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Abstract: In an earlier publication a binary model for chronic diseases classification has 
been proposed. According to the model, chronic diseases were classified as “high Treg” or 
“low Treg” diseases, depending on whether the immune response is anti- or pro- 
inflammatory and assuming that regulatory T cells are major determinants of the response. 
It turned out that most cancers are “high Treg” diseases, while autoimmune diseases are “low 
Treg”. This paper proposes a molecular cause for this binary response. The mechanism 
proposed depends on the effect of protein kinases on the immune system. Thus, protein 
kinases are classified as anti- or pro-inflammatory kinases depending on whether they drive 
“high Treg” or “low Treg” diseases. Observations reported in the earlier publication can be 
described in terms of anti-inflammatory kinase (AIK) or pro-inflammatory kinase (PIK) 
activity. Analysis of literature data reveals that the two classes of kinases display distinctive 
properties relating to their interactions with pathogens and environmental factors. Pathogens 
that promote Treg activity (“high Treg” pathogens) activate AIKs, while pathogens that 
suppress Treg activity (“low Treg” pathogens) activate PIKs. Diseases driven by AIKs are 
associated with “high Treg” pathogens while those diseases driven by PIKs are associated 
with “low Treg” pathogens. By promoting the activity of AIKs, alcohol consumption 
increases the risk of “high Treg” cancers but decreases the risk of some “low Treg” 
autoimmune diseases. JAK1 gain-of-function mutations are observed at high frequencies in 
autoimmune diseases while JAK1 loss-of-function mutations are observed at high frequen-
cies in cancers with high tumor-infiltrating Tregs. It should also be noted that the corre-
sponding two classes of protein kinase inhibitors are mutually exclusive in terms of their 
approved therapeutic indications. There is no protein kinase inhibitor that is approved for the 
treatment of both autoimmune diseases and “high Treg” cancers. Although there are excep-
tions to the conclusions presented above, these conclusions are supported by the great bulk of 
published data. It therefore seems that the binary division of protein kinases is a useful tool 
for elucidating (at the molecular level) many distinctive properties of cancers and auto-
immune diseases. 
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Introduction
The protein kinase family is a large family of kinases (at least 518 members in 
man)1 that catalyze the phosphorylation of proteins, resulting in the production of 
phosphoproteins. Only three amino acids are modified in this way: serine, threo-
nine, and tyrosine. These amino acids are characterized by a hydroxyl group 
attached to the hydrocarbon backbone. Adenosine triphosphate is used in this 
process as the phosphate donor. Dephosphorylation of phosphoproteins, the reverse- 
reaction, is catalyzed by protein phosphatases, using adenosine diphosphate as the 
phosphate acceptor. Since phosphorylation has a profound effect on protein activity, 
and since at least two-thirds of proteins encoded by human genome are subject to 
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phosphorylation,2 the role of protein kinases in the control 
of different cellular activities (such as metabolism, prolif-
eration, and apoptosis) is crucial. In fact, protein phos-
phorylation is one of the most important post-translational 
modifications of proteins.3

Deregulation of protein kinase activity is associated with 
many cancers (colorectal cancer, non-small cell lung cancer 
(NSCLC), renal cell carcinoma (RCC), thyroid cancer, breast 
cancer, glioblastoma, pancreatic cancer, ovarian cancer, 
chronic myelogenous leukemia (CML), chronic lymphoid 
leukemia (CLL), myelofibrosis, and acute myeloid leukemia 
(AML)) with autoimmune diseases (rheumatoid arthritis 
(RA) and psoriasis (Ps)), with age-related macular degenera-
tion (AMD),4 with cutaneous disorders (atopic dermatitis, 
pruritus associated with allergic dermatitis, vitiligo, and 
alopecia),5 and with atherosclerosis.6,7

In an earlier paper, a binary classification of chronic 
diseases was proposed.8 Chronic diseases were classified 
according to the extent of regulatory T cell (Treg) activity, 
estimated in peripheral blood or within tissues implicated 
in the disease. Diseases with high Treg activity as a driver 
of pathogenicity were classified as “high Treg” diseases 
(most solid cancers, for example). Diseases with low Treg 
activity as a driver of pathogenicity were classified as “low 
Treg” diseases (autoimmune diseases, for example). This 
classification explains the association of particular patho-
gens with cancer and the association of others with auto-
immune diseases. It also explains why certain specific 
pathogens are involved in coinfections. The effectiveness 
or ineffectiveness of certain immune-modulating drugs in 
the treatment of autoimmunity and cancer is also eluci-
dated by this binary model.8 In addition, it explains why 
“high Treg” inflammation promotes many solid cancers 
while “low Treg” inflammation promotes lymphomas.9

This paper focuses on protein kinases as the cause of 
this binary response. A binary classification of protein 
kinases as anti-inflammatory kinases (AIKs) or pro- 
inflammatory kinases (PIKs) is therefore proposed. 
Frequently, but not always, the effect of protein kinases 
on the immune system is mediated by Tregs, where AIKs 
promote Treg activity, while PIKs suppress it. One way 
to practically classify protein kinases as PIKs or AIKs is 
by the immunological effect observed following their 
inhibition. Based on the analysis of literature data, this 
paper shows that, in general, aberrant activity of AIKs 
promotes “high Treg” cancers while deregulated activity 
of PIKs promotes autoimmune diseases. It seems that in 
addition to the direct effect of AIKs on tumor 

proliferation,2 a simultaneous or consecutive induction 
of immune tolerance (“high Treg” response) by these 
AIKs drives cancer development as well. Similarly, in 
autoimmune diseases, in addition to the direct effect of 
PIKs on the target tissue, an induction of a pro- 
inflammatory immune response (“low Treg” response) 
by these kinases increases the collateral damage to the 
target tissue and advances the disease.

Based on the analysis of literature data, it is also shown 
that the pathogens that promote Treg activity (“high Treg” 
pathogens) activate AIKs while pathogens that suppress Treg 
activity (“low Treg” pathogens) activate PIKs. This explains 
the association of most solid cancers with “high Treg” patho-
gens and of autoimmune diseases with “low Treg” patho-
gens, which was reported in earlier publications.8,9 

Moreover, pathogens that activate both AIKs and PIKs 
may induce both cancers and autoimmune diseases.

The activation of AIKs by ethanol can explain the 
increased risk of “high Treg” cancers10 and the decreased 
risk of some autoimmune diseases11 observed in heavy and 
occasional drinkers of alcohol.

It is also observed that the gain-of-function or loss-of- 
function mutations of the same protein kinase may induce 
“low Treg” or “high Treg” diseases. JAK1 gain-of- 
function is frequent in diseases with low Treg frequency 
while JAK1 loss-of-function is frequent in diseases with 
high Treg frequency.

Lastly, it is noted that the corresponding two classes of 
protein kinase inhibitors are mutually exclusive with respect 
to their approved therapeutic indications: to date, there is no 
approved protein kinase inhibitor that is indicated for the 
treatment of both autoimmune diseases and “high Treg” 
cancers. These distinctive properties of the two classes of 
kinases are described in detail in the next sections.

