafen
(SLFN) family (18, 19). MAPK and PI3K/mTOR pathways have
been shown to elicit effects on ISG transcription and mRNA
translation while also having some interaction with STATs in the
canonical cascade (18). Further discoveries on the effectors of these
pathways, such as the importance of Unc-51–like kinase (ULK1)
in MAPK type I IFN-induced signaling, add to the complexity of
type I IFN signaling cascades and demonstrate that the focus
cannot be limited to the classical pathways (20). Other non-
canonical modifiers include SLFN family members. Type I IFNs
upregulate SLFN gene expression, and SLFN5 interaction with
STAT1 has been demonstrated, indicating its effect downstream of
JAK1 (21). SLFNs have been shown to be involved in antiviral
responses, and their high expression in specific human immune
cell subsets has been identified, such as elevated SLFN5 in T cells
(22). These non-classical IFN-induced effectors have critical roles
in ISG transcription, independent of or in conjunction with the
canonical pathway, eliciting specific biological responses. A
summary of the canonical and non-canonical pathways of type I
interferon signaling is shown in Figure 1.

Below we provide an update on type I IFN canonical and non-
canonical signaling, related to antiviral responses, antiproliferative
effects in cancer, and immune regulation in autoimmune diseases,
focusing on studies within the last few years. We address the type I
IFN response to SARS-CoV-2 and the potential for therapeutic use
for COVID-19.
BIOLOGICAL EFFECTS IN DISEASES

Canonical and Non-canonical IFN
Signaling in Malignancies
Type I IFNs have been studied in a wide range of cancers in the
last few years, as illustrated in Table 1. These studies have
focused exclusively on the IFNa and IFNb subtypes,
demonstrating their clinical relevance over other type I IFN
subtypes. The signaling analyses in the last few years have still
focused more on the JAK/STAT cascades, specifically STAT1
effects in type I IFN signaling. However, some reports explored
the impact of STAT3 versus STAT1, as well as the non-canonical
involvement of MAPKs, SIRT2, and SLFN5.

STAT1 phosphorylation and the induced expression of
various ISGs such as OASL and ISG15 have commonly been
used as indicators of a type I IFN response (19, 27, 28, 34, 35). In
a study on cervical cancer, the importance of IFN-inducible
activation of STAT1 and STAT2 was demonstrated through the
use of STAT1 and STAT2 knockout human HeLa cells, yet the
STAT3 knockout did not have any effect on ISGs (24). By
contrast, in colorectal cancer, inhibition of p-STAT3 but not
p-STAT1 decreased IFNa and IFNb induced granzyme B
expression in cytotoxic T lymphocytes (25). These differences
highlight how different effectors activated by type I IFNs are
dependent on cell type and disease specificity. Bazhin et al. also
explored IFN-activated STAT3 effects, identifying a non-canonical
November 2020 | Volume 11 | Article 606456
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interaction with p38MAPK on STAT3 phosphorylation inmature
DCs (31). ULK1 has been identified as a regulator of p38 MAPK
and ISGs, downstream of mTOR, in type I IFN signaling in
myeloproliferative neoplasms (20). This demonstrates a
connection between both major IFN activated non-canonical
signaling pathways. Another MAPK, extracellular signal-
regulated kinase (ERK), is involved in non-canonical type I IFN
signaling in malignancy, where mitogen-activated protein kinase
kinase kinase 8 (MAP3K8) and ERK phosphorylation were
decreased upon IFNa treatment in bladder cancer cells (23).
Further elucidation is needed on the STAT-dependent and
-independent non-canonical functions of the many MAPK
pathway proteins.

Additional effects of non-canonical type I IFN-induced
signaling in various malignancies have been examined. A
glioblastoma study identified SLFN5 as a regulator of STAT1
induction by type I IFNs (26). In leukemia and lymphoma cells,
type I IFN induced phosphorylation of STAT1 on serine 727 is
mediated by cyclin dependent kinase 9 (CDK9), and this
activation is dependent on the deacetylation of CDK9 by SIRT2
(19). Additionally, quercetin, a natural compound, decreases Src
Homology Phosphatase 2 (SHP2), a negative regulator of
STAT1 (27).

An important issue related to the clinical use of IFNs is
toxicity and adverse events. Although approved in 1986 by the
FDA for the treatment of malignancies and viral disorders, with
demonstrated positive disease outcomes, IFNa is currently not
commonly used in cancer treatment due to adverse effects (36,
37). A pilot study looked at the potential of decreasing the dose of
IFN-a2b for the treatment of melanoma over the course of an
11-month treatment period. Despite the dose reduction, p-
STAT1 levels were induced at comparable levels throughout
Frontiers in Immunology | www.frontiersin.org 3
the 11 months, and the IFN was well-tolerated (28). An
alternative strategy has been to stimulate the endogenous type
I IFN response in immune cells. Tsuchiya et al. genetically
engineered induced pluripotent stem cell (iPSC)-derived
proliferation myeloid cells (iPSC-pMCs) to produce IFNa.
When injected into mice, these IFN-producing iPSC-pMCs
exerted immunomodulatory effects analogous to direct type I
IFN administration, yet without adverse effects or hematopoietic
stem cell exhaustion (37). Brown et al. studied recombinant
poliovirus/rhinovirus chimera PVSRIPO effects in cancer
immunosuppression and found PVSRIPO infection of DCs
increased IFNb production and a sustained type I IFN
response, as indicated by p-STAT1 and ISG induction (IFIT1,
ISG15) (34). In a separate study, the use of photodynamic
therapy (PDT) lead to the upregulation of type I IFNs in
melanoma cells and DCs co-cultured with the PDT treated
cells; the authors proposed this ex vivo strategy of stimulating
DCs with the use of PDT as a possible immunotherapy (29).

