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Abstract

LncRNA-protein interactions play important roles in post-transcriptional gene regulation,

poly-adenylation, splicing and translation. Identification of lncRNA-protein interactions helps

to understand lncRNA-related activities. Existing computational methods utilize multiple

lncRNA features or multiple protein features to predict lncRNA-protein interactions, but fea-

tures are not available for all lncRNAs or proteins; most of existing methods are not capable

of predicting interacting proteins (or lncRNAs) for new lncRNAs (or proteins), which don’t

have known interactions. In this paper, we propose the sequence-based feature projection

ensemble learning method, “SFPEL-LPI”, to predict lncRNA-protein interactions. First,

SFPEL-LPI extracts lncRNA sequence-based features and protein sequence-based fea-

tures. Second, SFPEL-LPI calculates multiple lncRNA-lncRNA similarities and protein-pro-

tein similarities by using lncRNA sequences, protein sequences and known lncRNA-protein

interactions. Then, SFPEL-LPI combines multiple similarities and multiple features with a

feature projection ensemble learning frame. In computational experiments, SFPEL-LPI

accurately predicts lncRNA-protein associations and outperforms other state-of-the-art

methods. More importantly, SFPEL-LPI can be applied to new lncRNAs (or proteins). The

case studies demonstrate that our method can find out novel lncRNA-protein interactions,

which are confirmed by literature. Finally, we construct a user-friendly web server, available

at http://www.bioinfotech.cn/SFPEL-LPI/.

Author summary

LncRNA-protein interactions play important roles in post-transcriptional gene regula-

tion, poly-adenylation, splicing and translation. Identification of lncRNA-protein interac-

tions helps to understand lncRNA-related activities. In this paper, we propose a novel

computational method “SFPEL-LPI” to predict lncRNA-protein interactions. SFPEL-LPI

makes use of lncRNA sequences, protein sequences and known lncRNA-protein associa-

tions to extract features and calculate similarities for lncRNAs and proteins, and then
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combines them with a feature projection ensemble learning frame. SFPEL-LPI can predict

unobserved interactions between lncRNAs and proteins, and also can make predictions

for new lncRNAs (or proteins), which have no interactions with any proteins (or

lncRNAs). SFPEL-LPI produces high-accuracy performances on the benchmark dataset

when evaluated by five-fold cross validation, and outperforms state-of-the-art methods.

The case studies demonstrate that SFPEL-LPI can find out novel associations, which are

confirmed by literature. To facilitate the lncRNA-protein interaction prediction, we

develop a user-friendly web server, available at http://www.bioinfotech.cn/SFPEL-LPI/.

This is a PLOS Computational BiologyMethods paper.

Introduction

Long noncoding RNAs (lncRNAs) are a class of transcribed RNA molecules with a length of

more than 200 nucleotides that do not encode proteins [1,2]. Since lncRNAs are involved in

important biological regulations [3–5], lncRNAs have gained widespread attention. Studies

[5–9] revealed that lncRNAs can interact with proteins, and then activate post-transcriptional

gene regulation, poly-adenylation, splicing and translation. Identification of lncRNA-protein

interactions helps to understand lncRNAs’ functions. There exist a large number of unex-

plored lncRNAs and proteins, which makes it impossible to examine their interactions effi-

ciently and effectively through wet experiments.

In recent years, many computational methods have been proposed to predict lncRNA-pro-

tein interactions, in order to screen lncRNA-protein interactions and guide wet experiments.

There are two types of computational methods: binary classification methods and semi-super-

vised learning methods. The binary classification methods take known interacting lncRNA-

protein pairs as positive instances and non-interacting pairs as negative instances, and build

binary classification-based models. Muppirala et al. [10] adopted the k-mer composition to

encode RNA sequences and protein sequences, and used SVM and random forest to build pre-

diction models. Wang et al. [11] used RNA-protein interactions as positive instances, and ran-

domly selected twice number of protein-RNA pairs without interaction information as

negative samples, and then built prediction models by using naive Bayes. Suresh et al. [12] pro-

posed a support vector machine-based predictor “RPI-Pred” to predict protein-RNA interac-

tions based on their sequences and structures. Xiao et al. [13] used the HeteSim measure to

score lncRNA-protein pairs, and then built an SVM classifier based on HeteSim scores. How-

ever, binary classification-based methods are influenced by the imbalance ratio between posi-

tive instances and negative instances, and how to select high-quality negative instances is

challenging. Semi-supervised learning methods formulate the lncRNA-protein interaction

prediction as semi-supervised learning tasks. Lu et al. [14] used matrix multiplication to score

each RNA-protein pair for prediction. Li et al. [15] proposed a heterogeneous network-based

method “LPIHN”, which integrated the lncRNA-lncRNA similarity network, the lncRNA-pro-

tein interaction network and the protein-protein interaction network. Then, a random walk

with restart was implemented on the heterogeneous network to infer lncRNA-protein interac-

tions. Yang et al. [16] proposed the Hetesim algorithm, which can predict lncRNA-protein

relation based on the heterogeneous lncRNA-protein network. Ge et al. [17] proposed a

computational method “LPBNI” based on the lncRNA-protein bipartite network inference.

feature projection ensemble learning and lncRNA-protein interactions
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Zheng et al. [18] constructed multiple protein-protein similarity networks to predict lncRNA-

protein interactions. Zhang et al. [19] employed KATZ measure to calculate similarities

between lncRNAs and proteins in a global network, which were constructed based on

lncRNA-lncRNA similarity, lncRNA-protein associations and protein-protein interactions.

