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Abstract

Introduction Plasma triglyceride levels are a risk factor for

coronary heart disease. Triglyceride metabolism is well

characterized, but challenges remain to identify novel paths

to lower levels. A metabolomics analysis may help identify

such novel pathways and, therefore, provide hints about

new drug targets.

Objectives In an observational study, causal relationships

in the metabolomics level of granularity are taken into

account to distinguish metabolites and pathways having a

direct effect on plasma triglyceride levels from those which

are only associated with or have indirect effect on

triglyceride.

Method The analysis began by leveraging near-complete

information from the genome level of granularity using the

GDAG algorithm to identify a robust causal network over

122 metabolites in an upper level of granularity. Knowing

the metabolomics causal relationships, we enter the

triglyceride variable in the model to identify metabolites

with direct effect on plasma triglyceride levels. We carried

out the same analysis on triglycerides measured over five

different visits spanning 24 years.

Result Nine metabolites out of 122 metabolites under

consideration influenced directly plasma triglyceride

levels. Given these nine metabolites, the rest of metabolites

in the study do not have a significant effect on triglyceride

levels at significance level alpha = 0.001. Therefore, for

the further analysis and interpretations about triglyceride

levels, the focus should be on these nine metabolites out of

122 metabolites in the study. The metabolites with the

strongest effects at the baseline visit were arachidonate and

carnitine, followed by 9-hydroxy-octadecadenoic acid and

palmitoylglycerophosphoinositol. The influence of arachi-

donate on triglyceride levels remained significant even at

the fourth visit, which was 10 years after the baseline visit.

Conclusion These results demonstrate the utility of inte-

grating multi-omics data in a granularity framework to

identify novel candidate pathways to lower risk factor

levels.

Keywords Metabolomics � Causal network � Genome

DAG � Triglyceride levels � Confounder � Direct effect

1 Introduction

Plasma triglyceride levels are a risk factor for coronary

heart disease (Hokanson and Austin 1996; Fontbonne et al.

1989). Triglyceride levels are negatively correlated with

high density lipoprotein (HDL)-cholesterol levels, and

considerable attention has been placed on therapeutics that

raise HDL-cholesterol levels (Nicholls et al. 2011). Recent

Mendelian randomization studies, however, have cast

doubt on the role of HDL-cholesterol as a causative risk

factor for CHD (Voight et al. 2012) and refocused effort on

triglyceride levels. Triglyceride metabolism is well char-

acterized, but challenges remain to identify novel paths to

lower plasma triglyceride levels. A metabolomics analysis

may help identify such novel pathways and, therefore,
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provide hints about new drug targets. Metabolomics pro-

vides a powerful tool to better understand cellular and

organismal lipid metabolism (German et al. 2007).

The metabolome consists of hundreds of correlated

compounds, and there is considerable information in the

metabolomics network that is not contained in the levels of

individual metabolites (Gao et al. 2010; Karnovsky et al.

2012). Analyses of individual metabolites do not provide

information about likely targets of intervention because of

co-linearity among the metabolites, confounders among

metabolites, and likely untoward effects. Even by fitting

triglyceride on all metabolites simultaneously, the coeffi-

cients cannot be interpreted as true effects due to collinearity.

One approach to directly incorporate relationships among

the metabolome during the analysis of risk factor levels (e.g.

triglycerides) is to consider networks. The importance of

considering biologic networks in relation to human disease

have been widely discussed (e.g. Vidal et al. 2011; Barabasi

and Oltvai 2004). In observational studies, there have been

few practical applications. Some examples of using genomic

variations to identify causal relationships among phenotypes

in observational studies are found in Zhu et al. (2007),

Gomez-Cabrero et al. (2014), Barupal et al. (2012), Inouye

et al. (2010) and Schadt et al. (2005).

In this study, we integrate genomics, metabolomics, and

triglyceride risk factor of disease using the GDAG algorithm.