Distinct from the positive outcomes of type I IFN treatment
for malignancies, a number of studies have addressed the
potential link of IFN treatment with chemotherapy resistance,
immunosuppression, and driving of cancer stemness. Qadir et al.
found chronic CD95 activation leading to cancer stemness was
driven by IFNa/b-STAT1 canonical signaling (32). They also
provided evidence that radio-resistant squamous cancer cells had
increased p-STAT1 and ISG expression and that type I IFN
treatment of breast and squamous cancer cells increased
stemness and sphere formation, which was blocked by JAK
inhibition, indicative of the involvement of canonical signaling.

Several studies have evaluated the effects of type I IFN
administration in combination with immunotherapy.
One group showed that IFNa increased programmed
FIGURE 1 | Summary of the canonical and non-canonical pathways involved in type I interferon signaling. 4ebp1, eukaryotic translation initiation factor 4E binding
protein 1; CCR, cell cycle regulation; ERK, extracellular signal-regulated kinase; GAS, gamma-activated sequence; GT, gene transcription; IFN, interferon; IFNR,
interferon receptor; IRF, interferon regulatory factor; ISRE, interferon-stimulated response element; JAK, janus kinase; Jnk, c-Jun N-terminal kinase; MKK, mitogen
activated protein kinase kinase; mTORC, mammalian target of rapamycin complex; PI3′K, phosphoinositide 3-kinase; PKC, protein kinase C; CD, Calmodulin-
dependent kinase, R1/R2, receptor 1/2; Rap, Ras-related protein; RGT, regulation of gene transcription; RMT, regulation of mRNA translation; OBR, other biological
responses; S6K, ribosomal protein S6 kinase; SLFN, Schlafen; STAT, signal transducer and activator of transcription; SP, survival pathways.
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TABLE 1 | Canonical and non-canonical type I interferon signaling in malignancies.

Type of
cancer

IFN pathway
(canonical or
non-canonical)

Type I IFN
(related)
used/

analyzed

Methods/models Main results Ref.

Bladder Non-canonical—
MAP3K8 (TPL2)/
ERK

IFNa In vitro bladder - T24, 5637, HEK293A
In vivo: T24 or 5637 cells SC into flanks
BALB/c (nu/nu): mice – IFNa, roflumilast
Clinical: MIBC tissue microarray chips (n=126)
Bioinformatics: TGCA & Oncomine

-IFNa decreased COX-2, TPL2, ERK, IKK a/b, & cAMP
levels but little effect on JAK/STAT
-TPL2 co-IP with IFNAR2 (not IFNAR1), IFNa & TPL2i
decreased pTPL2-IFNAR2
-IFNa + roflumilast synergistically suppressed tumor growth,
cAMP & PGE2 sera levels in mice

(23)

Cervical Canonical—JAK/
STAT1, 2, & 3

IFNa2
IFNb
(IFNAR1/2)

In vitro: HeLa human cervical cancer cells, KO
clones: IFNAR1, IFNAR2, STAT1, STAT2,
STAT1 + STAT2 dKO, STAT2 + IRF1 dKO, &
STAT3

-KO of IFNAR1 or 2 inhibited p-STATs & ISGs
-STAT1 or 2 KOs had low ISG & dKO blocked ISG
-STAT3 KO had no effect on ISG, p-STAT1 or 2, or IFNb
induced negative feedback regulators

(24)

Colorectal Canonical or non-
canonical—STAT3

IFNa
IFNb
(IFNAR1)

Bioinformatics: TCGA dataset
In vitro: Murine colon carcinoma -MC38
In vivo: IFNAR1-KO, IFNAR1-TKO, WT
C57BL/6 & SJL mice - MCA or MC38 SC
Clinical: Peripheral blood - healthy donors
SCBC, CRC tissues - GCC

-Tumors grew faster & larger in IFNAR1-KO mice vs WT & in
IFNAR1-TKO vs WT
-Inhibition of p-STAT3 (not p-STAT1) decreased a granzyme
B expression increase by IFNa/b in CTLs

(25)

Glioma Non-canonical—
SLFN5-STAT1

IFNa
IFNb

Bioinformatics: GlioVis Database
In vitro: GBM - LN18, LN229, LN443,
U87MG, MBM - DAOY & D556, PDX derived
GSC

-SLFN5 expression increased at basal levels & further
induced by IFNa or IFNb in PDX glioma stem cell &
established GBM & MBM cells
-SLFN5 co-IP'd with STAT1, not STAT3 or 5, in 293T cells
& signal increased with IFNb treatment

(26)

Hepato-
cellular

Non-canonical—
SHP2/STAT1

IFNa In vitro: hepatocellular - HepG2, Huh7, human
embryonic kidney- HEK293A
In silico: SHP2 & quercetin computational
docking