Hu et al. [20] presented the eigenvalue transformation-based semi-supervised link prediction

method “LPI-ETSLP”. Zhang et al. [21] proposed a linear neighborhood propagation method

(LPLNP) by combining interaction profiles, expression profiles, sequence composition of

lncRNAs and interaction profile, CTD feature of proteins. Moreover, there are related works

about the DNA-protein binding prediction [22,23].

Existing computational methods utilize diverse lncRNA features and protein features, but

features are not available for all lncRNAs or proteins, and these methods cannot work when

information is unavailable. In addition, many lncRNAs (or proteins) don’t have known inter-

actions with any protein (or lncRNA), and we name them as new lncRNAs (or proteins). Most

existing methods are not capable of predicting interacting proteins (or lncRNAs) for new

lncRNAs (or proteins).

In this paper, we propose the sequence-based feature projection ensemble learning method,

“SFPEL-LPI”, to predict lncRNA-protein interactions. First, SFPEL-LPI extracts lncRNA

sequence-based features and protein sequence-based features. Second, SFPEL-LPI calculates

multiple lncRNA-lncRNA similarities and protein-protein similarities by using lncRNA

sequences, protein sequences and known lncRNA-protein interactions. Then, SFPEL-LPI

combines multiple similarities and multiple features with a feature projection ensemble learn-

ing frame. Computational experiments demonstrate that SFPEL-LPI predicts lncRNA-protein

associations accurately and outperforms other state-of-the-art methods. More importantly,

SFPEL-LPI can be applied to new lncRNAs (or proteins). The case studies demonstrate that

our method can find out novel lncRNA-protein interactions.

Materials and methods

Dataset

Several databases facilitate the lncRNA-protein interaction prediction. NPInter database [24]

includes experimental interactions among non-coding RNA and biomolecules (i.e. proteins,

genomic DNAs and RNAs). NONCODE is an integrated information resource for non-coding

RNAs. SUPERFAMILY [25] is a database of structural and functional annotation for all pro-

teins and genomes. As far as we know, lncRNA-protein interactions from NPInter v2.0 data-

base were widely used in related studies [20,21,26–29]. Based on NPInter v2.0 interactions, we

compiled a dataset containing 4158 lncRNA-protein interactions between 990 lncRNAs and

27 proteins. Moreover, we collected the sequences of these lncRNAs and proteins from NON-

CODE and SUPERFAMILY respectively. We adopt NPInter v2.0 dataset as the benchmark

dataset to test the performances of prediction models.

Here, we introduce notations about the dataset. Given a set of lncRNAs L ¼ fL1; L2; � � � ; Lsg
and a set of proteins P ¼ fP1; P2; � � � ; Ptg, known lncRNA-protein interactions can be repre-

sented by an s×t interaction matrix Y, where Yij = 1 if the lncRNA Li interacts with the protein Pj,
otherwise Yij = 1.

Features for lncRNAs and proteins

In this section, we describe two lncRNA features and two protein features, based on lncRNA

sequences, protein sequences and known lncRNA-protein interactions. On one hand, a great

number of features [30–36] can be extracted from lncRNAs sequences and proteins sequences,

and feature-extraction tools such as Pse-in-One[37], BioSeq-Analysis[38], repRNA[39] [40],

feature projection ensemble learning and lncRNA-protein interactions
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iMiRNA-PseDPC [41] and UltraPse [42] have been available. One the other hand, known

lncRNA-protein interactions can bring features to describe lncRNAs and proteins.

LncRNA features. The pseudo dinucleotide composition (PseDNC) [43–46] describes the

contiguous local sequence-order information and the global sequence-order information of

lncRNAs. The pseudo dinucleotide composition has several variants, and we use the parallel

correlation pseudo dinucleotide composition, which contains the occurrences of different

dinucleotides and the physicochemical properties of dinucleotides. The PseDNC feature vector

of an RNA sequence L is defined as:

L ¼ ½d1; d2; � � � ; d16; d16þ1; � � � ; d16þt�

where

dk ¼

fk
P16

i¼1
fi þ w

Pt

j¼1
yj

1 � k � 16

wyk� 16
P16

i¼1
fi þ w

Pt

j¼1
yj

17 � k � 16þ t

8
>>>><

>>>>:

where fk is the normalized occurrence frequency of dinucleotide in the RNA sequence L; the

parameter τ is an integer, representing the highest counted rank of the correlation along an

RNA sequence; w is the weight factor ranging from 0 to 1; θj is the j-tier correlation factor

reflecting the sequence-order correlation between all the j-th most contiguous dinucleotides

along an RNA sequence. We obtain PseDNC feature vectors of lncRNAs by using the python

package "repDNA”, and more details about PseDNC are described in [40].

