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Abstract: In recent years, flexible thermoelectric generators(f-TEG), which can generate electricity by
environmental temperature difference and have low cost, have been widely concerned in self-powered
energy devices for underground pipe network monitoring. This paper studied the Cu2S films by
screen-printing. The effects of different proportions of p-type Cu2S/poly 3,4-ethylene dioxythiophene-
polystyrene sulfonate (PEDOT:PSS) mixture on the thermoelectric properties of films were studied. The
interfacial effect of the two materials, forming a superconducting layer on the surface of Cu2S, leads
to the enhancement of film conductivity with the increase of PEDOT:PSS. In addition, the Seebeck
coefficient decreases with the increase of PEDOT:PSS due to the excessive bandgap difference between
the two materials. When the content ratio of Cu2S and PEDOT:PSS was 1:1.2, the prepared film had
the optimal thermoelectric performance, with a maximum power factor (PF) of 20.60 µW·m−1·K−1.
The conductivity reached 75% of the initial value after 1500 bending tests. In addition, a fully printed
Te-free f-TEG with a fan-shaped structure by Cu2S and Ag2Se was constructed. When the temperature
difference (∆T) was 35 K, the output voltage of the f-TEG was 33.50 mV, and the maximum power
was 163.20 nW. Thus, it is envisaged that large thermoelectric output can be obtained by building a
multi-layer stacking f-TEG for continuous self-powered monitoring.

Keywords: Cu2S; PEDOT:PSS; thermoelectric generator; screen-printing; fan-shaped

1. Introduction

With the accelerating urbanization process, the underground pipeline network is
playing an irreplaceable role as the city’s blood vessel. To ensure the normal operation of
the network, reducing personnel inspection tasks and saving costs, effectively monitoring
the underground network is particularly important. Due to the many nodes and wide
distribution of underground pipeline network, the traditional wireless monitoring system
will be limited by the battery power, difficult to replace, high cost, and other outstanding
problems. There is an urgent need for a maintenance-free, continuous power generation
device that can use the environmental energy. As a device that can directly use the environ-
mental temperature difference to generate electricity [1–3], the thermoelectric generator
has no mechanical vibration structure [4], is maintenance-free [5,6], and can make full use
of the cold and hot water pipes existing in the underground pipe network to generate
electricity continuously, which will be the ideal power supply method for the long-term
wireless monitoring system of the underground pipe network status. For this reason, the
development and preparation of thermoelectric devices with high conversion efficiency is
the key to their widespread use for wireless monitoring [7,8].
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The conversion efficiency of a thermoelectric generator depends mainly on the figure
of merit ZT (ZT = σT/k, where S, σ, T and k are Seebeck coefficient, electrical conductivity,
absolute temperature, and thermal conductivity, respectively) of the thermoelectric materi-
als [9]. To obtain a high thermoelectric figure of merit, the thermoelectric material should
have a high power factor (PF = σ) and low thermal conductivity. Thus far, the majority of
commercially available thermoelectric devices are based on Te-based thermoelectric materials,
such as Bi2Te3 and PbTe. Researchers have also conducted numerous studies to improve
thermoelectric properties [10–14]. For example, KUNIHISA et al. [15] reported Bi0.4Te3.0Sb1.6
films by spin-coating. The ZT of the films was 0.2 at 300 K. Pawan et al. [16] reported Bi2Te3
thin films by electrochemically deposited. The S of the film could be −20 µV·K−1. At the
same time, the high toxicity and scarcity of Te element limit the widespread use of related ther-
moelectric materials. Therefore, the research and development of Te-free high-performance
thermoelectric materials have become a direction of interest for most researchers [17–21].
Manisha et al. [22] reported an n-Type BiSe by pulsed electric current sintering. The high
ZT was ~0.8 at 425 K. Ding et al. [23] prepared Ag2Se films by vacuum-assisted filtration.
The PF of the film was 987.4 ± 104.1 µW·m−1·K−2 at 300 K. Among them, Cu2S as a P-type
semiconductor with low thermal conductivity, high Seebeck coefficient, and excellent ZT has
received much attention. Mulla et al. [24] prepared the Cu2S by copper ion doping. The S
was 415 µV·K−1, given a high PF of about 400 µW·m−1·K−2. Cui et al. [25] reported a high
thermoelectric figure of merit ZT of 1.2 could be achieved in hole-doped Cu2S crystal along
the b-axis direction at 500 K. Instead, research on Cu2S has focused on the preparation of
its high-performance bulk thermoelectric material, with the high cost and material waste in
the preparation of the corresponding thermoelectric device [26,27], and the final device is
difficult to effectively fit the surface of the pipe. For this reason, the film is one of the most
effective ways to achieve rapid and low-cost preparation of its thermoelectric devices, espe-
cially flexible film [28–30]. The methods of vacuum-assisted filtration, magnetron sputtering,
and electrochemical deposition have been used to prepare Cu2S flexible films [29,31–33]. For
example, Liu et al. [29] prepared Cu2S films by vacuum-assisted filtration. The maximum PF
of composite films was 56.15 µW·m−1·K−2 when Cu2S content was 10 wt% at 393 K. Liang
et al. [34] prepared Cu2S by Ti4+ doping. The peak ZT value of 0.54 at 673 K. As a fast, very
low-cost, graphic, and large-area method for screen printing to prepare thin films, there are
few reports on Cu2S flexible thermoelectric films, although it has been widely used to prepare
other thermoelectric films [35–39]. Therefore, the preparation of high-performance Cu2S
thermoelectric films and graphic thermoelectric device structure design by screen printing is
essential for developing Te-free thermoelectric devices and self-powered wireless monitoring
by making full use of waste heat from underground pipe networks.