-Quercetin increased IFNa induced p-STAT1 & ISG
expression & decreased SHP2 expression in HepG2
-SHP2 overexpression decreased IFNa (+ quercetin) ISRE
reporter expression in HepG2

(27)

Leukemia,
lymphoma

Non-canonical—
SIRT2/CDK9

IFNa
IFNb

In vitro: leukemia – HEL, KT-1, lymphoma -
U937, Sirt2+/+, Sirt2−/−, Sirt1+/+, Sirt1
−/−, Sirt6+/+, and Sirt6−/− MEF

-Sirt2−/− MEF had no IFNb induced STAT1 activation or
expression of ISG (Oasl2 Cxcl10 ISg15, ISg54)
-SIRT2 regulated IFNb induced CDK9-mediated p-STAT1
-SIRT2 KD leukemia cells less sensitive to IFNa–mediated
antiproliferative effect

(19)

Leukemia,
lymphoma,
myeloma

Non-canonical—
ULK1

IFNb In vitro: leukemia—KT-1, lymphoma—U937,
myeloma—U266, Akt1/2+/+, Akt1/2−/−, Ulk1/
2+/+ & Ulk1/2−/− MEFs

-IFNb induced p-ULK1 Ser757 (mTORC1 phospho site)
-ULK1/2 KO reduced ISRE & GAS activity & IFNb induced
ISG transcription, p38 activation, & antiproliferative effects

(20)

Melanoma Canonical—JAK/
STAT1

IFN-a2b Clinical: NCT01460875 – SC IFN-a-2b 3/week
10 MU/M2

—4 weeks, dose reduction every
two weeks after first month—total 11 months

−91% of patients had stable or increased p-STAT1 levels
over time of dose reduction
-ISGs (OAS1 CXCL10, CD69 and SOCS1), not significantly
less at end/ with lower IFN-a-2b dose
-Higher p-STAT1 after initial dose had lower recurrence

(28)

Melanoma Canonical—JAK/
STAT1

IFNa
IFNb

In vitro: mouse melanoma - B16-OVA; Me-
ALA incubation + irr
In vivo: C57BL/6 and IFNAR1−/− mice;
dendritic cells collected from bone marrow

-PDT of melanoma cells increased IFNa/b and apoptosis
-PDT increased cGAS receptor (not MDA-5, TLR3, RIG-1),
p-STAT1 & ISGs (CXCL10, ISG15, MX1)
-WT DCs migrated toward PDT melanoma cells more than
IFNAR−/− DCs

(29)

Ovarian Canonical—JAK/
STAT

(IFNAR1
ISG15),

In vitro: ID8-Defb29/Vegf-a mouse ovarian
cancer cells - AZA
In vivo: Pre-treated & ID8-VEGF-Defensin cells
IP in C57BL/6 or NSG mice - AZA & anti-
IFNAR1 IP

-anti-IFNAR1 inhibited AZA induced anti-tumorigenic
response, survival benefit, increase in CD45+ immune cells,
activation of CD8+ T and NK cells, & increase in ISG15 in
immunocompetent mice but not in NSG mice

(30)

Immune
focused

Non-canonical—
p38/STAT3

IFNa Ex vivo mDC isolated from PBMCs from
human blood (MBDS):, DC/T cell co-culture
In vivo: C57BL/6 mice—IFNa IP

-IFNa upregulates PD-L1 expression on myeloid immune
cell & T-cell populations & on DC in mice
-IFNa increased p38 and STAT3 activation & STAT3i & p38i
(not PI3Ki or ERKi) decreased IFNa induced PD-L1
expression in mDC

(31)

Multiple Canonical—JAK/
STAT1

IFNa
IFNb

In vitro: breast—MCF-7, Hs578T, SK-BR-3,
HCC70, T47D, melanoma - MDA-MB-435,
Squamous - SCC61, Nu61, MES glioma cells
In vivo: MCF-7 pre-treated anti-APO-1 or IFNb
injected into fat pad NGS mice

-Long term CD95 stimulation induced type I IFNs, p-STAT1,
& increased ISGs in cancer cells
-CD95L or type I IFN increased stemness and sphere
formation in MCF-7 & SCC61, blocked by JAK1/JAK2i
-p-STAT1 correlates with cancer stemness & KO of STAT1
blocked CD95L or type I IFN induced stemness

(32)

(Continued)
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death-ligand 1 (PD-L1) expression on various immune cells
through non-canonical p38/STAT3 signaling (31). The
inference is that combining immunotherapy with IFNa
treatment would limit the immunosuppressive effects of IFN
treatment and permit effective growth inhibition. Similarly,
another study provided evidence that IFNa-iPSC-pMC
treatment increased PD-L1 mRNA, and when combined with a
PD-L1 inhibitor, synergistic anti-tumor effects were reported
(37). The poliovirus/rhinovirus type I IFN induced response
likewise increases PD-L1 expression (34). Additionally, a
bioinformatics examination of IFN gene deletions revealed that
homozygous deletion of IFN was significantly associated with
non-response to anti-CTLA4 treatment among melanoma
patients (38). Overall, these studies suggest type I IFNs may
have a critical role in immunotherapy strategies, possibly via a
combination of type I IFN treatment with PD-L1 inhibition.
Moreover, the data suggest that PD-L1 expression may be
affected by IFN-induced non-canonical signaling.