Moreover, we define the interaction profiles (IP) of lncRNAs based on known lncRNA-pro-

tein interactions. For a lncRNA Li, its interaction profile is a binary vector encoding the pres-

ence or absence of interactions with every protein, denoted as IPLi . Actually, the interaction

profile of a lncRNA corresponds to a row vector of the interaction matrix Y, IPLi ¼ Yði; :Þ.
Protein features. The pseudo amino acid composition (PseAAC) [47–49] describes the

amino acid composition and the sequence-order information of proteins, and has been widely

used for tasks in bioinformatics. PseAAC contains 20 components reflecting the occurrence

frequency of amino acids in a protein as well as the additional factors reflecting sequence-

order information. Thus, we use PseAAC as a feature to represent proteins. There are several

variants of PseAAC, and we adopt the parallel correlation pseudo amino acid composition.

The PseAAC feature vector of a protein sequence P is defined as:

P ¼ ½x1; x2; � � � ; x20; x20þ1; � � � ; x20þt�

where

xu ¼

fu
P20

i¼1
fi þ w

Pt

j¼1
yj

1 � u � 20

wyu� 20
P20

i¼1
fi þ w

Pt

j¼1
yj

21 � u � 20þ t

8
>>>><

>>>>:

where fi is the normalized occurrence frequency of the 20 amino acids in the protein sequence

P; the parameter τ is an integer, representing the highest counted rank of the correlation along

a protein sequence; w is the weight factor ranging from 0 to 1; θj is the j-tier correlation factor

reflecting the sequence-order correlation between all the j-th most contiguous residues along a

feature projection ensemble learning and lncRNA-protein interactions
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protein sequence. We obtain the PseAAC feature vectors of proteins by using web server “Pse-

in-One”, and more details are described in [37].

Similar to the lncRNA interaction profiles, the protein interaction profile (IP) of a protein

Pi is a binary vector specifying the presence or absence of interactions with every lncRNAs,

denoted as IPpi . The interaction profile of a protein corresponds to a column vector of the

interaction matrix Y, IPpi ¼ Yð:; iÞ.

Similarities for lncRNAs and proteins

In this section, we describe three lncRNA-lncRNA similarities and three protein-protein

similarities.

LncRNA-lncRNA similarities. As introduced in Section “LncRNA features”, we have two

lncRNA features: PseDNC and IP, and thus use them to calculate two types of lncRNA-

lncRNA similarities. There are different approaches to calculate similarity based on feature

vectors, such as Jaccard similarity, Gauss similarity and cosine similarity. Here, we adopt the

linear neighborhood similarity (LNS), which has been proposed in our previous work and suc-

cessfully applied to many bioinformatics problems [21,34,50].

Moreover, we define the Smith Waterman subgraph similarity (SWSS) for lncRNAs. Smith

Waterman algorithm [51] is a powerful tool to calculate similarity between biological

sequences, but Smith Waterman algorithm only takes the sequence information into account.

By considering sequence information and interactions information, we define Smith Water-

man subgraph similarity (SWSS) between lncRNA Li and lncRNA Lj as,

SWSS Li; Lj
� �

¼
P

Po12AðLiÞ

P
Po22AðLjÞ

SWðPo1; Po2Þ
n1� n2

ð1Þ

where SW(Po1,Po2) is the Smith Waterman score between protein Po1 and protein Po2. A(Li)
and A(Lj) are the set of proteins which interact with Li and Lj. n1 = |A(Li)| and n2 = |A(Lj)|.

Therefore, we obtain three lncRNA-lncRNA similarities: PseDNC similarity, IP similarity

and SWSS similarity.

Protein-protein similarities. As introduced in Section “Protein features”, we have two

proteins features: PseAAC and IP. We also calculate two types of similarities by using the linear

neighborhood similarity measure.

Similarly, we can calculate the Smith Waterman Subgraph Similarity (SWSS) between two

proteins Pi and Pj,

SWSS Pi; Pj
� �

¼
P

Lo12AðPiÞ

P
Lo22AðPjÞ

SWðLo1; Lo2Þ
m1�m2

ð2Þ

where SW(Po1,Po2) is the Smith Waterman score between lncRNA Lo1 and lncRNA Lo2. A(Pi)
and A(Pj) are the set of lncRNAs which interact with protein Pi and protein Pj.m1 = |A(Pi)|
andm2 = |A(Pj)|.

Therefore, we obtain three protein-protein similarities: PseAAC similarity, IP similarity

and SWSS similarity.

Feature projection ensemble learning method

Combining various features or fusing various features can usually lead to high-accuracy mod-

els [52–58]. We have n features for lncRNAs (or proteins), denoted as n feature matrices

fXig
n
i¼1

, and havem types of similarities for lncRNAs (or proteins), denoted asm similarity

matrices fWig
m
i¼1

. The predicted lncRNA-protein interaction matrix is denoted as R. The

feature projection ensemble learning and lncRNA-protein interactions
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known lncRNA-protein interaction matrix is denoted as Y. The flowchart of the feature pro-

jection ensemble learning method SFPEL-LPI is shown in Fig 1.

Objective function. First, lncRNA (or protein) feature matrices fXig
n
i¼1

are respectively

projected to the predicted lncRNA-protein interaction matrix R by using the projection matri-

ces fGig
n
i¼1

. We estimate the projection matrices fGig
n
i¼1

for features by minimizing the

squared error between their products and the predicted lncRNA-protein interaction matrix R.