In this paper, Cu2S flexible films were prepared by screen printing. The effects of the
content ratio of Cu2S and PEDOT:PSS on the structure, morphology, and thermoelectric
properties of the films were systematically investigated. In addition, a fully printed Te-free
flexible thermoelectric device with a fan-shaped structure was constructed. Its output
performance was investigated in detail by combining the n-type Ag2Se thermoelectric
film with superior performance prepared by our group’s previous work [35]. This TEG
is expected to obtain high electrical output capability after being prepared by multi-layer
stacking, which can provide an effective solution for continuous underground pipe network
self-supply wireless monitoring.
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2. Experimental Procedures
2.1. Material

The materials used in this experiment, Cu2S were purchased from Runyou Chemical
Co., Ltd. (Nanjing, China), PEDOT:PSS was purchased from Shanghai Ouyi Organic
Optoelectronic Materials (Shanghai, China), and anhydrous ethanol was purchased from
Tianjin Kaitong Chemical Reagent Co. (Tianjin, China). All reagents were used directly
without purification.

2.2. Preparation of Flexible Thermoelectric Thin Film

All containers and tools had been ultrasonic cleaning before the experiment. Firstly,
0.5 g Cu2S and different quantities of PEDOT:PSS were weighed and mixed thoroughly
to prepare the printing paste. Polyimide (PI) was cleaned by ultrasonic and anhydrous
ethanol to remove impurities from its surface. Secondly, the above printing paste was
screen printed on the PI substrate with 200 mesh and cured at a constant temperature
for 10 min. The printing and curing process was repeated three times until the printing
paste was exhausted. By adjusting the content of PEDOT:PSS, the content ratio of Cu2S
and PEDOT:PSS was determined to be 1:1.1, 1:1.2, 1:1.3, and 1:1.4, and they were named
P1.1, P1.2, P1.3, and P1.4. After corresponding experiments, the best performance of the
prepared films was obtained when the ratio of Cu2S and PEDOT:PSS was 1:1.2. Finally, the
printing paste, prepared by a 30:1 ratio of Ag2Se to PVP, was printed on the P1.2 film to
complete the f-TEG. The f-TEG consisted of 10 strips measuring 30 mm × 5 mm, arranged
in a semicircular array on the PI. The f-TEG thermocouples were connected by conductive
silver adhesive to reduce additional resistance. The manufacturing process using low-cost
screen printing of thermoelectric films is shown in Figure 1.
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Figure 1. Screen printing diagram of Cu2S film.