AIKs are Involved in the Pathology 
of Solid Cancers, CLL, ALL, Mantle 
Cell Lymphoma (MCL), and CML
Many protein kinase inhibitors that are effective in the 
treatment of solid cancers, CLL, CML, ALL, and MCL 
induce a decrease in Treg frequency or an impairment in 
Treg function. This implies that the protein kinases 
involved are AIKs.

Table 1 presents protein kinase inhibitors effective in 
these diseases, their target kinases, their effect on Treg 
activity, references for the effect on Tregs, and Tregs 
marker used.
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It should be realized that Tregs identification methods 
used in order to sort Tregs from conventional T cells 
expressing similar markers have been evolved over the 
years. Different markers affect the specificity in sorting 
out Tregs. For this reason, literature data presented in this 
paper in relation to Tregs frequency evaluation, include 
also the particular markers used.

In Table 1, it can be seen that 16 out of the 19 
kinase inhibitors suppress Treg number or function; 
two show no effect on Tregs and one promotes Treg 
number. It is of note that the two studies that show no 
effect used a low specificity Treg marker (CD4+FoxP3 
+). It can be concluded that most of these kinases show 
a pro-inflammatory effect.

Table 1 Protein Kinase Inhibitors Effective in “High Treg” Diseases, Their Effects on Tregs Activity (↑ = an Increase, ↓ = a Decrease, 
↔ = No Effect) and Treg Markers Used

Protein 
Kinase 
Inhibitor

Target Kinases Effect on 
Tregs 
Number or 
Function

Treg Marker Reference

Axitinib VEGFR-1, VEGFR-2, VEGFR-3. ↔ CD4+FoxP3+ [12]

Bevacizumab VEGF ↓ CD4+CD25+FoxP3+ [13]

Cabozantinib VEGF, MET, (AXL), RET, ROS1, TYRO3, MER, KIT and more. ↓ CD3+CD4+CD25+FoxP3+ [14,15]

Cetuximab EGFR ↑ CD4+CD39+CD25hFoxP3+ [16]

Crizotinib ALK and ALK mutations, (HGFR, c-Met) RTK, ROS1 (c-ros) 

and Recepteur d’Origine Nantais (RON) RTK.

↓ not available [17]

Dasatinib BCR-ABL1 ↓ CD4+CD25+FoxP3+ [18]

Erdafitinib FGFR ↓ CD4+CD25+FoxP3+ [19]

Erlotinib EGFR ↔ CD4+ FoxP3+ [20]

Gefitinib EGFR ↓ CD4+CD25+FoxP3+ [21]

Ibrutinib BTK ↓ CD4+CD25+FoxP3+ [22]

imatinib BCR-ABL1, c-Kit, DDR1, DDR2, CSF-1R, PDGFR-alpha, 

PDGFR-beta

↓ CD4+CD25+FoxP3+ [23]

Lenvatinib VEGFR1, VEGFR2, VEGFR3 ↓ CD3+CD4+FoxP3+ [24]

Nilotinib BCR-ABL1 ↓ CD4+CD25+FoxP3+ [25]

Panitumumab EGFR ↓ not available [26]

Pazopanib VEGFR −1, −2, and −3, (PDGFR) -α and –β, c-KIT ↓ CD4+CD25+FoxP3+ [27]

Sorafenib CRAF, BRAF, V600E BRAF, c-KIT, and FLT-3, VEGFR-2, 
VEGFR-3, PDGFR-ß

↓ CD4+CD25h FOXP3+/CD3+ [28]

CD4+CD25+FoxP3+ [29]

Sunitinib PDGFRα, PDGFRβ, VEGFR1, VEGFR2, VEGFR3, KIT, FLT3, 

CSF-1R, RET

↓ CD3+CD4+CD25+FoxP3+ [30–32]

Trastuzumab HER2 ↓ CD4+CD25+FoxP3+ [33]

Vemurafenib BRAF ↓ CD4+ FoxP3+ [34]
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PIKs are Involved in Autoimmune 
Diseases and Myeloproliferative 
Neoplasms
JAKs are Pro-Inflammatory Tyrosine 
Kinases
The four members of the Janus kinase family, JAK1, 
JAK2, JAK3, and TYK2, form one subgroup of the non- 
receptor protein tyrosine kinases. Whereas JAK1, JAK2, 
and TYK2 are expressed ubiquitously in mammals, JAK3 
is primarily expressed in hematopoietic cells.35

JAK1: Conflicting data regarding the pro- or anti- 
inflammatory effect of JAK1 activation, under different 
conditions, have been published over the years. 
Nevertheless, a JAK1 inhibitor, upadacitinib (Rinvoqu®), 
was recently approved in the USA and EU for the treat-
ment of RA, indicating a pro-inflammatory effect of JAK1 
within the setting of autoimmune diseases.

JAK2: Stimulation of the JAK2/STAT3 pathway induces 
a pro-inflammatory reaction with reduced Treg activity.36 

BCR-ABL1 negative myeloproliferative neoplasms (here-
after, MPNs) are a group of rare hematological cancers 
where JAK2 mutation (JAK2V617F) is often observed. 
Barbui et al have shown that C reactive protein, a very 
common inflammation marker, positively correlates with 
JAK2V617F allele burden in MPN patients.37 Much clinical 
and pathological evidence indicates that deregulated JAK2 
activity induces a pro-inflammatory reaction in MPNs.38 As 
far as autoimmune diseases are concerned, JAK2 is involved 
in the pathogenesis of PsA and spondyloarthropathy 
(SpAs).39 It seems that JAK2 is a PIK.

JAK3: Despite conflicting in vitro data, in vivo data 
indicate a pro-inflammatory effect of JAK3 activation. 
A highly selective JAK3 inhibitor (RB1) exerted significantly 
improved joints pathology in a collagen-induced arthritis 
mouse model.40 In addition, decernotinib, an experimental 
selective JAK3 inhibitor, was efficacious in improving RA 
clinical symptoms in a Phase I study with 204 RA patients.41

TYK2: IL-12-dependent signals, in particular those 
involved with IFN-γ production by Th1 cells, are TYK2 
dependent.42 The involvement of TYK2 in IL-23-dependent 
inflammatory conditions, such as psoriasis and colitis, has 
been demonstrated in mice models.43 A single nucleotide 
polymorphism in TYK2 gene has been reported in Crohn’s 
disease and in systemic lupus erythematosus (SLE)44 and 
references therein. It is seen therefore that TYK2 aberrant 
signaling results in a pro-inflammatory reaction.

It seems that all four members of the JAK family play 
mainly a pro-inflammatory role within the context of auto-
immune diseases and MPNs.

Spleen Tyrosine Kinase is a PIK
Spleen tyrosine kinase (SYK) is a member of the SYK 
family of tyrosine kinases. It is overexpressed in T cells of 
patients with SLE. It has been shown that induced over-
expression of SYK in T cells from healthy individuals 
resulted in a pro-inflammatory effect that could be reverted 
by SYK inhibition. SYK deregulation may hamper IL-2 
production which results in reduced Treg differentiation.45 

It seems therefore that SYK tyrosine kinase is a PIK.
SYK signaling is prominent in the process of platelet 

destruction in adults with immune thrombocytopenia 
(ITP), an autoimmune disease.46 Most patients with 
ITP show increased Th1 and decreased Th2 and Treg 
frequencies in blood.47 An SYK inhibitor, fostamatinib, 
was approved by FDA in 2018 for the treatment of ITP.