So we have:

min
Gi

Xn

i¼1
kXiGi

T � Rk2

F

s:t:Gi � 0 ð3Þ

Fig 1. The flowchart of SFPEL-LPI for predicting lncRNA-protein interactions.

https://doi.org/10.1371/journal.pcbi.1006616.g001

feature projection ensemble learning and lncRNA-protein interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006616 December 11, 2018 6 / 21

https://doi.org/10.1371/journal.pcbi.1006616.g001
https://doi.org/10.1371/journal.pcbi.1006616


where k � k
2

F is the Frobenius norm, and the projection matrices fGig
n
i¼1

are required to be

nonnegative.

Then, we introduce the ‘1;2-norm regularization term of fGig
n
i¼1

to ensure the smoothness

of the projection matrices. The predicted matrix R should be approximated to the known

interaction matrix Y. We can have

min
Gi ;R
kR � Yk2

F þ m
Xn

i¼1
kXiGi

T � Rk2

F þ l
Xn

i¼1
kGik

2

1;2

s:t:Gi � 0 ð4Þ

where λ is the regularization coefficient, and μ is a trade-off parameter. kGik1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kð
P

ljgik;ljÞ
2

q

.

Local structure of data can be maintained effectively through constructing a weighted

graph or a similarity graph on a scatter of data points. For example, Xu et al. [59] introduced

the manifold regularization term to preserve the visual feature manifold structure. Nie et al.

[60], Bai et al. [61], Cai et al. [62,63] adopted graph Laplacian matrix to keep the graph’s local

structure. Moreover, the Studies [34,64–67] revealed that the combination of multiple similari-

ties helps to improve performances. Inspired by pioneer work, we define a novel ensemble

graph Laplacian regularization:

Pm
i¼1
y
Z

i trðR
TðDi � WiÞRÞ ð5Þ

where Di is a diagonal matrix whose diagonal elements are corresponding row sums ofWi,

and θ = [θ1,θ2,� � �,θi,� � �,θm] is a weight vector which is introduced to control the contribution

of different graph Laplacian regularizations, and tr(�) is the trace of a matrix. η>1 is the expo-

nent of θ, which ensures that all graph Laplacian regularizations contribute effectively for the

maintaining of graph local structures.

By combining (4) and (5), we obtain the objective function of SFPEL-LPI:

min
Gi ;R;y
kR � Yk2

F þ m
Xn

i¼1
kXiGi

T � Rk2

F þ
Xm

i¼1
y
Z

i trðR
TðDi � WiÞRÞ þ l

Xn

i¼1
kGik

2

1;2

s:t:Gi � 0;
X

i
yi ¼ 1 ð6Þ

We introduce the Lagrangian function (Lf) to solve the optimization problem in (6),

Lf ¼ kR � Yk2

F þ m
Pn

i¼1
kXiGi

T � Rk2

F þ
Pm

i¼1
y
Z

i trðR
TðDi � WiÞRÞ þ l

Pn
i¼1
kGik

2

1;2

� dð
Pm

i¼1
yi � 1Þ �

Pn
i¼1
trðGiGiÞ

We calculate the partial derivatives of above function with respect to R, Gi and θi, and obtain

the update rules about R, θi and Gi (proof and deduction are provided in S1 File):

R ¼ ð
Pm

i¼1
y
Z

i ðDi � WÞ þ ð1þ nmÞIÞ
� 1
ðY þ m

Pn
i¼1
XiGi

TÞ ð7Þ

yi ¼

1

trðRT ðDi� WiÞRÞ

� � 1
Z� 1

Pm
i

1

trðRT ðDi � WiÞRÞ

� � 1
Z� 1

ð8Þ

Gi ¼ Gi
K ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GiðmXi
TXi þ leeTÞ

þ
þ mðRTXiÞ

�

GiðmXi
TXi þ leeTÞ

�
þ mðRTXiÞ

þ

s

ð9Þ

where e is a column vector with all elements equal to 1, and has the same column dimensions
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as Xi.
J

denotes element-wise multiplication (also well known as Hadamard product), and

the division in (9) is element-wise division. We separate the positive and negative parts of

matrix A as

Aþ ¼
ðjAj þ AÞ

2
;A� ¼

ðjAj � AÞ
2

ð10Þ

Thus, we update R, Gi and θi based on (7), (8) and (9) alternatively until convergence.

Algorithms. Following the method proposed in the Section “Objective function”,

SFPEL-LPI can predict unobserved interactions between known lncRNAs and proteins. First,

based on the lncRNA’s features, similarities and lncRNA-protein interactions, the prediction

matrix Rl could be obtained. Similarly, using protein’s features, similarities and protein-

lncRNA interactions, the prediction matrix Rp could be calculated. Then, SFPEL-LPI inte-

grates the predictions based on lncRNAs and proteins asM = (Rl+(Rp)T)/2. Therefore, the

unobserved interactions are scored in the corresponding entries ofM. Algorithm 1 describes

how SFPEL-LPI predicts unobserved associations between known lncRNAs and known

proteins.