Canonical and Non-canonical Signaling in
Autoimmune Diseases
Accumulating evidence implicates chronic and persistent type I
IFN signaling in systemic inflammation that promotes the
pathogenesis of some autoimmune diseases, including systemic
lupus erythematosus (SLE), rheumatoid arthritis, multiple
sclerosis (MS), type I diabetes (T1D) and Sjögren’s syndrome,
among others (13, 39). These conditions are associated with
different clinical symptoms and management strategies, yet there
are common features related to the underlying inflammatory
signaling pathways involved and the dysregulated immune
response. Figure 2 summarizes the cell type-specific type I
IFN-induced canonical and non-canonical signaling pathways
recently implicated in autoimmune diseases.

IFNa has been shown to impact the onset and progression of
T1D, which involves the autoimmune attack of pancreatic b cells
(40). One study demonstrated that IFNa activated STAT1,
STAT2, and STAT3 in pancreatic b cells through TYK2, and
that STAT2 was more critical than STAT1 in mediating the
inflammatory and endoplasmic reticulum (ER) stress response
(41). Another study likewise reported on IFNa induction of ER
stress in pancreatic b cells, leading to the downregulation of
insulin production and influence on T1D onset (42). A mouse
model study revealed that inhibition of IFNa, but not IFNb, in
the pre-diabetes stage prevented the onset of T1D and blocked
autoreactive T cells from entering and killing b cells in the
Frontiers in Immunology | www.frontiersin.org 5
pancreatic islets (43). Notably, patients with neutralizing
autoantibodies to type I IFNs, specifically IFNas, are less likely
to develop T1D (44). These studies identify the negative impact
of IFNa on the development of T1D.

Sjögren’s syndrome is an autoimmune disease with glandular
lymphocyte infiltration leading to symptoms of dry mouth and
eyes, where approximately 50% of patients have a type I IFN
signature (45, 46). Given that this IFN signature is not present in
all patients, one study analyzed the effects of IFN-a2b treatment
of peripheral blood mononuclear cells (PBMCs) from patients
with Sjögren’s compared with PBMCs from healthy donors,
including type I IFN signature-positive and negative patients
(45). Baseline effector protein phosphorylation levels differed
predominantly in T cells in Sjögren’s patients compared with
healthy individuals, with higher p-p38 and p-STAT1 (Y701,
S727). Sjögren’s patients also exhibited increased IFNa-
inducible JAK phosphorylation of STAT1 (Y701). Further,
IFNa-2b treatment of PBMCs upregulated p-STAT1 (Y701) in
B cells and downregulated p-STAT3 on S727 in T cells in type I
IFN signature-positive patients.

SLE manifestations include organ damage and skin rash (47,
48). There is an IFNa signature in sera of SLE patients. A recent
study using inducible IFNa transgenic mice found that
upregulation of IFNa alone was capable of inducing an SLE
phenotype (47). SLE pathogenesis is characterized by
inflammasome overactivation; one study demonstrated that
prolonged IFNa treatment increased inflammasome activity,
which was eliminated with knockdown of IRF1 in SLE
monocytes (49). IFNa treatment increased p-STAT1 and
p-STAT2 at tyrosine residues, indicative of a classical JAK/STAT
driven response. Another group that analyzed B cells from SLE
patients, found increased baseline p-STAT3 (Y705), not p-STAT1,
compared to B cells from healthy individuals (50). Additionally,
these investigators found that IFNa treatment polarized naïve B
cell differentiation towards a lupus-like phenotype, which was
reversed by a STAT3 inhibitor and was absent in STAT3-
deficient donor naïve B cells. In SLE monocytes, Gkirtzimanaki
et al. identified IFNa induced mTOR activity, which promoted
oxidative stress, revealing non-canonical IFNa signaling in
SLE (51).

Cognizant of the persistent IFNa signature in SLE patients, a
phase IIb clinical trial evaluated the effects of vaccination with
IFNa kinoid, which produces anti-IFNa antibodies (52).
Although the trial did not see a benefit in Based Composite
Lupus Assessment (BICLA), the drug did provoke anti-IFN-a2b
TABLE 1 | Continued

Type of
cancer

IFN pathway
(canonical or
non-canonical)

Type I IFN
(related)
used/

analyzed

Methods/models Main results Ref.

Multiple Canonical—JAK/
STAT1

IFNb
(IFNAR1)

In vitro melanoma—B16F10 lung—TC-1,
lymphoma—YAC-1, thymoma—EG7
In vivo: C57BL/6, Ly5.1þ & IFNAR1–/– mice,
LCMV-clone 13 (Cl13),: IP or IV, anti-CD4

-Chronic Cl13 infection lead to elevated IFNb in sera
-STAT1 mRNA higher in NK & protein expression higher in
NK & T cells from Cl13-infected mice
-Anti-IFNAR1 increased tumor metastasis 20% in Cl13-
infected mice

(33)
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serum antibodies and decreased the IFN gene signature in 91% of
patients. An anti-IFNAR1 monoclonal antibody, anifrolumab, has
been evaluated in 11 clinical trials for SLE (9), Sjögren’s (1), and
rheumatoid arthritis (1), with encouraging results (53). A recent
phase III trial in SLE did not meet its primary endpoint of response,
as per the SLE Responder Index; however, the same group
conducted another phase III trial using the of British Isles Lupus
Assessment Group (BILAG)-BICLA response as the primary
endpoint and reported a statistically significant higher percentage
of patients having a response as well as seeing a decrease in
secondary endpoints, suggesting that a chronic IFNa response in
SLE patients may contribute to disease pathogenesis (48).