Most JAK Inhibitors Induce an 
Anti-Inflammatory Effect That Might or 
Might Not Be Mediated by Tregs
As seen in Table 2, the effect of JAK inhibitors on Treg 
frequency is variable. It can depend on the inhibitor and can 
also vary between studies with the same inhibitor. Out of 11 
studies performed with different JAK inhibitors, five indicate 
an increase in Tregs, four indicate a decrease in Tregs (3 with 
ruxolitinib and 1 with fedratinib). In two studies no change in 
Treg frequency was observed following JAK inhibition. 
However, in all four studies with a decreased Treg frequency, 
a parallel decrease in pro-inflammatory cytokines secretion 
was reported. It is not clear from these studies whether this 
down-regulation of pro-inflammatory cytokine is a direct 
effect of the inhibitor or whether this is an indirect effect of 
an over-suppressive Treg function. Keohane et al reported that 
“Tregs appear functional in vivo following JAK inhibition” in 
MPN patients.48 However, the authors did not compare sup-
pressive Treg function following JAK inhibition, with suppres-
sive Treg function in untreated MPNs patients. On the other 
hand, Sewgobind et al report of 56% (mean) increase in 
suppressive Treg effects on the proliferation of alloactivated 
Teff cells, following tofacitinib treatment of kidney transplant 
patients.49 Similarly, Meyer et al report of a significant sup-
pression of Th17 cell percentage following tofacitinib treat-
ment in RA patients.50 It seems that although some JAK 
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inhibitors do not induce an increase in Treg frequency, they still 
exert a suppressive anti-inflammatory effect.

SYK Inhibitor Induces an 
Anti-Inflammatory Effect
An SYK inhibitor, R406, has been shown to attenuate psor-
iatic inflammation, upregulate Treg cells and downregulate 
Th17 cells in a mouse model of psoriasis.51 As an inhibitor of 
PIK, it is presented in Table 2, next to JAK inhibitors.

AIKs Drive Both a Direct Pathogenic 
Effect and a “High Treg” Immune 
Response in Most Solid Cancers
Deregulated activity of protein kinases drives many types 
of cancers by inducing cancer cell proliferation.4 On the 
other hand, the tumor microenvironment (TME) of most 
solid cancers (and of some hematological cancers) is 
enriched with regulatory T cells, and their accumulation 
in the TME is predictive of poor prognosis in most types 
of solid cancers (probably due to the immune-suppressive 
effect exerted by Tregs). These cancers are “high Treg” 
diseases.8 Accordingly, protein kinases that drive these 
malignancies are AIKs. It seems reasonable to assume 
that the same AIKs affect both cancer growth and Treg 
proliferation. As shown below, there are two ways of 

driving this double effect: (a) some AIKs are expressed 
by both tumor cells and Treg cells. Hyper-activation of 
these kinases may therefore affect simultaneously tumor 
epithelial cell propagation and Treg activity; (b) certain 
tumorigenic kinases have been reported to induce the 
activity of dendritic cells (DCs) which in turn promote 
Treg propagation, function, or recruitment. The examples 
below illustrate these two modes of operation:

EGFR- Epidermal growth factor receptor (EGFR) is 
a receptor tyrosine kinase that stimulates cell growth and 
differentiation when binding to its ligands. In many epithe-
lial cancers, especially in lung cancer, breast cancer, and 
glioblastoma, EGFR is a driver of carcinogenicity mainly 
due to gene mutations or amplification.60 EGFR inhibition 
by targeted drug therapy is currently used for the treatment 
of many types of epithelial cancers such as head and neck 
squamous cell carcinoma, non-small-cell lung cancer 
(NSCLC), pancreatic cancer, and colorectal cancer. Zaiss 
et al have demonstrated that Tregs express EGFR under 
inflammatory conditions while amphiregulin, a protein that 
is a member of the EGF tyrosine kinase family, supports 
suppressive Treg function in vitro and in vivo.61 Another 
research demonstrated that this support is mediated via the 
EGFR/GSK-3β/Foxp3 axis.21 It seems that EGFR upregu-
lation induces both cancer and Treg proliferation.

Table 2 Protein Kinase Inhibitors Effective in “Low Treg” Diseases, Their Target Kinases,48,52,55,59 Their Effect on Treg and Th17 Cells 
Activities, Reference(s) for This Effect (↑ = an Increase, ↓ = a Decrease, ↔ = No Effect) and Treg Markers Used

Protein Kinase 
Inhibitor

Target Kinases Tregs 
Frequency

Teff 
Frequency

Teff 
Activity

Treg Marker References

AG490 JAK2 ↑ CD4+CD25+Foxp3+ [52]

Baricitinib JAK1, JAK2 

≫Tyk2≫JAK3

↔ FoxP3+ [53]
↔ ↓(Th17) CD4+CD25hCD127lFoxP3h [50]

Fedratinib JAK2 ↓ ↑(Th17) ↓ CD4+ CD127l CD25h FoxP3+ [48]

Olcacitinib JAK1>JAK2≫ JAK3, 
TyK2

↑ CD4+FoxP3+ [54]

Pacritinib JAK2, FLT3, IRAK-1, 
CSF-1R

↑ CD4+FoxP3+ [55]

Ruxolitinib JAK1, JAK2 ↑ ↓ ↓ CD4+ CD127l CD25hFoxP3+ [56]
↓ ↓ CD4+FoxP3+ [48]

↓ ↑(Th17) ↓ CD4+FoxP3+ [57]
↓ ↓ CD4+ CD25++ CD127low/-FoxP3+ [58]

Tofacitinib JAK3>JAK1, JAK2 ≫ ↑ CD4+CD25brightFoxP3+ [49]
TyK2 ↔ ↓(Th17) CD4+CD25hCD127lFoxP3h [50]

R406 SYK ↑ ↓(Th17) CD4+FoxP3+ [51]
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VEGFR – Vascular endothelial growth factor receptor 
(VEGFR) is a receptor protein kinase that binds to its 
ligand, vascular endothelial growth factor (VEGF), to 
induce vasculogenesis and angiogenesis. In particular, can-
cer cells promote the formation of new blood vessels that 
are essential for tumor growth by VEFG excretion. VEGF 
and VEGFR inhibitors are FDA approved for the treatment 
of seven different types of solid cancers.62 VEGF-A is one 
of the three members of the VEGF family of kinases. 
One of the receptors of VEGF-A, VEGFR2, is detected 
on the membrane surface of Treg cells. In a mouse model 
of colon cancer, stimulation of VEGFR2 by VEGF 
induced Tregs gathering in the tumor surroundings63 and 
references therein. Therefore, VEGFR hyperactivity drives 
both angiogenesis and Treg accumulation in the TME. 
Each of these two processes promotes cancer growth.