In addition, SFPEL-LPI could also be applied to predict proteins (or lncRNAs) interacting

with new lncRNAs (or proteins). After using Algorithm 1 to train the model, the projection

matrix and the weighting parameters of lncRNA’s features as well as protein’s features: Glu,
Glv, θlu and θlv could be obtained. Then, we can use the features of new lncRNAs (or proteins)

and the trained parameters to predict their predictions. Algorithm 2 describes how SFPEL-LPI

finishes this task.
Algorithm 1: Predicting unobserved associations between known lncRNAs
and known proteins by SFPEL-LPI.
Input: observed lncRNA-protein interaction matrix, Yl; observed pro-
tein-lncRNA interaction matrix, Yp = Yl

T; lncRNA feature matrices,
{Xl1,Xl2,. . .,Xln}; protein feature matrices, {Xp1,Xp2,. . .,Xpn}; lncRNA nor-
malized similarity matrices, {Wl1,Wl2,. . .,Wlm}; protein normalized simi-
larity matrices, {Wp1,Wp2,. . .,Wpm}; regularization parameter, μ>0,λ>0;
exponent parameter, η>1;
Output: lncRNA-protein interaction prediction matrix, M; predicted
lncRNA-protein interaction matrix, Rl; predicted protein-lncRNA inter-
action matrix, Rp; projection matrices of lncRNA features {Gl1,Gl2,. . .,
Gln}; projection matrices of protein features {Gp1,Gp2,. . .,Gpn}; weight-
ing parameters of lncRNA similarity matrices, {θl1,θl2,. . .,θlm}; weight-
ing parameters of protein similarity matrices, {θp1,θp2,. . .,θpm};
Initialize:
for each i(1�i�n)

initialize Gli, Gpi with random values on interval [0,1];
end for
for each i(1�i�m)

initialize θli, θpi as 1/m;
end for
repeat

update Rl via (7) with fixing fGlig
n
i¼1
, fylig

m
i¼1
;

for each i(1�i�n)
update Gli via (8) with fixing Rl;

end for
for each i(1�i�m)

update θli via (9) with fixing Rl:
end for

until Converges;
repeat

feature projection ensemble learning and lncRNA-protein interactions
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update Rp via (7) with fixing fGpig
n
i¼1
, fypig

m
i¼1
;

for each i(1�i�n)
update Gpi via (8) with fixing Rp;

end for
for each i(1�i�m)

update θpi via (9) with fixing Rp:
end for

until Converges;
M = (Rl+(Rp)

T)/2
Return M
Algorithm 2: Predicting interacting proteins (or lncRNAs) for new
lncRNAs (or proteins) by SFPEL-LPI
Input: feature matrices for new lncRNAs, {Xl1,Xl2,. . .,Xlu} (or feature
matrices for new proteins, {Xp1,Xp2,. . .,Xpv}); projection matrices of
lncRNA features {Gl1,Gl2,. . .,Glu} (or projection matrices of protein
features {Gp1,Gp2,. . .,Gpv}); weighting parameters of lncRNA similarity
matrices, {θ11,θl2,. . .,θlu} (or weighting parameters of protein fea-
tures, {θp1,θp2,. . .,θpv}); (fGlig

u
i¼1
, fylig

u
i¼1

or fGpig
v
i¼1
; fypig

v
i¼1

are obtained by
Algorithm 1);
Output: predicted lncRNA-protein interaction matrix, Rl ¼

Pu
i¼1
yliXliGli

T

(or predicted protein-lncRNA interaction matrix, Rp ¼
Pv

i¼1
ypiXpiGpi

T);

Results

Evaluation metrics

We adopt five-fold cross validation to evaluate the performances of prediction models. The

proposed method SFPEL-LPI can predict unobserved interactions between known lncRNAs

and known proteins, and also can make predictions for new lncRNAs (or proteins). In predict-

ing unobserved lncRNA-protein interactions, all known lncRNA-protein interactions are ran-

domly split into five subsets with equal size. Each time, four subsets are combined as training

set and the remaining one subset is used as the testing set. In predicting proteins interacting

with new lncRNAs, all known lncRNAs are split into five subsets with equal size. The model is

constructed based on the lncRNAs in training set and their interactions with all proteins, and

then is used to predict proteins interacting with testing lncRNAs. Similarly, we evaluate the

performances of models in predicting lncRNAs interacting with new proteins. Hence, we

introduce notations for above mentioned cross validation settings. CVlp: known lncRNA-pro-

tein interactions are split into five folds in predicting unobserved interactions. CVl: known

lncRNAs are split into five folds in predicting interactions for new lncRNAs. CVp: known pro-

teins are split into five folds in predicting interactions for new proteins.

The area under ROC curve (AUC) and the area under precision-recall curve (AUPR) are

popular metrics for evaluating prediction models. Since known lncRNA-protein interactions

are much less than non-interacting lncRNA-protein pairs, we adopt AUPR as the primary

metric, which punishes false positive more in the evaluation process[68,69]. Moreover, we

adopt several binary classification metrics, i.e. recall (REC), accuracy (ACC), precision (PR)

and F1-measure (F1).

Parameter setting

SFPEL-LPI has three parameters: μ, λ and η. μ is a parameter for the error between projected

interactions and predicted lncRNA-protein interactions; λ controls the contribution of projec-

tion matrix; η describes strength of different similarity measures.

feature projection ensemble learning and lncRNA-protein interactions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006616 December 11, 2018 9 / 21

https://doi.org/10.1371/journal.pcbi.1006616


To test influence of parameters, we consider all combinations of parameters μ2{10−4,10−3,

10−2,10−1,100,101,102,103}, μ2{10−4,10−3,10−2,10−1,100,101,102,103} and η2{21,22,23,24,25,26,

27,28}. We build SFPEL-LPI models by using different parameters, and implement five-fold

cross validation CVlp to evaluate SFPEL-LPI models. SFPEL-LPI produces the best AUPR

score of 0.473 when μ = 10−3, λ = 10−4 and η = 22. Then, we fix the parameter η = 22, and evalu-

ate the influence of μ and λ. As shown in Fig 2A, μ greatly influences the performance of

SFPEL-LPI, and a smaller value for μ is likely to produce better result. Further, we fix the

parameters μ = 10−3 and λ = 10−4 and test the influence of η. As illustrated in Fig 2B, the per-

formances of SFPEL-LPI decrease as η increases, and then remain unchanged after a

threshold.