By integrating data from different granularities and using

knowledge about causal relationship between granularities,

we are able to achieve causal inference that is less susceptible

to confounding by hidden variables and, as a result, estimate

robust causal networks which are well anchored to domain

knowledge. TheGDAGalgorithmextracts information across

the genome to create strong instrumental variables for gen-

erating robust causal relationships among metabolites (Yaz-

dani et al. 2016b). Extracting information across the genome

provides sufficient and reliable information so that there is no

need to limit the number of metabolites under consideration.

Using the genome granularity to identify causal relationships

among metabolomics level of granularity is based on Men-

delian randomization, an established approach to identify

causal relationships. The algorithm then directly incorporates

metabolomics causal relationships during the analysis of

triglyceride levels. Taking the metabolomics causal network

into account and then finding metabolites with direct effects

on triglyceride levels, we can identify confounders at meta-

bolomics level and overcome collinearity amongmetabolites.

Therefore, we can identify novel intervention targets likely to

lower plasma triglyceride levels and perhaps disease risk.

Details of having causal inference in observational studies are

provided in online Appendix 1 (Dawid 2007; Rubin 2005;

Pearl 2009; Yazdani and Boerwinkle 2014). For terminology

in causality see Yazdani and Boerwinkle (2015).

2 Methods

2.1 Study sample and triglyceride measurements

Genomic, metabolomics and triglyceride data were avail-

able on a subset of the Atherosclerosis Risk in Commu-

nities (ARIC) study, a biracial longitudinal cohort of

15,792 middle-aged individuals who were randomly sam-

pled from four US communities and have been measured

for multiple risk factor phenotypes related to health and

chronic disease. A detailed description of the ARIC study

design and methods has been published elsewhere (The

ARIC Investigators 1989). The data presented here

includes 2479 African-American individuals from the

Jackson, MS field center having genomics, metabolomics,

and fasting plasma triglyceride levels.

Common single nucleotide polymorphisms (SNPs) were

genotyped using the Affymetrix platform (version 6.0)

consisting of 1,034,945 common variants spread across the

genome. We reduce the number of SNPs by considering the

fact that some SNPs are nearly perfectly correlated ([0.80)

with others, so that one SNP can thereby serve as a proxy

for many others in the analysis. To determine a proxy, we

use hierarchical clustering and the squared correlation

measure of linkage disequilibrium, for more details see

Yazdani and Dunson (2015). Metabolomics levels were

measured on fasting serum using a combination of gas

chromatography, liquid chromatography, and mass spec-

troscopy. The analysis presented here consists of 122

reliably measured metabolites with low levels of missing

data and normally distributed after transformation.

Triglyceride levels were measured from blood plasma

collected in the fasting state. Triglyceride levels were

measured enzymatically at five different visits during

24 years of follow-up; the serum metabolome was mea-

sured at visit 1. The number of individuals with metabo-

lomics data and examined at each visit is, respectively,

2479, 1920, 1629, 1398 and 700. After winsorising and

taking the logarithm, serum triglyceride levels followed a

normal distribution, which was the variable analyzed here.

2.2 Metabolomics and triglyceride causal network

In this study, we applied the GDAG algorithm, which is a

constraint-based algorithm, to generate a robust causal

network over 122 metabolites under consideration using

genome information. The GDAG algorithm first identifies a

topology (a network without direction) over the variables.

A missing edge between two nodes means the two corre-

sponding variables are independent given the rest of vari-

ables in the model. An edge between two nodes means that

the two corresponding variables are dependent given the
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rest of the variables under consideration. The only tuning

parameter in the GDAG algorithm is significance level,

alpha, which based on preliminary analyses is set to 0.001.

Directionality over the topology which have causal inter-

pretation is then identified using strong instrumental vari-

ables created by extracting information across the genome.

The genome strong instrumental variables identify causal

relationships over the 122 metabolites under consideration.

Online Appendix 2 details this multistep procedure and

online Appendix 3 visualizes the metabolomics causal

relationships.

Next, we integrate metabolomics granularity and

triglyceride variable using the GDAG algorithm. Given the

metabolomics causal network from the previous step, we

enter triglyceride levels into the model. We assess the

direct effect of each metabolite on triglyceride levels given

the metabolomics causal network which directly takes into

account confounders and allows for causal interpretations,

see online Appendix 1 (Yazdani et al. 2016a).