PDGFR - Platelet-derived growth factor receptor 
(PDGFR) is a protein kinase receptor family of two mem-
bers (α and β) that regulate cell growth and division upon 
binding to their ligands. The PDGF family (PDGFR 
ligands) exists as homodimer and/or heterodimer formed 
by dimerization of A-polypeptide, B-polypeptide, 
C-polypeptide, and D-polypeptide chains. Defects in one 
of the PDGF A/B/C/D and PDGFR α/β genes are reported 
in up to 30% of cancer patients, depending on the type of 
cancer.64 It is also reported that PDGF upregulates 
(in vitro) the expression of C-type lectin-like receptor 
member 2(CLEC-2) on DCs which in turn induce the 
polarization of T cells towards FoxP3 regulatory 
T cells.65 Together, PDGF gain-of-function mutations pro-
mote both cancer growth and Treg proliferation.

BRAF – The BRAF gene which is located on the long arm 
of chromosome 7 encodes for a cytoplasmatic serine/threonine 
protein kinase (B-Raf). The wild type of this gene is commonly 
involved with normal processes of cell differentiation, growth, 
and apoptosis, downstream within the ERK/MAPK signaling 
pathway. On the other hand, BRAF gain-of-function mutations 
are oncogenic.66 BRAF somatic missense mutations are 
reported in 66% of the malignant melanomas and at lower 
frequencies in other malignancies. The V600E mutation 
(where valine (V) is substituted by glutamic acid (E) at 
amino acid 600 of the BRAF gene) accounts for 80% of 
BRAF mutations observed in cancers.67 It is also reported 
that BRAFV600E controls Treg recruitment to melanoma 
skin sites.68 Hence, BRAFV600E mutation in melanocytes 
has a double effect: inducing melanoma and recruiting Tregs 
to melanoma cutaneous sites.

BCR-ABL1 – The fusion gene BCR-ABL1 is gener-
ated by reciprocal translocation of genetic material 
between chromosome 9 and chromosome 22 where the 
ABL1 gene on chromosome 9 and the BCR gene on 
chromosome 22 code for a hybrid protein that is continu-
ously active, inducing uncontrolled division of cells. The 
mutation is found in all CML patients and in 11%-29% of 
acute lymphoblastic leukemia (ALL) adult patients.69

Using a mice model, it was demonstrated that BCR- 
ABL1+ leukemia induces the conversion of anti-BCR- 
ABL1 specific T cells into Treg cells, a process that 
inhibited an anti-leukemic immune response. The conver-
sion was mediated via MHC-II antigen presentation by 
leukemia cells.70 Hence, the BCR-ABL1 hybrid protein 
drives BCR-ABL +leukemia while this type of leukemia 
promotes Treg proliferation.

PIKs Drive Both a Direct Pathogenic 
Effect and a “Low Treg” Immune 
Response in Autoimmune Diseases 
and MPNs
Deregulated activity of protein kinases is implicated in the 
pathogenesis of many autoimmune diseases, mainly via the 
JAK/STAT signaling pathway.44 As mentioned above, all four 
members of the JAK family present a pro-inflammatory 
profile.

Autoimmune diseases are typical “low Treg” diseases, 
since Treg function is impaired in many autoimmune 
diseases.71 As presented below, JAKs deregulation may inflict 
direct tissue damage in autoimmune diseases, and directly 
promotes cancer cell proliferation in “low Treg” malignancies:

Psoriasis: Histologically, psoriasis is characterized by 
keratinocyte hyperproliferation and deregulated differen-
tiation, hyperplastic dilated blood vessels, and inflamma-
tory leukocytes infiltration, mainly into the dermis. Even 
though psoriasis is considered to be a T cell-driven auto-
immune disease where T cells, in particular Th17 cells, 
play a dominant pathogenic role in the initiation and 
sustainment of the disease,72 JAK1 and JAK2 as well as 
STAT1 and STAT3 are expressed by keratinocytes73 and 
may directly affect pathogenicity. The JAK1/JAK2/STAT1 
and JAK1/TYK2/STAT3 pathways triggered by IFN-γ and 
IL-22, respectively, are aberrantly activated in psoriasis. 
A pretreatment with Tofacitinib, a JAK1/JAK3 inhibitor 
that impedes JAK phosphorylation, has been shown to 
restore normal proliferative and differentiation in psoriatic 
keratinocyte cultures stimulated with either IFN-γ or IL- 
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22.74 Since no immune cells were present in the culture, 
this study demonstrated a direct effect of JAKs located 
within keratinocytes on psoriasis pathology.

Rheumatoid arthritis: Even though RA is initiated and 
propagated by a deregulated immune response, ie, by an 
autoimmune reaction, activated synovial fibroblasts con-
tribute to the pathogenicity by the secretion of inflamma-
tory cytokines that damage the cartilage and by the 
recruitment of immune cells that augment the inflamma-
tion within joints and cause pain and disability. An experi-
mental inhibitor of TGFβ-activated kinase 1 (TAK1) was 
able to block fibroblasts activation in ex vivo cultures of 
synovial fibroblasts from RA patients.75 This experiment 
indicates that a serine/threonine kinase, TAK1, mediates 
synovial fibroblast activation directly in RA without an 
involvement of the immune system.

BCR-ABL1 negative myeloproliferative neoplasms 
(MPNs): As mentioned above, a JAK2 mutation 
(JAK2V617F) that promotes the proliferation of myeloid 
tissue cells is the main driver of these “low Treg” 
cancers.76

Taken together, PIK hyperactivation induces both 
a direct pathogenic effect on affected tissues (skin lesions 
in psoriasis, joints in RA, tumor tissue in MPNs) and 
a pro-inflammatory immune reaction.

Diseases Driven by AIKs are 
Associated with “High Treg” 
Pathogens
It is expected that diseases triggered by AIK hyperactivity 
(most solid cancers) will be associated with “high Treg” 
pathogens, since both proliferate under anti-inflammatory 
conditions. Here are examples of two AIK-driven solid 
cancers, and their associated pathogens:

Renal Cell Carcinoma (RCC)
Treg frequency in the TME of RCC is higher than Treg 
frequency in the peripheral blood, and a higher Treg fre-
quency in RCC correlates with a poorer prognosis.77 This 
indicates a “high Treg” disease driven by AIKs.

Vascular endothelial growth factor (VEGF) is a growth 
factor that promotes RCC by inducing vasculature growth 
that is vital for cancer cell proliferation. VEGF or VEGFR 
inhibitors (eg, axitinib or bevacizumab) are efficacious in 
the treatment of RCC. There was a statistically significant 
advantage of axitinib over sorafenib (another VEGFR 
inhibitor) in prolonging the progression-free-survival 

period in RCC.78 A combination treatment of {IFNα-2a 
+ bevacizumab} was superior to {IFNα-2a + placebo} in 
prolonging the progression-free-survival period and 
increasing the tumor response rate in advanced and/or 
metastatic RCC.79 Axitinib and bevacizumab suppress 
Treg frequency in the circulation (Table 1), indicating 
that VEGFR is an anti-inflammatory kinase.