The parameter η is the index of similarity weights, and could control the relative contribu-

tions of different similarities. When fixing μ = 10−3 and λ = 10−4, we analyze the relation

between η and lncRNA similarity measures θlncRNA (or protein similarity measures θprotein). As

shown in Fig 3, similarities usually make different contributions to SFPEL-LPI models, and

interaction profile similarities usually make more contributions than other similarities. With

increase of η, different similarities are likely to make equal contributions.

Based on above discussion, we adopt μ = 10−3, λ = 10−4 and η= 22 for SFPEL-LPI in the fol-

lowing studies.

Performances of SFPEL-LPI

SFPEL-LPI can predict unobserved lncRNA-protein interactions between known lncRNAs

and known proteins, and also can make predictions for new lncRNAs (or proteins). For differ-

ent tasks, we adopt different evaluation schemes to split instances and implement five-fold

cross validation under settings: CVlp, CVl and CVp.
Table 1 displays AUPR scores and AUC scores of SFPEL-LPI evaluated by CVlp, CVl and

CVp. According to previous studies [70–72], a prediction model that can accurately recover

Fig 2. The influence of parameters on AUPR of models. (A) Fix the parameter η = 22, and evaluate the influence of parameters μ and λ. (B) Fix the parameter μ = 10−1,

λ = 103, and evaluate the influence of parameter η.

https://doi.org/10.1371/journal.pcbi.1006616.g002
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the true interacting proteins (or lncRNAs) is usually desired and useful for the wet experimen-

tal validation. Thus, we calculate the proportion of correctly predicted true interactions at dif-

ferent top-ranked percentiles under CVl or CVp. A new matric “recall @ top-ranked k %” is

defined as the fraction of true interacting proteins (or lncRNAs) that are retrieved in the list of

top-ranked k% predictions for a lncRNA (or protein). In Fig 4A, SFPEL-LPI performs effec-

tively in predicting proteins (or lncRNAs) interacting with new lncRNAs (or proteins). The

reason why the performances of predicting lncRNAs interacting with new proteins is not as

well as the performances of predicting proteins interacting with new lncRNAs is that the num-

ber of lncRNAs (990) in our dataset is much more than the number of proteins (27). Conse-

quently, less information is used to train SFPEL-LPI models.

To further test capability of SFPEL-LPI for new proteins, we randomly select ten proteins to

conduct experiments. In each experiment, a protein is used as the testing protein, and the

model is constructed based on other proteins, all lncRNAs and their associations, and then

predict lncRNAs interacting with the testing protein. AUC scores and AUPR scores are calcu-

lated based on the results for each protein. As shown in Fig 4B, SFPEL-LPI produces the

AUPR values greater than 0.6 and the AUC values greater than 0.7 for most proteins, indicat-

ing great potential of predicting lncRNAs interacting with new proteins.

Comparison with state-of-the-art prediction methods

Several state-of-the-art computational methods have been proposed to predict lncRNA-pro-

tein interactions. Here, we adopt RWR[17], LPBNI[17], KATZLGO[19], LPI-ETSLP [20] and

LPLNP [21] for comparison. RWR implemented random walk with restart to predict lncRNA-

protein interactions. LPBNI constructed a lncRNA-protein bipartite network based on known

lncRNA-protein interactions, and then predicted lncRNA-protein interactions by using the

Fig 3. (A) The relationship between η and θlncRNA. (B) The relationship between η and θprotein.

https://doi.org/10.1371/journal.pcbi.1006616.g003

Table 1. Performances of SFPEL-LPI for predicting lncRNA-protein interactions.

Cross Validation AUPR AUC PRE REC ACC F1

CVlp 0.473 0.920 0.449 0.495 0.960 0.470

CVl 0.490 0.823 0.449 0.552 0.823 0.493

CVp 0.339 0.656 0.325 0.476 0.749 0.375

https://doi.org/10.1371/journal.pcbi.1006616.t001
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resource allocation algorithm. KATZLGO constructed a heterogeneous network based on

lncRNA-lncRNA similarity, lncRNA-protein interactions and protein-protein similarity, and

then adopted KATZ measure to calculate distances between lncRNAs and proteins in the net-

work. LPI-ETSLP calculated lncRNA-lncRNA similarity and protein-protein similarity based

on pairwise sequence Smith-Waterman scores, and then built semi-supervised link prediction

classifier based on these similarities. LPNLP calculated three lncRNA-lncRNA similarities and

two protein-protein similarities by using linear neighborhood similarity measure, and imple-

mented label propagation to develop the integrated models.

First, we respectively build different prediction models based on the benchmark dataset.