3 Results

Among the 122 metabolites in this analysis, nine metabo-

lites have direct effects on triglyceride levels at visit 1.

Figure 1 depicts the relationship among the nine metabo-

lites with direct effects and ten metabolites with indirect

effect on triglyceride levels. These nine metabolites

directly influenced triglyceride levels after conditioning on

the other metabolites in the study and are circled in red in

online Appendix 3 to show their location in the overall

metabolomics network. Given these nine metabolites, the

rest of metabolites in the study do not have a significant

effect on triglyceride levels at significance level

alpha = 0.001.

We next investigated the effect of the nine metabolites

measured at the baseline examination (i.e. visit 1) on

fasting plasma triglyceride levels measured at each study

visit. Table 1 provides the names and select biologic

characteristics of the nine metabolites ordered by the

p value testing the relationship of each with triglyceride

levels at visit 1. Not surprisingly, the most common

super-pathway is lipid metabolism. None of the nine

metabolites are long chain fatty acids. The metabolite

with the strongest relationship was arachidonate, a

derivative of arachidonic acid. The ARIC study has had

multiple examination from 3 to 15 years apart, and the

metabolomics data were collected at the baseline exami-

nation (i.e. visit 1). The baseline metabolites with the

strongest relationship with triglyceride were arachidonate

and carnitine, followed by 9-hydroxy-octadecadenoic acid

(9-HODE) and palmitoylglycerophosphoinositol. It is of

note that the baseline aracidonate metabolite had a pro-

found relationship with triglyceride levels at each of the

first four visits. There was no metabolite that significantly

influenced triglyceride levels after 24 years at visit 5 (data

not shown).

We measured the effect of each metabolite on baseline

triglyceride levels given the overall metabolomics network.

Details about effect measurement are provided in online

Appendix 1. The results are shown in Table 2. To facilitate

comparison across time and among metabolites, these total

effects are presented in standard deviation units. Glycine,

deoxycarnitine and glutamate had nominal effects on

triglycerides, and these effects were not significant after

adjusting for BMI.

Fig. 1 The metabolomics-

triglyceride statistical causal

network. This network

represents metabolites with

direct effect (shown in orange)

and indirect effect (shown in

pink) on triglyceride (shown in

green) (Color figure online)
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4 Discussion

We analyzed the relationship between a causal network

among 122 serum metabolites and plasma triglyceride

levels with the long-term purpose of identify potential

points of intervention within the metabolome, which may

translate into downstream lowering of triglyceride levels

and possibly reduced risk of cardiovascular disease. In this

analysis, causal inference in an observational study was

facilitated by incorporation of genomic information, which

provided robust direction relationships among the

metabolites. Based on these analyses, we identified nine

metabolites with a significant direct effect on triglyceride

levels. Given these nine metabolites, the rest of metabolites

in the study do not have a significant effect on triglyceride

levels at significance level alpha = 0.001. Therefore, in

this manuscript, we have focused on the presentation and

interpretation of these nine metabolites. Five of the nine

were in the lipid metabolism super pathway, and three of

the nine were in the amino acid super pathway. The four

metabolites with the largest effect on triglyceride were in

the lipid metabolism super pathway. The two metabolites

with the largest effects include arachidonate and carnitine.

The effects of arachidonate on triglycerides remained sig-

nificant 10 years after the original measurement of the

metabolome. Having a causal network between the

Table 1 Metabolites with direct effects on triglyceride levels ordered by the p value at visit 1

Metabolite name Super-pathway Sub-pathway Total effect p value

V1 V2 V3 V4

Arachidonate Lipid Long chain fatty acid 2.3e-17 1e-10 7.3e-9 3.2e-9

Carnitine Lipid Carnitine metabolism 1.4e-11 8.7e-3 6.5e-3 3.6e-3

9-HODE Lipid Fatty acid, monohydroxy 1.4e-7 2.3e-4 5.6e-3 2.7e-3

Palmitoylglycerophos-phoinositol Lipid Lysolipid 1.6e-6 1.4e-3 7.6e-3 5.9e-3

Urate Nucleotide Purine metabolism, urate metabolism 2.2e-5 8.3e-5 4.7e-4 5.9e-3

Isovalerylcarnitine Amino acid Valine, leucine and isoleucine metabolism 2.0e-4 7.6e-3 9.5e-2 8.7e-2