RCC is associated with hepatitis C virus (HCV), 
Epstein-Barr virus (EBV), and probably with human papil-
lomavirus (HPV). A meta-analysis of seven observational 
studies found a pooled relative risk (RR) of 1.86 for RCC 
among HCV positive participants.80 EBV was detected in 
31% of tissue samples from 71 patients with histologically 
proven RCC compared with 4.2% of samples from peritu-
moral tissue.81 Shimakage et al found that the expression 
of EBV may be involved in the pathogenesis of RCC.82 

There is some research pointing to an association between 
HPV and RCC but the results are controversial.83 In line 
with this, HCV, EBV (in the context of gastric cancer, and 
probably other solid cancers, see below) are “high Treg” 
pathogens. HPV is also a “high Treg” pathogen.8

Non-Small-Cell Lung Carcinoma 
(NSCLC)
Peripheral Treg frequency increases in NSCLC patients and it 
is positively correlated with a worse prognosis.84 In addition, 
tumor-infiltrating Tregs are associated with worse recurrence- 
free survival in NSCLC.85 It follows that NSCLC is a “high 
Treg” disease. EGFR mutations drive 10–35% of NSCLC. 
Fibroblast growth factor receptor 1 (FGFR1) gene amplifica-
tion affects 20% of patients. Up to 7% of NSCLC patients have 
EML4-ALK translocations or mutations in the ROS1 gene.86 

EGFR, ALK, ROS1, and FGFR1 are anti-inflammatory 
kinases since their inhibitors (erlotinib, crizotinib, and erdafi-
tinib) reduce Treg frequency or function (Table 1).

The relative abundance of only three bacteria, 
Bifidobacterium, Streptococcus, and Prevotellan, out of 32 
evaluated, demonstrated a statistically significant increase 
in lung cancer, compared with emphysema.87 All three 
demonstrate profiles characteristic of “high Treg” bacteria:

(a) Tregs are increased in the mucosa and spleen of mice 
following the consumption of Bifidobacterium infan-
tis which was proceeded by the injection with 
Salmonella typhimurium or with lipopolysaccharides. 
In vivo imaging revealed a profound inhibition of 
infection.88
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(b) Streptococcus pneumoniae (pneumococcus) 
induces CD8+CD28+ suppressive Tregs which pro-
duce IL-10 and TGF-β.89

(c) Prevotella inflammatory effects are site specific: the 
effect is pro-inflammatory when the inflammation site 
is in the guts (in inflammatory bowel disease, meta-
bolic syndrome, and AIDS), in the oral cavity (in 
periodontitis), in the joints (in RA), or in the vagina 
(in vaginosis). However, when the lungs are involved 
(in the settings of asthma and COPD) Prevotella has an 
anti-inflammatory (“high Treg”) role.90 The effect of 
Prevotlla is therefore expected to be anti-inflammatory 
in the lungs of NSCLC patients. In addition, 
a Prevotella histicola challenge increased Tregs in 
human leukocyte antigen (HLA) transgenic mice and 
suppressed experimental autoimmune encephalomye-
litis (EAE) in this model of multiple sclerosis.91

Viral DNA analysis of NSCLC tissue samples indicated 
the association of six viruses with NSCLC: Human papil-
loma virus (HPV), Hepatitis B virus (HBV), Human T-cell 
lymphotropic virus 2 (HTLV-2), Bovine leukemia virus 
(BLV), Y53 sarcoma virus, and Simian T-cell lymphotro-
pic viruses (STLV-1, 2, or 6).92 In addition, EBV probably 
plays a pathological role in NSCLC.93

HPV, HBV, and EBV (in the context of cancer) are “high 
Treg” viruses.8 No data related to HTLV-2, BLV, STLV, or 
Sarcoma virus effect on Tregs could be found. However, the 
first three viruses are closely related to HTLV-1, which is 
a “high Treg” virus.8

Diseases Driven by PIKs are (Mostly) 
Associated with “Low Treg” 
Pathogens
Similar to diseases triggered by AIKs, it is expected that 
diseases triggered by PIK hyperactivity (autoimmune dis-
eases and MPNs) will be associated with “low Treg” patho-
gens, since both are developed under pro-inflammatory 
conditions. Indeed, this expectation holds true for most patho-
gens associated with AIKs driven diseases. The association 
between “low Treg” pathogens and autoimmune diseases was 
discussed in earlier publications.8,9 Here we discuss the asso-
ciation between “low Treg” pathogens and MPNs.

In a recent paper, Landtblom et al performed a large 
population-based matched cohort study in Sweden includ-
ing 8363 MPN patients and 32,405 controls to assess the 
risk of infections in MPN patients. The following 

pathogens were found in MPNs population in 
a descending order of related hazard ratios (HR):

Pneumocystis jirovecii, Hepatitis B, Staphylococci, 
Streptococci, Haemophilus influenzae, Varicella zoster virus, 
Influenza, Escherichia coli, Mycobacterium tuberculosis 
(Mbt).94

As shown below, out of these nine pathogens asso-
ciated with MPNs, six are “low Treg”, two (viruses) are 
“high Treg”, and one (bacterium) evolves from a “low 
Treg” to a “high Treg” pathogen as the disease progresses.

Pneumocystis jirovecii – As part of the host defense 
against this fungal pathogen, inflammatory cells are 
recruited into the lung tissue in order to prevent the devel-
opment of pneumonia.95 Moreover, pulmonary markers of 
inflammation correlate with the clinical severity of 
Pneumocystis jirovecii pneumonia.96 It seems that 
Pneumocystis jirovecii is a “low Treg” fungus that induces 
a strong inflammatory reaction, at least in the lungs.

Hepatitis B virus (HBV) - An expansion of regulatory 
T cells and impaired TCR signaling in newborns with 
HBV infection represent the immune tolerant state of the 
adaptive immune system.97 Hence, HBV is a “high Treg” 
virus.

Staphylococci – T cells exposed to Staphylococcus 
aureus (SA) release predominantly (but not solely) Th1 
and Th17 cytokines.98 Toll-like receptor (TLR)-2 on den-
dritic cells mounts this inflammatory response. However, 
TLR-2 on macrophages can modulate immunity against 
SA by inducing IL-10.99 It was demonstrated that IL-10 
shifts the Th1/Th17 balance towards Th17 response.100 

This is important since high serum levels of IL-10 in SA 
patients correlate with mortality.101 At any rate, whether 
Th1 or Th17 prevails, the immune reaction is pro- 
inflammatory (“low Treg”).

Streptococci –S. pyogenes induce mainly Th17 
reaction,8 ie, it is a “low Treg” bacterium.

Haemophilus influenzae – These bacteria drive Th17 
immune responses that promote the development of neu-
trophilic inflammation and suppress eosinophilic inflam-
mation during allergic airways disease.102,103 Guan et al 
have shown in a mice model of chronic obstructive pul-
monary disorder (COPD) that non-typeable H. influenzae 
impairs Treg function, which facilitates the development 
of inflammatory acute exacerbation of the disease.104 

H. influenza is a “low Treg” bacterium, at least in pulmon-
ary disorders.

Varicella zoster virus – “The proportion of circulating 
Th17 cells and the Th17/Treg cell ratio were significantly 
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higher in patients with herpes zoster than controls”.105 

This indicates a “low Treg” response.
Influenza A virus – The ability of influenza virus-induced 

regulatory T cells to suppress antigen-specific CD4+ and 
CD8+ T cell proliferation and cytokine production correlates 
closely to their ability to respond to influenza virus antigens, 
suggesting that virus-induced Tregs are capable of attenuat-
ing effector responses in an antigen-dependent manner.106

A mice model demonstrated the inhibition of Th17 activity 
against bacterial pneumonia by Influenza A virus.107 It there-
fore seems that Influenza A virus is a “high Treg” pathogen.