Interestingly, while IFNa has been implicated in the
pathogenesis of various autoimmune diseases, IFNb has been
used to successfully treat MS (54). Employing a mouse model of
MS, studies with mice that lack the IFNb gene revealed that in the
absence of IFNb the mice had a more severe disease with earlier
onset and that the lack of IFNb predisposed the mice to a pro-
inflammatory Th17 immunophenotype (55, 56). Given the
heterogeneity of the disease, and differing patient responses to
IFNb treatment, the identification of potential biomarkers of
Frontiers in Immunology | www.frontiersin.org 6
response to IFNb therapy is receiving considerable attention.
One study suggested predictors of response could be based on
cell type-specific responses to type I IFN signaling, such as higher
activation of STAT1, STAT3, and p38, leading to higher TRAIL
expression in monocytes of IFN responders (57). Hurtado-
Guerrero et al. analyzed monocytes from MS patients ex vivo,
either left untreated (baseline) or after short-term IFNb treatment
(58). At baseline, there were no detectable differences in the levels
of IFNAR1, IFNAR2, p-STAT1, and p-STAT2 among responders
and non-responders, yet following IFNb treatment, differences
were observed. They found a pattern of decreased IFNAR1 and
increased IFNAR2, p-STAT1, and p-STAT2 levels representing
68.4% of responder IFNb-stimulated monocytes. Other groups
have employed bioinformatics to uncover gene signatures that
determine a response to IFNb. One study used a feature selection
computational method on a longitudinal microarray dataset of
relapse-remitting MS (RRMS) patients treated with IFNb-1b, and
found a predictive seven gene signature (CXCL9, IL2RA, CXCR3,
AKT1, CSF2, IL2RB, GCA) with 65.08% predictive accuracy (59).
Using an alternative method of Elastic net modeling, Fukushima
et al. analyzed time-course microarray datasets from PBMCs of
FIGURE 2 | Sunburst chart of cell-specific canonical and non-canonical signaling recently reported on in autoimmune diseases. If there was a commonality in a
canonical or non-canonical signaling demonstrated in the same cell type but different disease, they were color coded the same: red—JAK/STAT1/2 in monocytes,
gray—p38/STAT3 in T cells. ER, endoplasmic reticulum; JAK, janus kinase; MS, multiple sclerosis; mTOR, mammalian target of rapamycin; SLE, systemic lupus
erythematosus; SS, Sjögren’s syndrome; STAT, signal transducer and activator of transcription; T1D, type I diabetes.
November 2020 | Volume 11 | Article 606456

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mazewski et al. Type I IFN Signaling Pathways
MS patients and identified eleven (ZBTB16, ZFP37, HPS5, HOPX,
ARFGAP3, CALML5, VPS26A, SLC5A4, MBL2, DLGAP4,
CACNA1C) and eight (SMA4, MIR7114_NSMF, LSM8, FLAD1,
RRN3P1, RASL10A, IER3IP1, CDH2) genes predictive of an IFNb
response, with 81% and 78% accuracy, respectively, for each
dataset (60). A different study employed the GeneRank method
to identify monotonically expressed genes (MEGs) that determine
a good response (AFTPH, ALOX5, ATG7, MYD88, LILRB1,
PRKAB1, PSEN1, VAMP3) and a bad response (AGFG1, CHM,
IGLL1, PELI1, PTEN) for responders, and two bad responseMEGs
for non-responders (NAP1L4, MMS19) in IFNb treated RRMS
patients (61). As an alternative strategy to gene analysis, a logistic
regression modeling method was used to examine metabolites
from the sera of a cohort of MS patients to predict the production
of anti-drug antibodies (ADA) to IFNb treatment (62). Differences
in 29 metabolites were shown to be indicative of ADA production,
and the top ten most significant metabolites were lipid related.
Another study using a systems immunology approach evaluated
ADA production differences in three IFNb treated cohorts and
showed reduced baseline NOTCH2 expression and that a pro-
inflammatory phenotype in monocytes was predictive of ADA
development (63). Given the preceding, there is a need for further
identification and characterization of biomarkers that are
reproducibly predictive of an IFNb response in RRMS patients.

The differences between IFNa and IFNb in the generation of
effects in autoimmune diseases requires additional analysis.
Although both type I IFNs bind to and initiate signaling
cascades through the dimeric IFNAR, they do differ in primary
amino acid sequences and in binding affinity to the receptor
which may account for varying impacts of the response on cells
(54, 64). Binding affinity for IFNAR1 and IFNAR2 varies among
IFNa subunits, with overall higher affinity for IFNAR2 over
IFNAR1, and IFNb has tighter binding to each receptor subunit
than any of the IFNa subunits (64, 65). How the induced
signaling can differ after the type I IFN ligand binds is not well
understood but studies have shown differences further
downstream in genes and transcription factor binding sites of
IFNa versus IFNb signaling, such as enrichment of IRF8 binding
sites in IFNb response (54). As previously mentioned, cell-type
and disease state lead to variance in type I IFN signaling which is
further complicated by the differences invoked by IFNa and
IFNb and requires further studies, especially to understand the
protein signaling cascades after binding of type I IFNs to
the IFNAR.