Glycine*(–) Amino acid Glycine, serine and threonine metabolism 3.4e-3 4.7e-3 2.4e-3 8.6e-3

Deoxycarnitine*(–) Lipid Carnitine metabolism 1.1e-3 1.2e-3 4.7e-3 5.3e-3

Glutamate* Amino acid Glutamate metabolism 4.1e-3 2.3e-3 2.4e-3 2.1e-3

– Metabolite with an inverse relationship with triglyceride levels

* Metabolite with no significant effect at level 0.001 after adjusting for BMI

Table 2 Metabolites with direct effect on triglycerides ordered by their effect sizes at visit 1

Metabolite name Super-

pathway

Sub-pathway Total effecta (SE)

V1 V2 V3 V4

Arachidonate Lipid Long chain fatty acid 0.17 (0.03) 0.13 (0.02) 0.16 (0.05) 0.18 (0.03)

Carnitine Lipid Carnitine metabolism 0.15 (0.04) 0.09 (0.03) 0.08 (0.03) 0.06 (0.04)

9-HODE Lipid Fatty acid, monohydroxy 0.12 (0.03) 0.12 (0.04) 0.07 (0.02) 0.10 (0.06)

Palmitoylglycerophos-

phoinositol

Lipid Lysolipid 0.10 (0.01) 0.07 (0.03) 0.01 (0.00) 0.06 (0.01)

Urate Nucleotide Purine metabolism, urate

metabolism

0.09 (0.01) 0.09 (0.01) 0.10 (0.03) 0.07 (0.01)

Isovalerylcarnitine Amino acid Valine, leucine and isoleucine

metabolism

0.09 (0.02) 0.08 (0.01) 0.03 (0.03) 0.05 (0.02)

Glycine Amino acid Glycine, serine and threonine

metabolism

-0.09 (0.02) -0.07 (0.01) -0.11 (0.04) -0.07 (0.03)

Deoxycarnitine Lipid Carnitine metabolism -0.08 (0.03) 0.03 (0.02) 0.11 (0.02) 0.09 (0.01)

Glutamate Amino acid Glutamate metabolism 0.07 (0.02) 0.05 (0.01) 0.04 (0.00) 0.03 (0.02)

a Effect sizes measured in standard deviation units to facilitate comparison
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metabolome and triglycerides, as opposed to only corre-

lations, allows one to identify potential points of inter-

vention, either pharmacologic or genetic, that would be

predicted to alter triglyceride levels. Traditionally, such

causal inference would only be possible in a clinical trials

setting, but the GDAG approach implemented here permits

such predictions in an observational setting.

In the current analysis, by integrating data from different

biological hierarchies, we were able to derive causal

inference that is less susceptible to confounding by hidden

variables and, as a result, estimate robust causal network

over metabolites in the analysis. We then applied the

metabolomics network to find metabolites with direct

effect on triglyceride levels. Multiple previous studies have

used both a priori defined and data-driven networks to

analyze metabolomics data (Gao et al. 2010; Karnovsky

et al. 2012; Grapov et al. 2015; Bartel et al. 2013; Krum-

siek et al. 2011). To our knowledge, this is the first

application that connects genomics, metabolomics, and risk

factors in an observational setting.

The metabolite with the largest effect on triglycerides is

arachidonate, which in vivo is often esterified to a glyc-

erophospholipid. Arachidonate is released from the phos-

pholipid by phospholipase A2-catalzyed hydrolysis. Lp-

PLA2 along with triglycerides are major determinants of

small dense LDL, a major cardiovascular disease risk

factor. In hamster feeding experiments, addition of

arachidonic acid to the diet increases blood triglyceride

levels (Whelan et al. 1995). In humans, there is consider-

able interest in the role of brain arachidonic acid in

membrane function and as a precursor for eicosanoids.