Escherichia coli – When administered parenterally, 
Escherichia coli heat-labile enterotoxin (LT) promotes Ag- 
specific IL-17, as well as IFN-γ, IL-4, and IL-10 production 
in response to coadministered Ags. When added as an adju-
vant to pertussis vaccine, LT induces the development of Ag- 
specific Th17 cells that mount protection against a challenge 
with Bordetella pertussis bacteria.108 This indicates a “low 
Treg” effect of E. coli when administered parenterally.

Mycobacterium tuberculosis (Mtb) – Mtb induces an 
increase in Tregs, Th1, and Th17 cell frequencies. However, 
the Th17/Treg ratio increases in active tuberculosis (TB) 
patients relative to latent TB or healthy controls.109 Th1 cells 
in blood and lungs of TB patients predominate over Th17 and 
{Th17Th1} cells.110 In fact, IFNγ release assays (in response to 
exposure of blood samples to TB antigens) are used for the 
diagnosis of TB.111 In a meta-analysis of 9 studies, Li et al 
demonstrate that BCG anti-TB vaccination induced dramati-
cally high level of IL-17 and IFNγ. The levels of these cyto-
kines were lower during active disease than in healthy controls 
or during latent disease. IL-17 was lower during latent disease 
compared to healthy controls.112 It seems therefore that TB 
starts as a “low Treg” disease and continuously evolves to 
a “high Treg” disease. In line with this, TGFβ (but not IFNγ 
or TNFα or IL-4) was highly expressed in tuberculous granu-
lomas which are a late-stage symptom of TB.113 High TGFβ 
activity is a hallmark of active pulmonary TB.114 This evolve-
ment from a “low Treg” to a “high Treg” disease can be 
compared to cirrhosis-associated immune dysfunction pheno-
types switching from predominantly “pro-inflammatory” to 
predominantly “immunodeficient” in patients with stable asci-
tic cirrhosis and in patients with acute-on-chronic liver 
failure.115

As mentioned above, “low Treg” pathogens are expected to 
be associated with PIK-driven diseases. Six out of nine infec-
tious agents associated with MPNs according to the popula-
tion-based study are “low Treg” pathogens. Two viruses 
associated with MPNs are “high Treg”. This can be explained 

by the intracellular replication of viruses which shelters them 
from the inflammatory environment, at least for part of their 
life cycle. This way “high Treg” viruses like HBV and 
Influenza A virus can survive the hostile inflammatory envir-
onment of MPNs. It should be added that the data presented by 
Landtblom et al could be affected by the anti-MPN drugs used 
during the study. However, reviewing the data, it seems that 
treatment with hydroxyurea, interferon alpha, or anagrelide 
does not affect the risk of infection, compared to the risk in 
untreated patients (Ref. 94, Tab. 4). The evaluated hazard ratios 
for infection in this work are good estimates of the values in 
untreated patients (versus matching controls without MPN) 
since about 49% of the patients were not treated with any 
drug, and about 37% of the patients used one of these three 
agents, with HR=1 versus untreated patients.

Out of the nine drugs used by the patients participating in 
this study, ruxolitinib (which was used only in primary mye-
lofibrosis patients) demonstrated the largest hazard ratio for 
the development of infection. This can be related to the anti- 
inflammatory effect of ruxolitinib, mediated by the increasing 
number of Tregs.

Pathogens That Activate Both AIKs 
and PIKs Can Induce Both “High 
Treg” Cancers and Autoimmune 
Diseases
Helicobacter pylori – Src homology region 2 domain- 
containing phosphatase-2 (SHP-2) is a protein tyrosine- 
phosphatase. Activating SHP-2 mutations have been 
observed in many “high Treg” cancers such as neuroblas-
toma, melanoma, acute myeloid leukemia, breast cancer, lung 
cancer, and colorectal cancer.116 Glycoprotein 130 (gp130) is 
a transmembrane protein that constitutes a subunit of the type 
I cytokine receptor within the IL-6 receptor family. 
Glycoprotein 130 modulates the balance between the SHP- 
2/ERK and JAK/STAT pathways.117 The Helicobacter pylori 
protein CagA can undergo tyrosine phosphorylation follow-
ing its entry into human gastric epithelial cells and switch this 
balance towards the SHP-2/ERK anti-inflammatory (“high 
Treg”) pathway, promoting gastric cancer. However, in its 
unphosphorylated state, CagA skews the balance towards the 
pro-inflammatory (“low Treg”) path.117 In line with this, 
H. pylori infection is associated with autoimmune atrophic 
gastritis118 and Grave’s disease,119 two autoimmune diseases. 
Clinical improvements following H. pylori eradication was 
reported in two other autoimmune diseases: immune throm-
bocytopenic purpura and psoriasis.120
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Epstein-Barr virus – Epstein–Barr virus latent mem-
brane protein 1 (LMP1) is an EBV oncogenic protein that 
activates several cellular pathways in cervical carcinoma 
and B cell lymphoma. In particular, LMP1 induces EGFR 
expression121 and activates the RAF/MEK/ERK/MAPK 
pathway122 in cervical carcinoma cell lines. The latter 
pathway has shown to regulate epithelial cell motility 
and invasion.122 In addition, LMP1 induces the PIK3/ 
AKT pathway in cervical carcinoma cell line.123 All 
these pathways promote an anti-inflammatory reaction 
by the immune system (a “high Treg” response). At the 
same time, LMP1 has been shown to activate the JAK/ 
STAT pathway in EBV-associated post-transplant B-cell 
lymphoma.124 As discussed above, this is a pro- 
inflammatory (“low Treg”) pathway. Moreover, a JAK1/ 
3 inhibitor, tofacitinib, inhibited tumor growth in EBV- 
associated lymphoma T cells and natural killer cells.125 

Indeed, there is evidence implicating the involvement of 
EBV in 6 autoimmune diseases: MS, SLE, RA, Sjӧgren 
syndrome, autoimmune liver disease, and autoimmune 
thyroiditis.126 These are all “low Treg” diseases. EBV is 
also involved with several types of lymphomas: Burkitt’s 
lymphoma, Hodgkin lymphoma, and lymphoproliferative 
disease in immunocompromised hosts.126 It has been 
shown that lymphoma starts as a “low Treg” disease, 
and can dwell in this state for several years, before 
aggressive disease develops.9 In addition, EBV is 
involved in the etiology of nasopharyngeal carcinoma 
and gastric carcinoma.126 Tumor-infiltrating Tregs corre-
late with a poor prognosis in gastric cancer but no sta-
tistically significant correlation was observed for 
oropharyngeal cancer.127 Hence, gastric cancer can be 
classified as a “high Treg” solid cancer, while more 
data are needed for the classification of oropharyngeal 
cancer.