Canonical and Non-Canonical IFN
Signaling in Antiviral Responses
IFNs are critical effectors of an antiviral response in mammalian
cells. Following viral infection, type I IFNs are produced by
immune and non-immune cells, bind to and activate IFNAR, and
signal through canonical and non-canonical pathways (66–68).
An area of interest has been the involvement of the IFN system in
the pathophysiology of Coronavirus Disease 19 (COVID-19).

Since the emergence of severe acute respiratory syndrome
coronavirus (SARS-CoV) in 2003 and Middle East respiratory
syndrome coronavirus (MERS-CoV) in 2012, therapeutic
Frontiers in Immunology | www.frontiersin.org 7
options for treatment have been limited (69). Type I IFNs are
attractive therapeutic candidates because of their ability to clear
virus through direct inhibition of viral replication of both DNA
and RNA viruses and their effects on the activation of specific
immune cell subsets to assist with viral clearance (70). Many
viruses, including coronaviruses, evade an IFN antiviral
response by inhibiting the production of type I and III IFNs
(71–73). Scrutiny of the SARS-CoV genome identified the genes
NSP1, NSP3, ORF3b, and ORF6 that are antagonists for type I
IFNs, as well as the N protein (74). ORF6 not only inhibits the
production of IFN but can also inhibit the expression of ISGs by
inhibiting STAT1 nuclear translocation, through disruption of
karyopherin-mediated transport. IRF3 is an important
transcription factor necessary for IFNb expression. The
papain-like protease (PLpro), conserved in both SARS-CoV
and SARS-CoV-2, inhibits the phosphorylation required for
IRF3 homodimerization and nuclear translocation leading to its
association with CBP/p300 and NF-kB for IFNb expression
(75–77). Comparing the gene sequences between SARS-CoV
and SARS-CoV-2 for NSP3, ORF3b, and ORF6, revealed
sequence differences that may contribute to the greater
sensitivity of SARS-CoV-2 to type I IFNs (77). Konno et al.
made the observation that ORF3b inhibits type I IFN induction
more so in SARS-CoV-2 than in SARS-CoV, and a naturally
arising SARS-CoV-2 variant exerts even greater antagonism of
type I IFN induction by ORF3b (78). Accumulating data
continue to provide further evidence of a blunted IFN
response in COVID-19 cases (79–83).

Recently, data have emerged that indicate that SARS-CoV-2 is
sensitive to the antiviral effects of both IFNa and IFNb in cell
culture assays, similar to the sensitivity of SARS-CoV in vitro
(84–86). A pilot clinical study during the SARS outbreak of 2003
demonstrated that treatment with an IFNa resulted in reduced
disease-associated impaired oxygen saturation and rapid
resolution of lung abnormalities (87). The evidence of SARS-
CoV-2 sensitivity to IFN treatment and accumulating clinical
studies suggest that IFN treatment may have therapeutic benefits
for COVID-19 (88). Early on in the pandemic, Zhou et al.
provided evidence that treating COVID-19 patients with
nebulized IFN-a2b with or without the antiviral drug, arbidol,
accelerated viral clearance from the airways of infected patients
and also reduced the circulating levels of the inflammatory
cytokines, IL-6 and CRP (89). Following up from this
exploratory study, there have been several clinical studies
evaluating the therapeutic benefit of IFNa and IFNb treatment
for COVID-19 (see Table 2). In vitro studies suggested greater
antiviral effectiveness of IFNb over IFNa against SARS CoV (97).
This prompted the WHO SOLIDARITY randomized controlled
trial of a combination of lopinavir/ritonavir, ribavirin, and IFNb-
1b versus lopinavir/ritonavir in SARS-CoV-2 (90). The findings
suggest that the triple combination treatment was more effective
than lopinavir/ritonavir alone, reducing symptom severity and
time to viral clearance. Given the emerging evidence that
lopinavir/ritonavir treatment may be ineffective against SARS-
CoV-2, the ongoing trial had been amended to compare the
therapeutic effectiveness of IFNb with remdesivir, a viral
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polymerase inhibitor that has demonstrated limited therapeutic
efficacy in COVID-19 cases. A prospective observational study
was conducted to assess the therapeutic efficacy of IFN-a2b in
SARS-CoV-2 patients during the first month after the COVID-
19 outbreak began in Cuba. Intramuscular administration of
IFN-a2b improved both the rate of recovery and case fatalities
(91). However, a retrospective cohort study demonstrated that
there is great importance on the timing of administration of IFN-
a2b with reduction of in-hospital mortality when administered
the first five days of admission but increased mortality and
delayed recovery was seen if given later (92). Additionally,
inborn errors of type I IFNs and presence of autoantibodies
against type I IFNs can be determinants of severity of disease and
effectiveness of type I IFN treatment (95, 98). Roughly 10% of
COVID-19 patients with severe pneumonia in a cohort of 987
patients had neutralizing autoantibodies against IFNa, IFNw, or
both, where patients with no or mild symptoms had no
detectable autoantibodies (95). These findings demonstrate that
administration of IFNa may not be effective in patients with
severe condition and autoantibodies, but since IFNb
autoantibodies were uncommon in the same patients, IFNb
may provide a more beneficial treatment. The same group
analyzed a separate cohort of patients with life-threatening
pneumonia and found 3.5% had inborn errors in type I IFN
related genes, specifically in loci pertaining to TLR3- and IRF7-
dependent type I IFN induction (98). This showed a
Frontiers in Immunology | www.frontiersin.org 8
commonality with influenza since similar type I IFN related
gene defects have been demonstrated in life-threatening
influenza pneumonitis (99).