Infants fed arachidonic acid as a triglyceride or phospho-

lipid had increase brain and other organ arachidonic acid

accretion (Wijendran et al. 2002). The causal network

among metabolites allows a more nuanced analysis of their

effect on triglyceride levels compared to a simple pairwise

analysis. Looking at Fig. 1, arachidonate also influences

triglycierides indirectly via its relationship with palmi-

toylglycerophosphoinositol. These multiple paths magnify

the effect any intervention on archidonate would have on

triglyceride levels.

The metabolite with the second largest predicted impact

on triglyceride levels was carnitine. Carnitine aids in the

transport of fatty acids into the mitochondrial matrix during

the break down of lipid on its way to making energy. There

is already considerable literature that dietary supplemen-

tation with carnitine altering blood triglyceride levels in a

number of settings (Bell and DeLucia 1984; Vacha et al.

1983; Künnert et al. 1983). In some ways then, carnitine

serves as an internal positive control for the current study,

and it is reassuring that the GDAG approach identified a

direct relationship between carnitine and triglycerides.

9-HODE is a product of free radical oxidation of linoleic

acid and is an agonist of PPARc. 9-HODE is a biomarker

of oxidative stress (Fruhwirth et al. 2007). There are many

sources of 9-HODE, including lipoprotein lipase-mediated

lipolysis of triglycerides (Wang et al. 2009). In addition,

there are multiple paths by which 9-HODES may be

involved in the development of atherosclerosis and risk of

CHD, including oxidized LDL, HDL metabolism and

PPARc action. These same paths and players are likely

involved in the relationship between 9-HODES and plasma

triglyceride levels. There are interventions that would

directly impact 9-HODE. PPARc agonists decrease HODE

levels in obese diabetic patients (Popkin and Gordon-Lar-

sen 2004). To our knowledge, the effect of up or down

regulation of lipoprotein lipase or naturally occurring

lipoprotein lipase deficiency on 9-HODE levels have not

been reported.

There is little available about the function of palmi-

toylglycerophosphoinositol, and nothing to our knowledge

about its relationship with triglycerides. The data presented

here, therefore, shed needed light on this portion of the

human serum metabolome. In contrast, there is a consid-

erable knowledgebase on the relationship between uric acid

and triglycerides. Large observational studies support a

positive relationship between uric acid levels and triglyc-

eride levels, and some have argued this is due to a shared

effect of dietary sugar intake (Hofmann and Tschöp 2009).

In addition, smaller intervention studies support a positive

relationship. For example, use of fenofibrate, a PPARa
agonist, reduces both blood triglyceride and uric acid

levels, presumably through increased fatty acid b oxidation

(Patterson et al. 2009). The data presented here from causal

inference of the human serum metabolome further supports

this important link.

4.1 Concluding remarks

In summary, the analyses and results presented here are

significant for three reasons. First, they document the

utility of the GDAG algorithm for generating robust and

informative networks among the components of the

serum metabolome and reduce the number of metabolites

that we need to focus on for further analysis of the risk

factor under consideration. Second, they used the meta-

bolomics network as a starting point to analyze plasma

triglyceride levels across multiple visits in a large sample

of individuals, and identified nine metabolites with a

direct effect on triglyceride levels. And third, these

results move us one step closer to identifying novel

points or pathways of intervention to lower plasma

triglyceride levels and possible cardiovascular disease

risk.
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Künnert, B., et al. (1983). Metabolic triglyceride storage disorders. A

report of 2 cases of systemic carnitine deficiency. Zentralblatt

fur allgemeine Pathologie und pathologische Anatomie, 129(5),

413–422.

Nicholls, S. J., et al. (2011). Effects of the CETP inhibitor evacetrapib

administered as monotherapy or in combination with statins on

HDL and LDL cholesterol: A randomized controlled trial.

JAMA, 306(19), 2099–2109.

Patterson, A. D., et al. (2009). Human urinary metabolomic profile of

PPARa induced fatty acid b-oxidation. Journal of Proteome

Research, 8(9), 4293–4300.

Pearl, J. (2009). Causality: Models, reasoning, and inference. New

York: Cambridge University Press.