“High Treg” Viruses Activate Anti- 
Inflammatory Protein Kinases and 
Inhibit the Pro-Inflammatory JAK/ 
STAT Pathway
EGFR – EGFR is activated by Influenza virus, Rhinovirus 
(RV), Cytomegalovirus (CMV), EBV, and HCV.128

VEGFR – The following viruses: EBV, HBV, HCV, HPV, 
Herpes Simplex Virus 1 (HSV-1), Kaposi’s sarcoma herpes-
virus (KSHV), and Dengue virus upregulate VEGF (VEGFR 
ligand).129

PDGFR – Human CMV glycoprotein B interacts 
directly with PDGFR-alpha, resulting in receptor tyrosine 
phosphorylation.130

MAPK – MAPK/ERK signaling is stimulated by BK poly-
omavirus (BKPyV), human adenovirus, EBV, HBV, HPV, 
herpes simplex virus 1 (HSV-1), herpes simplex virus 2 
(HSV-2), JC polyomavirus (JCPyV), KSHV, and Vaccinia 
virus (VACV).131

RAF kinase – The HBx protein of HBV is a small tran-
scriptional trans-activator that is essential for HBV-mediated 
liver carcinogenicity. HBx upstream activation of the Ras-Raf- 
MAP kinase signaling pathway was found to be essential for 
downstream activation of AP-1 and NF-kB.132

Src family kinases – Activation of Src by HBV-related 
HBx protein is essential for activation of the Ras-Raf-MAPK 
pathway.133

EBV (in the context of cancer), HCV, HBV, HPV, 
HSV-1, KSHV, BKPyV are all “high Treg” viruses,8 

Influenza A virus is also “high Treg” virus,106 and so is 
human adenovirus.134 RV induced a “high Treg” reaction 
in PBMC of blood samples taken from healthy children, 
following in vitro stimulation by peptides containing spe-
cies-specific VP1 epitopes of RV, but induced a “low 
Treg” reaction in PBMC samples of asthmatic 
children.135 CMV induces CD4+CD27−CD28− T cells 
that have regulatory (Treg) function.136 Treg frequency 
was expanded in patients with Dengue virus infection 
relative to healthy controls but no relationship was 
observed between Treg frequency and clinical disease 
severity or the degree of viraemia indicating Tregs with 
poor suppressive function.137 Vaccinia virus is a “low 
Treg” virus.138

Many of these “high Treg” viruses that activate AIKs, as 
presented above (HBV, HCV, HPV, human adenovirus, HSV- 
1, KSHV, Vaccinia virus, CMV, Influenza A virus) also inhibit 
the JAK/STAT signaling pathway.139

“Low Treg” Pathogens Activates 
JAK1 and JAK2
Some “low Treg” pathogens induce host cells IFNγ pro-
duction, as part of host defense against the invader:

Both Chlamydia and Mycobacterial infections induce 
host CD4+T cells to secrete IFNγ.140

Recognition of Varicella Zoster virus by host cells 
drives IFNγ production by immune cells like DCs and 
CD4+T cells.141
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IFNγ generated by T cell lymphocytes is regarded as 
a key cytokine in the combat against Staphylococcus 
Aureus infections.142

All four pathogens are “low Treg” pathogens (see 
Diseases Driven by PIKs are (Mostly) Associated with 
“Low Treg” Pathogens of this work and ref.81).

At the same time, INFγ receptor activates JAK1 and 
JAK2 when binding to its ligand.35

By Activating Anti-Inflammatory 
Kinases, Alcohol Consumption 
Lowers the Risk of Some “Low Treg” 
Diseases but Increases the Risk of 
“High Treg” Diseases
Acute alcohol drinking activates the Src family of kinases that 
in turn activates STAT3 to promote IL-10 production in human 
monocytes.143 This pathway is an anti-inflammatory pathway. 
As such, alcohol drinking is expected to confer protection 
against “low Treg” conditions. Indeed, alcohol consumption 
reduces the risk of autoimmune hypothyroidism,11 of non- 
Hodgkin’s lymphoma,144 and of type-2 diabetes in men.145 

Non-Hodgkin’s lymphoma is a “low Treg” disease during the 
long indolent stage of the disease.9 Type-2 diabetes is a “low 
Treg” disease.146

On the other hand, alcohol drinking increases the risk of 
16 out of 21 types of solid cancers investigated. The 
increased risk correlates positively with daily alcohol dose.10

JAK1 Gain-of-Function Mutations are 
Frequent in “Low Treg” Diseases 
While Loss-of-Function Mutations 
are Frequent in Diseases with 
Increased Tumor-Infiltrating Tregs
Gain-of-function JAK1 mutations probably drive diverse “low 
Treg” diseases, since the non-selective JAK1 inhibitors tofaci-
tinib, ruxolitinib, baricitinib and the selective JAK1 inhibitor, 
upadacitinib, are FDA approved for the treatment of “low 
Treg” diseases like: RA, PsA, ulcerative colitis, myelofibrosis 
and polycythaemia vera. JAK1 gain-of-function was reported 
in psoriasis.147 JAK1 gain-of-function mutations resulted in 
complex autoinflammatory syndrome,148 in hypereosinophilic 
syndrome,149 in myeloproliferative neoplasm.150

Loss-of-function JAK1 mutations occurred at high fre-
quency in endometrial, colorectal, gastric, and prostate 
carcinomas.151,152 All of these four solid cancers demonstrate 
increased infiltration of Tregs into the TME and increased Treg 

frequency in peripheral blood.153–156 The infiltration of Tregs 
into the TME correlates with poor prognosis in gastric and 
prostate carcinomas,127 classifying them as “high Treg” dis-
eases. However, the prognostic value of Treg infiltration into 
the TME is controversial in the case of endometrial cancer152 

while Treg infiltration correlates with favorable prognosis in 
the case of colorectal cancer.157 For this reason, these two 
cancers cannot be classified as “high Treg” diseases.

Discussion
It seems that the pathogenic effect of protein kinase 
deregulated activity is double:

A direct pathogenic effect which involves the affected 
tissue, and an indirect effect mediated by the immune system 
reaction (a pro- or anti-inflammatory response). It is possible 
that this double effect is needed to promote pathogenicity.

This paper classifies protein kinases as anti- or pro- 
inflammatory kinases depending on whether they drive 
“high Treg” or “low Treg” diseases. This does not mean 
that a kinase classified as anti-inflammatory, since it drives 
cancer, would not promote a pro-inflammatory response in 
the setting of autoimmune diseases. Similarly, a pro- 
inflammatory kinase, defined as such in the setting of 
autoimmune disease may promote an anti-inflammatory 
response in cancer.

Indeed, there are data indicating the involvement of 
AIKs in the pathogenicity of autoimmune diseases in 
addition to their frequently reported activity in “high 
Treg” diseases. For example, imatinib, an AIK inhibitor, 
showed efficacy in a RA murine model.158 Imatinib was 
also found effective in the treatment of RA and spondy-
loarthritis in small-scale clinical trials.159,160 Similarly, 
topical sunitinib (VEGFR and PDGFR inhibitor) alleviated 
psoriasis-like inflammation in mouse model,161 and intra- 
gastric administration of lapatinib (EGFR and HER2 inhi-
bitor) ameliorated arthritis in a rat model.162 However, no 
large-scale clinical trials that study the effect of AIK 
inhibitors on “low Treg” diseases have been published.