Similar to SARS-CoV, SARS-CoV-2 interacts with the
angiotensin-converting enzyme 2 (ACE2) for cell entry, while
MERS-CoV exploits the dipeptidyl peptidase 4 (DPP4) receptor
for entry into human cells (100–102). Ziegler et al. demonstrated
that nasal secretory cells (goblet cells), type II pneumocytes, and
absorptive enterocytes of the ileum are positive for the two critical
receptors for SARS-CoV-2 cell entry, ACE2 and the type II
transmembrane serine protease, TMPRSS2 (103). Their
observation that ACE2 expression is induced by type I IFNs in
primary upper airway basal cells and lung tissue is hard to reconcile
with IFNs inhibiting infection by SARS-CoV-2, yet recent emerging
data suggesting a role for the renin-angiotensin pathway in
protection from specific clinical features of COVID-19 would
support a role for ACE2 in limiting COVID-19 severity. The
inability of mice to uptake SARS-CoV-2 infection through the
mouse ortholog of entry receptor ACE2 prompted Israelow et al.
to create an adeno associated virus-mediated human ACE2 mouse
model that can be utilized to analyze SARS-CoV-2 inmice, and they
found increased type I IFN signaling ISGs in the lungs and limited
control of SARS-CoV-2 replication by type I IFNs (104). The
involvement of canonical versus non-canonical pathways in the
induction of IFN-responses against SARS-CoV2 remains to
be elucidated.
TABLE 2 | Clinical studies involving type I interferons in SARS-CoV-2.

Type I IFN
(administration or
collection)

Other drugs in
combination

Study type Outcomes if applicable Trial # (reference)

IFNa-2b (nebulized) Umifenovir Uncontrolled, exploratory
cohort study

IFN-a2b ( ± arbidol) reduced time to viral clearance and circulating
inflammatory cytokine (IL-6, CRP) levels

(89)

IFNb-1b
(subcutaneous)

Lopinavir/Ritonavir
Ribavirin

Randomized controlled phase
2 trial

Triple combination treatment more effective than lopinavir/ritonavir
alone, reducing symptom severity and time to viral clearance

NCT04276688 (90)

IFNa-2b
(intramuscular)

Lopinavir/Ritonavir
Chloroquine

Multicenter prospective study Higher proportion of patients discharged from hospital in IFN-
treated vs. non-IFN treated group

RPCEC00000318
—Cuban Registry
(91)

IFNa-2b (nebulized) Lopinavir/Ritonavir
Umifenovir

Retrospective cohort study Early IFN-a2b administration reduced in-hospital mortality but
increased mortality and delayed recovery with late administration
(>5 days post hospital admission)

(92)

IFNa Lopinavir/Ritonavir
Ribavirin

Retrospective, single-center
study

Time to clearance positively correlated with length of hospital stay
in patients treated with IFN-a+lopinavir/ritonavir (± ribavirin)

(93)

IFNb-1b
IFNb-1a
(subcutaneous)

Hydroxychloroquine
Lopinavir/Ritonavir

Single center randomized
controlled phase 2 clinical trial

Completed—no results posted NCT04343768 (94)

IFNb-1b
(subcutaneous)

Hydroxychloroquine Prospective open-label
randomized controlled phase
2 trial

Completed – no results posted NCT04350281

IFNa-2b (nebulized) Ganovo
Ritonavir

Open controlled phase 4 trial Completed – no results posted NCT04291729

IFNb-1a
(subcutaneous)

Remdesivir Adaptive randomized double-
blind multicenter placebo-
controlled phase 3 trial

Recruiting, Adaptive COVID-19 Treatment Trial 3 NCT04492475

IFNa IFNk (plasma and
serum),

Observational study Autoantibodies for IFNa, IFNk, or both found in 101 of 987
patients with life-threatening pneumonia, none in 663 patients with
no or mild symptoms, 4 of 1227 healthy patients

(95)

ISGs
(bronchoalveolar
lavage fluid)

Observational study COVID-19 patients had higher expression of ISGs with a
proinflammatory subset, compared to healthy and pneumonia
patients

(96)
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SARS-CoV-2 and influenza viruses are respiratory infections
where disease severity results in lung hyper-inflammation and acute
respiratory distress. Findings from clinical studies suggest that the
early viral phase of both infections is associated with a blunted IFN
response, yet progression to severe disease shows no such failed IFN
response, specifically elevated levels of ISGs in PBMCs are observed
(105–107). The implications are that the therapeutic benefits of IFN
treatment are applicable in the early viral phases of COVID-19 and
influenza, but that once the pulmonary phases of both infections
progress to hyper-inflammation, IFN treatment is likely to be
contra-indicated. Non-canonical effects in type I IFN signaling in
influenza have been demonstrated as with p38 MAPK signaling,
shown to be important in affecting type I IFN production and
signaling in highly pathogenic avian influenza virus infected
endothelial cells (108). Additionally, IFN-k treatment inhibits
influenza replication in lung cells, dependent on IFNAR, p38,
CHD6, and Fos activation, but not STAT1 (109). Notably, IFNa
induced STAT3 activation is crucial for inhibition of influenza viral
replication and ISG transcription in mouse embryonic
fibroblasts (110).