2.3. Measurements and Characterizations of Cu2S/PEDOT:PSS Film and f-TEG

The physical-phase composition of Cu2S was measured using X-ray diffraction (XRD,
DX-2700, Dandong, China). The composite films’ surface morphology and thickness were
observed using a field emission scanning electron microscope (FESEM, SUPRA-55, Zeiss,
Jena, Germany). Meanwhile, the X-ray energy spectrometer was analyzed. The Seebeck
coefficient (S) and electrical resistivity (σ) were measured in a helium atmosphere (Linseis,
LSR-3, Selb, Germany), with S and σ error measured by approximately ±5%. Carrier
concentration (n) and mobility (µ) were determined by the Van der Pauw method under
the nitrogen atmosphere (Linseis, HCS, Selb, Germany).
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A test circuit with f-TEG as the power supply was established to test its output
performance. The thermal side of the f-TEG obtained a variable high temperature through
the heating table, and the cold side maintained a stable temperature through the water
circulation cooling device. The output voltage could be measured by changing the heating
temperature. The temperature was measured using a contactless infrared thermometer and
an infrared imager.

3. Results and Discussion

The X-ray diffraction of Cu2S powder, films, and PEDOT:PSS is shown in Figure 2. The
diffraction spectra of both films and powders have five distinct characteristic diffraction
peaks with corresponding crystal planes (101), (103), (104), (113), and (200). The results are
consistent with Cu2S in the standard spectrum. The results show that diffraction peaks
of the films can be marked as Cu2S (PDF # 29-0578). Some other characteristic peaks are
consistent with PDF # 06-0464 (CuS), which indicates a small amount of CuS impurities in
the powder. In addition, the characteristic peaks of hybrid films do not correspond to Cu2S
powder, and they correspond to the diffraction peaks of PEDOT:PSS films.
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The SEM images of the P1.1, P1.2, P1.3, and P1.4 films are shown in Figure 3a–d. It
could be seen that with the increase of PEDOT:PSS content, the interparticle spacing of Cu2S
becomes large. The increase of a small amount of PEDOT may result in improved electrical
properties of thin films. The thickness of the screen-printing film is shown in Figure S1. The
measured thickness was 80–90 µm, indicating the uniformity of screen-printed hybrid films.
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Table 1 showed the elemental ratios on the surface of P1.2 films. The result showed
that the percentage of Cu and S was about 2:1, which conformed to the stoichiometric
ratio. In addition, the P1.2 film element mapping results were shown in Figure S2, which
indicated that Cu2S was uniformly distributed in the composite film. The results showed
that the screen-printing method prepared a homogeneous composite film.

Table 1. Elemental analysis results of the P1.2 film.

Element (%) Weight (%) Atom (%)

Cu 65.3 35.21
S 15.51 16.57
C 10.03 28.6
O 9.16 19.62

Total 100 100

As shown in Figure 4, the S, σ, and PF of P1.1, P1.2, P1.3, and P1.4 films were tested,
and their thermoelectric properties at 300–400 K were studied. In Figure 4a, the positive S
indicated that Cu2S was a p-type TEG material. The S of these films showed similar trends,
indicating that the addition of PEDOT:PSS did not affect the intrinsic properties of Cu2S.
With the increase of PEDOT:PSS content, the S of the film gradually decreased, and with
the temperature rise, the S of all films steadily increased. In Figure 4b, the σ of these films
maintained a downward trend with increasing temperature. For example, the σ of P1.2 film
decreased from 220.23 S·cm−1 at 300 K to 192.17 S·cm−1 at 400 K. With PEDOT:PSS increased,
the σ of these films increased accordingly. For the composite film of Cu2S and PEDOT:PSS,
the gap difference between Cu2S and PEDOT:PSS is large, and the interface barrier is large.
Therefore, the S decreases with the increase of PEDOT:PSS content. The interaction between
Cu2S and PEDOT forms a highly conductive PEDOT interface layer on the surface of Cu2S.
The conductivity of this interface layer is much higher than that of PEDOT film and Cu2S, so
the conductivity of the composite film increases. Figure 4c showed the PF of Cu2S/PEDOT:PSS
composite films with different ratios varied with temperature. Under the S and σ combined,
the PF of films with different ratios increased with increasing temperature. The film showed
excellent thermoelectric value when the content ratio of Cu2S and PEDOT:PSS was 1:1.2. The
P1.2 film had the most PF of 20.60 µW·m−1·K−1 at 400 K.
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The Hall effect of the three thin films was tested using the Vanderbilt method to account
for the S and σ with temperature. Since the variation patterns of σ and S were the same
for all composite films in Figure 4, the variation pattern was explained here with the P1.2
composite film as the object of study. In Figure 5, the carrier concentration decreased from
4.38× 1022 cm−3 to 2.17× 1022 cm−3, and the mobility increased from 3.14× 10−2 cm−2V−1s−1