Likewise, there are data indicating the involvement of PIKs 
in “high Treg” cancers, in addition to their frequently reported 
activity in “low Treg” diseases. For example, a JAK1/2 inhi-
bitor, ruxolitinib, inhibited tumor angiogenesis and prolonged 
survival in genetically engineered murine models of pancreatic 
cancer.163 In addition, ruxolitinib blocked tumor growth in 
another murine pancreatic model.164 The combination of 
momelotinib, a JAK1/2 and TBK1 inhibitor, with a MEK 
inhibitor, induced regression of an aggressive murine lung 
adenocarcinoma driven by KRAS mutation and p53 loss.165
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Despite these preclinical studies indicating the efficacy of 
JAK inhibitors in controlling solid cancers, JAK inhibitors 
failed to improve efficacy in clinical trials when added to an 
approved treatment:

(a) The combination of the JAK1/2 inhibitor momelo-
tinib with trametinib (MEK inhibitor) was not 
superior to trametinib monotherapy in KRAS- 
mutated NSCLC (on the basis of historic data).166

(b) The triple combination of the JAK1/2 inhibitor 
momelotinib, gemcitabine, and nab-paclitaxel in 
patients with previously untreated metastatic pancrea-
tic ductal adenocarcinoma showed no superiority in 
prolonging patients survival over the combination of 
gemcitabine and nab-paclitaxel.167

(c) The combination of regorafenib and ruxolitinib did not 
prolong survival of colorectal cancer patients compared 
to the combination of regorafenib and placebo.168

Furthermore, ruxolitinib prolonged survival of meta-
static pancreatic cancer patients when added to 

capecitabine in a Phase II study169 but failed to do so in 
a Phase III study.170

To date, there is no AIK inhibitor approved for the treat-
ment of autoimmune diseases, and no PIK inhibitor approved 
for the treatment of “high Treg” cancers. In other words, no 
kinase inhibitor has been approved (so far) for the treatment of 
both, autoimmune diseases and “high Treg” cancers.

It might be thought that JAK inhibitors are not effective 
enough in treating “high Treg” cancers because of their anti- 
inflammatory effect. Similarly, it might be thought that AIK 
inhibitors are not effective enough in the treatment of auto-
immune diseases because of their pro-inflammatory effect. 
However, imatinib (a PIK) reduced inflammation in murine 
collagen-induced arthritis by inhibiting mast cell production of 
pro-inflammatory cytokines156 and behaved as AIK. 
Therefore, it is possible that the same protein kinase inhibitor 
will have opposite effects on the immune reaction (ie, switch 
from PIK to AIK or vice versa), depending on the type of 
disease.

The distinctive properties of AIKs and PIKs are sum-
marized in Table 3 and Figure 1.

Table 3 The Distinctive Properties of AIKs and PIKs

Anti-Inflammatory Kinases (AIKs) Pro-Inflammatory Kinases (PIKs)

EGFR, VEGFR, PEGFR, VEGFR, BCR-ABL1, ALK, KIT, DDR, BRAF (a 

partial list)

JAK1, JAK2, JAK3, TYK2, SYK

“high Treg” diseases “low Treg” diseases

Most solid cancers, CLL, ALL, MCL, CML, AMD Autoimmune diseases, MPNs

Direct pro-tumor effect + anti-inflammatory effect Direct tissue damage + pro-inflammatory effect

Diseases driven by AIKs are associated with “high Treg” pathogens Diseases driven by PIKs are associated with “low Treg” pathogens

“High Treg” pathogens activate AIKs “Low Treg” pathogens activate PIKs
“High Treg” pathogens inhibit PIKs

Pathogens that activate both AIKs and PIKs induce both “high Treg” 

cancers and autoimmune diseases

Pathogens that activate both AIKs and PIKs induce both “high Treg” 

cancers and autoimmune diseases

Alcohol activate the Src family of kinases (AIKs) Alcohol activate the Src family of kinases (AIKs)

Alcohol consumption increases the risk of “high Treg” cancers Alcohol consumption decreases the risk of some autoimmune diseases

JAK1 loss-of-function mutations are frequent in diseases with high 

tumor-infiltrating Tregs

JAK1 gain-of-function mutations are frequent in “low Treg” diseases

AIK inhibitors are approved for the treatment of “high Treg” cancers 

but not for the treatment “low Treg” diseases (such as autoimmune 
diseases and MPNs).

PIK inhibitors (JAK inhibitors) are approved for the treatment of “low 

Treg” diseases (autoimmune diseases and MPNs) but not for the 
treatment “high Treg” cancers.

Can AIK inhibitors treat “low Treg” diseases (autoimmune diseases for 
example)?

Can PIK inhibitors (JAK inhibitors) treat “high Treg” cancers?

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                

Journal of Inflammation Research 2021:14 940

Elkoshi                                                                                                                                                                 Dovepress

http://www.dovepress.com
http://www.dovepress.com


Summary
A division of protein kinases into anti- and pro- 
inflammatory classes is proposed as a molecular model 
that can explain the unique immunological properties of 
“high Treg” diseases versus those of “low Treg” diseases. 
Promotion of Treg activity by anti-inflammatory kinases 
drives most cancers; suppression of Treg activity by pro- 
inflammatory kinases drives autoimmune diseases and 
MPNs. It has been demonstrated that protein kinases 
directly promote diseases b y activating pathogenic path-
ways within the affected tissue cells, and indirectly, 
through the mediation of the immune system. Diseases 
driven by each class of kinases are associated with 
a specific group of pathogens that activate these kinases. 
“High Treg” pathogens activate anti-inflammatory kinases 

while “low Treg” pathogens activate pro-inflammatory 
kinases. Pathogens that activate both anti- and pro- 
inflammatory kinases promote both cancers and autoim-
mune diseases. Alcohol activates anti-inflammatory 
kinases. This explains why alcohol consumption increases 
the risk of most cancers but confers protection against 
some autoimmune diseases. Gain-of-function or loss-of- 
function mutations of the same protein kinase may induce 
“low Treg” or “high Treg” diseases. No protein kinase 
inhibitor has been approved so far for the treatment of 
both “high Treg” cancers and autoimmune diseases, in 
spite of some promising pre-clinical and small-scale clin-
ical studies. It is still unclear whether this regulatory 
situation is incidental and may be breached in the future 
or is it a consequence of a rule of general validity (ie, that 

Figure 1 A summary diagram of the protein kinase binary classification model and the related findings. 
Abbreviations: EGFR, endothelial growth factor receptors; VEGFR, vascular endothelial growth factor receptors; PDGFR, platelet-derived growth factor receptors; FGFR, 
fibroblast growth factor receptors; ALK, anaplastic lymphoma kinase; JAK, Janus kinases; SYK, spleen tyrosine kinase; CLL, chronic lymphoid leukemia; ALL, acute 
lymphoblastic leukemia; MCL, mantle cell lymphoma; CML, chronic myelogenous leukemia; AMD, age-related macular degeneration.
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the two classes of inhibitors are mutually exclusive with 
respect to the diseases they may treat).
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