Popkin, B. M., & Gordon-Larsen, P. (2004). The nutrition transition:

Worldwide obesity dynamics and their determinants. Interna-

tional Journal of Obesity, 28, S2–S9.

Rubin, D. B. (2005). Causal inference using potential outcomes:

Design, modeling, decisions. Journal of the American Statistical

Association, 100, 322–331.

Schadt, Eric E., et al. (2005). An integrative genomics approach to

infer causal associations between gene expression and disease.

Nature Genetics, 37(7), 710–717.

The ARIC Investigators. (1989). The Atherosclerosis Risk in

Communities (ARIC) Study: Design and objectives. The ARIC

investigators. American Journal of Epidemiology, 129(4),

687–702.

Vacha, Gian Maria, et al. (1983). Favorable effects of L-carnitine

treatment on hypertriglyceridemia in hemodialysis patients:

Decisive role of low levels of high-density lipoprotein-choles-

terol. The American Journal of Clinical Nutrition, 38(4),

532–540.

Vidal, M., Cusick, M. E., & Barabasi, A. L. (2011). Interactome

networks and human disease. Cell, 144(6), 986–998.

Voight, B. F., et al. (2012). Plasma HDL cholesterol and risk of

myocardial infarction: A mendelian randomisation study. The

Lancet, 380(9841), 572–580.

Wang, L., et al. (2009). Triglyceride-rich lipoprotein lipolysis releases

neutral and oxidized FFAs that induce endothelial cell inflam-

mation. Journal of Lipid Research, 50(2), 204–213.

Whelan, J., et al. (1995). Evidence that dietary arachidonic acid

increases circulating triglycerides. Lipids, 30(5), 425–429.

Wijendran, V., et al. (2002). Efficacy of dietary arachidonic acid

provided as triglyceride or phospholipid as substrates for brain

104 Page 6 of 7 A. Yazdani et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1093/bioinformatics/btv194
http://dx.doi.org/10.1093/bioinformatics/btv194


arachidonic acid accretion in baboon neonates. Pediatric

Research, 51(3), 265–272.

Yazdani, A. & Dunson D. B. (2015). A hybrid Bayesian approach for

genome-wide association studies on related individuals. Bioinfor-

matics, 31(24):3890-3896. doi:10.1093/bioinformatics/btv496.

Yazdani, A., & Boerwinkle, E. (2014). Causal inference at the

population level. International Journal of Research in Medical

Sciences, 2(4), 1368–1370.

Yazdani, A., & Boerwinkle, E. (2015). Causal inference in the age of

decision medicine. Journal Data Mining Genomics Proteomics,

6(163), 2153–0602.

Yazdani, A., Yazdani, A., & Boerwinkle, E. (2016a). Conceptual

aspects of causal networks in an applied context. Journal Data

Mining Genomics Proteomics, 7, 188. doi:10.4172/2153-0602.

1000188.

Yazdani, A., Yazdani, A., Samiei, A., & Boerwinkle, E. (2016b).

Generating a robust statistical causal structure over 13 cardio-

vascular disease risk factors by data integration. Journal of

Biomedical Informatics, 60, 114–119.

Zhu, J., Wiener, M., Zhang, C., Fridman, A., Minch, E., Lum, P., et al.

(2007). Increasing the power to detect causal associations by

combining genotypic and expression data in segregating popu-

lations. PLoS Computational Biology, 3(4), 0692–0703.

A causal network analysis in an observational study identifies metabolomics pathways… Page 7 of 7 104

123

http://dx.doi.org/10.1093/bioinformatics/btv496
http://dx.doi.org/10.4172/2153-0602.1000188
http://dx.doi.org/10.4172/2153-0602.1000188

	A causal network analysis in an observational study identifies metabolomics pathways influencing plasma triglyceride levels
	Abstract
	Introduction
	Objectives
	Method
	Result
	Conclusion

	Introduction
	Methods
	Study sample and triglyceride measurements
	Metabolomics and triglyceride causal network

	Results
	Discussion
	Concluding remarks

	Acknowledgments
	References