Although antiretroviral therapy (ART) for Human
Immunodeficiency Virus (HIV) infection has transformed this
infection from a fatal one to a chronic disease, viral reservoirs
complicate efforts for HIV elimination, and a recent review
paralleled HIV reservoir persistence to immuno-editing and
immune evasion in cancer (111). The roles of type I IFNs in the
pathophysiology of HIV infection are not fully understood, but
IFNa has been implicated as an adverse factor in the persistence of
HIV-1. When circulating levels of IFNa were measured for healthy
donors, primary-infected, and chronically-infected patients, higher
IFNa levels were associated with higher viral loads and higher
expression of the ISG, USP18, which negatively regulates IFNa
signaling by displacing JAK2 bound to IFNAR2 (112). Humanized
mouse models have provided evidence that whereas type I IFNs
suppress early HIV infection, type I IFN signaling induces T cell
depletion and impaired functionality during persistent infection.
When IFN signaling is blocked in HIV-infected mice or in monkeys
receiving ART, this reduces the HIV reservoir, rescues anti-HIV T
cells, and reduces HIV-induced inflammation (113–115). Notably,
HIV-1 proteins, Vpu and Nef, inhibit ISG expression through
canonical IFNa mediated JAK/STAT1 signaling, blocking any
antiviral benefits from IFNa (116). Knockout of IFNAR1 in an
HIV-induced brain injury mouse model provided memory benefits
and neuronal injury protection while suppressing p38 activation,
indicating involvement of type I IFN non-canonical signaling in
HIV-1–related neurotoxicity (117). Indeed, there is accumulating
evidence that sustained type I IFN signaling, surprisingly, can
promote viral replication for a number of viruses, mediated by
induction of certain ISGs and inhibition of IRFs (14). IFN induced
2′5′-oligoadenylate synthetase-like (OASL) limits RNA virus
replication through enhancing RIG-I signaling yet inhibits cGAS
and promotes viral replication for DNA viruses such as HSV.

Of late, there are emergent data that SLFN proteins, non-
canonical effectors of type I IFN signaling, have a role as
antivirals. IFN induced SLFN11 expression controls protein
synthesis by regulating tRNA abundance, limiting West Nile
Frontiers in Immunology | www.frontiersin.org 9
virus, dengue virus, and Zika virus replication, all (+) ssRNA
viruses, but having little effect on (–) ssRNA viruses (118).
Interestingly, SLFN 11 control of HIV-1 infection is
independent of type I IFN signaling (119). IFNb induced
SLFN14 exhibits antiviral activity in mouse macrophages,
limiting infection with influenza virus or the DNA virus,
varicella-zoster virus (120).

Besides the duration of type I IFN signaling influencing
whether there is inhibition or enhancement of viral replication
(105, 112), cell environmental factors also contribute to a type I
IFN response. In a mouse model of vesicular stomatitis virus
infection, high salt levels augment type I IFN signaling through
the non-canonical p38 pathway (121). In neurons, viral infection
may cause pain hypersensitivity; type I IFNs elicit pain
sensitization in neurons, by promoting MAPK interacting
kinase phosphorylation of eukaryotic initiation translation
factor (122).
CONCLUSIONS AND FUTURE
EXPECTATIONS

Though over sixty years have elapsed since the original discovery
of IFNs, in recent years, there has been mounting evidence for
the critical roles of type I IFNs as immune regulators in multiple
biological systems. The mechanisms of induction of type I IFNs
and their subsequent biological responses are complex, due in
part to the large number of family members, both cell type-
dependent and independent biological responses, and varying
influences in different disease settings. As identified above, for
acute and chronic virus infections, type I IFN signaling can have
distinct and sometimes contrasting biological effects. In
malignancies, type I IFNs induce antiproliferative and
antineoplastic effects but may also upregulate PD-L1 expression,
thereby limiting an anti-tumor immune response. In some
autoimmune diseases, such as SLE, the persistent exposure of
immune cells to endogenous IFNa appears associated with
pathogenesis. On the other hand, IFNb provides therapeutic
benefits in MS. Regardless of whether type I IFN associated
responses contribute to favorable or poor outcomes, it is clear
that both canonical and non-canonical IFN signaling pathways are
critical for type I IFN responses. In many cases, both canonical and
non-canonical are activated in parallel, but it is possible that in
certain cell-type and disease states a given pathway may play a
predominant role. With the identification of the roles of non-
canonical MAPK and mTOR pathways, the involvement of PKC
and SLFN proteins, our understanding of how type I IFN signaling
alters the transcriptome to produce proteins that affect changes in
biological responses has increased dramatically. The discovery of
new non-canonical pathways and effectors has substantially
advanced the field, but other non-canonical pathways may have
yet to be identified. Understanding how there is connectivity
between the classical, canonical JAK/STAT signaling, and non-
canonical pathways will provide the basis for further targeting of
type I IFN signaling in different diseases.
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