The benchmark methods were designed to predict unobserved interaction between know

lncRNAs and know proteins. Therefore, we implement these methods and mainly evaluate

their performances in predicting unobserved interactions under CVlp. As shown in Table 2,

the AUPR values of RWR, LPBNI, KATZLGO, LPI-ETSLP, LPLNP and SFPEL-LPI are 0.236,

0.330, 0.286, 0.322, 0.459, 0.473, and AUC values are 0.850, 0.856, 0.760, 0.889, 0.910 and

0.920, respectively. SFPEL-LPI outperforms these five methods, and makes 100.4%, 43.3%,

65.4%, 46.9%, 3.1% improvements in terms of AUPR scores and 8.2%, 7.5%, 21.1%, 3.5%, 1.1%

improvements in terms of AUC scores when compared with five benchmark methods. Though

SFPEL-LPI produces slightly better performances than LPLNP in terms of AUPR and AUC,

LPLNP utilizes more information than SFPEL-LPI for modeling. To be more specific, LPLNP

uses three lncRNA features (“interaction profile”, “expression profile”, “sequence composi-

tion”) and two protein features (“interaction profile”, “CTD”), while SFPEL-LPI only used

lncRNA sequences, protein lncRNAs and known lncRNA-protein interactions.

We conduct 20 runs of five-fold cross validation to evaluate methods, and take the paired t-

test to analyze difference between SFPEL-LPI and benchmark methods. Table 3 demonstrates

Fig 4. (A) The average recalls in predicting new lncRNAs (or proteins) at different top-ranked percentiles under CVl or CVp. (B) The AUC value and

AUPR value of predicting interacting lncRNAs for selected new proteins.

https://doi.org/10.1371/journal.pcbi.1006616.g004

Table 2. Performances of prediction methods on the benchmark dataset.

Method AUPR AUC PRE REC ACC F1

RWR 0.236 0.850 0.245 0.391 0.935 0.299

LPBNI 0.330 0.856 0.413 0.370 0.958 0.386

KATZLGO 0.286 0.760 0.354 0.348 0.954 0.350

LPI-ETSLP 0.322 0.889 0.374 0.423 0.953 0.394

LPLNP 0.459 0.910 0.523 0.404 0.965 0.453

SFPEL-LPI 0.473 0.920 0.449 0.495 0.960 0.470

https://doi.org/10.1371/journal.pcbi.1006616.t002
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that SFPEL-LPI produces significantly better results than state-of-the-art methods in terms of

AUC and AUPR.

The computational complexity is important for a computational method. To test the effi-

ciency of SFPEL-LPI, we repeat 5-fold cross validation 20 times and compare running time of

different methods on a PC with an Intel i7 7700k CPU and 16GB RAM. SFPEL-LPI costs the

reasonable running time (29.42s) when compared with RWR (25.83s), LPBNI (4.01s),

KATZLGO (4.36s), LPI-ETSLP (4.56s) and LPLNP (1337.64s).

Further, we randomly perturb all known lncRNA-protein interactions to test the robustness

of prediction methods. To be more specific, we randomly remove 5% of known lncRNA-pro-

tein interactions and add the same number of inexistent interactions, and then compile the

perturbed dataset. We build different prediction models based on the perturbed dataset and

evaluate their performances. Clearly, data perturbation brings noise, and decreases the perfor-

mances of prediction models. As displayed in Fig 5, AUC scores of RWR, LPBNI, KATZLGO,

LPI-ETSLP, LPLNP, SFPEL-LPI are 0.812, 0.820, 0.735, 0.865, 0.874 and 0.889; AUPR scores

are 0.192, 0.268, 0.225, 0.271, 0.343 and 0.351. Although prediction models produce lower per-

formances than that in Table 2, SFPEL-LPI still produces satisfying results, and outperforms

RWR, LPBNI, KATZLGO, LPI-ETSLP and LPLNP.

Table 3. Difference between SFPEL-LPI and benchmark methods tested by Paired t-test in terms of AUPR and AUC.

AUPR

RWR LPBNI KATZLGO LPI-ETSLP LPLNP

6.35E-37 3.55E-32 1.91E-34 3.37E-31 4.38E-12

AUC

RWR LPBNI KATZLGO LPI-ETSLP LPLNP

1.43E-26 5.94E-28 8.15E-34 1.59E-31 1.37E-19

https://doi.org/10.1371/journal.pcbi.1006616.t003

Fig 5. Performance of different methods on the perturbed dataset. (A) ROC curves. (B) PR curves.

https://doi.org/10.1371/journal.pcbi.1006616.g005
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Independent experiments

Here, we conduct independent experiments to evaluate the practical ability of SFPEL-LPI. As

described in Section “Dataset”, NPInter v2.0 dataset was compiled from the V2.0 edition of NPIn-

ter database. NPInter database has been updated to V3.0 edition, and contains newly discovered

lncRNA-protein interactions. Therefore, we train the prediction model based on the NPInter v2.0

dataset and predict new lncRNA-protein interactions, and then check up on predictions in the

NPInter database. Fig 6 shows the number of confirmed interactions in top 20 predictions of all

Fig 6. The number of confirmed lncRNA-protein interactions in top 20 predictions of different methods.

https://doi.org/10.1371/journal.pcbi.1006616.g006
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methods. Clearly, SFPEL-LPI finds out more interactions than benchmark methods. In addition,

we observe that most of novel interactions identified by SFPEL-LPI have low ranks in the predic-

tions of other benchmark methods, indicating that SFPEL-LPI can find out interactions ignored

by these methods. Top predictions and their ranks are provided in S1 Table.

Web server

We develop a web server based on SFPEL-LPI to facilitate the lncRNA-protein interaction

prediction, available at http://www.bioinfotech.cn/SFPEL-LPI/. Users can input lncRNA se-

quences (or protein sequences) or upload a text file with FASTA-formatted lncRNA sequences

(or protein sequences) for prediction, and freely download the results and visualize the pre-

dicted lncRNA-protein interactions. Moreover, gene ontology (GO) terms of proteins are

annotated for indicating lncRNAs’ functions.

Fig 7 displays the top 10 predictions for the lncRNA “NONHSAT041930”. “NON-

HSAT041930” named OIP5-AS1 (OIP5 antisense RNA 1), is a mammalian lncRNA that is

abundant in the cytoplasm [73]. OIP5-AS1 has gained wide attention. In 2011, it was first

Fig 7. Visualization of top 10 predicted interacting proteins for the lncRNA: “NONHSAT041930”. Purple node stands for the lncRNA. Navy blue nodes indicate the

predicted interacting proteins, and green nodes represent proteins that have observed interactions with the lncRNA. Moreover, we map the corresponding GO Terms

(Orange nodes) of each interacting protein from QuickGO database (https://www.ebi.ac.uk/QuickGO/).

https://doi.org/10.1371/journal.pcbi.1006616.g007
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identified to be involved in brain and eye development [74]. In 2016, Kim et al.[75] found that

it can prevent HuR binding to target mRNAs and thus suppress the HuR-elicited proliferative

phenotypes. Moreover, the lncRNA was found to interact with GAK mRNA, promoting GAK

mRNA decay and hence reducing GAK protein levels and lowering cell proliferation [76].

Among top 10 predicted proteins interacting with OIP5-AS1, two proteins have already been

known to have interactions with OIP5-AS1, which are included in the NPInter dataset. In

addition, we find evidence from literature to support other six predicted proteins. For example,

IGF2BP1, IGF2BP2, IGF2BP3, EWSR1 and TIA1 have already been examined to interact with

OIP5-AS1 according to lncRNA-protein interacting data report [77]. Protein Argonaute 2

(AGO2) is required for proper nuclear migration, pole cell formation, and cellularization dur-

ing the early stages of embryonic development. Several studies [75,78] showed that OIP5-AS1

is associated with AGO2. Moreover, annotated GO terms of predicted proteins indicate the

function of the lncRNA OIP5-AS1: mRNA binding (GO: 0005845, GO: 0035925, GO:

0036002, GO: 0048027, GO: 0098808) and cell proliferation (GO:0022013). More details are

provided in S2 Table. These encouraging instances demonstrate that the proposed method can

successfully predict novel lncRNA-protein interactions.

Moreover, the server can predict interacting lncRNAs for proteins. For example, top 20

interacting lncRNAs of the protein “9606.ENSP00000240185” are shown in the Fig 8, and

details are provided in S3 Table.

Discussion

This paper presents a novel lncRNA-protein interaction prediction method, namely sequence-

based feature projection ensemble learning (SFPEL-LPI). The novelty of SFPEL-LPI comes

Fig 8. Visualization of top 20 predicted interacting lncRNAs of the protein: 9606.ENSP00000240185. Purple node stands for the

protein. Navy blue nodes indicate the predicted interacting lncRNAs and green nodes represent lncRNAs that have observed interactions

with the protein.

https://doi.org/10.1371/journal.pcbi.1006616.g008
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from integrating sequence-derived features and similarities with a feature projection ensemble

learning frame. Specifically, SFPEL-LPI only utilizes lncRNA sequences, protein sequences

and known interactions to extract features, and calculates lncRNA-lncRNA similarities and

protein-protein similarities. Since sequences are usually available for lncRNAs or proteins,

SFPEL-LPI can make predictions for almost all lncRNA-protein pairs. Moreover, diverse

information leads to the good performances of SFPEL-LPI.

To evaluate the performance of SFPEL-LPI, an extensive set of experiments were performed

on the benchmark dataset under three CV setting: CVlp, CVl and CVp, compared with state-of-

the-art lncRNA-protein interaction prediction methods. The promising results validate effi-

cacy of the proposed algorithm for predicting lncRNA-protein interactions, especially for the

new lncRNAs or new proteins, which do not have known interactions. SFPEL-LPI outper-

forms five methods: RWR, LPBNI, KATZLGO, LPI-ETSLP, LPLNP, and makes 100.4%,

43.3%, 65.4%, 46.9%, 3.1% improvements in terms of AUPR scores. Further, we also analyze

the running time of SFPEL-LPI and benchmark methods, and randomly perturb all known

lncRNA-protein interactions to test the robustness of prediction methods. A web server is con-

structed to predict interacting proteins/lncRNAs for given lncRNAs/proteins. We adopt the

lncRNA “NONHSAT041930” as an example to predict interacting proteins, and can find evi-

dences to confirm novel lncRNA-protein interactions.

However, SFPEL-LPI still has several limitations. It has three parameters, and parameter

tuning is time-consuming. In addition, known lncRNA-protein interactions are limited, and

performances of SFPEL-LPI will be improved if more interactions are known.
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