to 5.52 × 10−2 cm−2V−1s−1 when the temperature increased from 300 K to 400 K. With the
increase of temperature, Cu2S will undergo a structural phase transition process, that is, from
non-cubic phase to cubic phase. In the high-temperature Cu2S cubic phase, Cu is not arranged
in an orderly manner, which becomes a fast ion diffusion in the lattice, and the S sublattice
provides a good transport channel. With the increase of temperature, the carrier velocity
increases, the scattering effect decreases, so the mobility increases. PEDOT:PSS has metal
characteristics, so the carrier concentration of the composite film decreases with the increase
in temperature. The σ can be calculated according to the formula [40]:

σ = neµ (1)

where n is the carrier concentration, µ is the mobility, and e is the electron mass. Therefore,
the main reason for the decrease in σ with the temperature increase was that the increase
in µ was significantly smaller than the n decrease. The S can be obtained according to the
formula [40]:

S =
8π2kB

3eh2 m∗T(
π

3n
)

2/3 (2)

where kB is Boltzmann constant, h is Planck constant, and m* is effective carrier mass. The
decrease of S with the increase of PEDOT:PSS content was caused by the increase of n in
the material. As the temperature increased, the reduction of n led to the rise of the S.
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The f-TEG should be very flexible to tightly wrap the pipe to obtain more thermal
energy. Therefore, to further verify the flexibility of the mixed film, this paper tested the
flexibility of all proportions of the composite films. As shown in Figure S3, the dried P1.1
film no longer adhered to the PI substrate and had very poor flexibility. The flexibility test
result was shown in Figure 6. In the experiment, the film was wound around a rod with a
diameter of 8 mm, and the film was repeatedly bent. The internal resistance of each film
increased with the increase of bending times. The results showed that after 1500 bends,
the σ of the P1.4 film decreased to 84 % of the initial state, P1.3 to 80 %, and P1.2 to 75 %,
meaning that films with higher PEDOT:PSS content had the best flexibility, so films with
PEDOT:PSS had good bond flexibility.
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After f-TEG was composed, the feasibility of f-TEG as a self-powered device was
verified through practical tests. Considering the shape of the underground pipe, f-TEG is
designed as a fan structure to fit the pipe wall better to obtain a higher output capacity by
creating a larger temperature difference. To test the feasibility of the structure, COMSOL
5.6 software was used for the simulation experiment. The result was shown in Figure 7.
The simulation experiments of the f-TEG were carried out in COMSOL software, and the
corresponding simulation results were obtained. The output voltage of the f-TEG was
34.0 mV at the ∆T of 20 K and 60.0 mV at the ∆T of 35 K.
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Based on the above test of Cu2S film, the f-TEG selected P1.2 as the p-type thermo-
couple. Our research group previously conducted the corresponding research on n-type
thermocouples [35]. The group prepared the Ag2Se/PVP films. When the content ratio of
Ag2Se and PVP was 30:1, the prepared film had the best thermoelectric properties with
a maximum PF of 4.3 µW·m−1·K−2. So Ag2Se/PVP thermoelectric film was a reliable
n-type thermocouple.

The real test was conducted in Figure 8a. The f-TEG’s output voltage and output power
under a specific temperature difference could be measured by changing the temperature
difference between the two ends of the device. Figure 8b was the infrared image of the
f-TEG in the actual test. In the experiment, the inside of the device was the hot end, and the
outside was the cold end—the schematic diagram of the test circuit as shown in Figure 8c,e.
Test results for f-TEG were shown in Figure 8d,f. When the ∆T was 20 K and 35 K, the
output voltages of the f-TEG were 19.3 mV and 33.5 mV. The actual test results were about
1.7 times smaller than the simulation results. This result may be caused by heat loss and
contact resistance of conductive silver glue and wire. The maximum output powers of
the f-TEG were 50.32 nW and 163.20 nW. Voltage Ul could be calculated according to the
formula [40]:

Ul = (1 − Rin
Rin + Rl

)× U0 (3)

where U0 is the open-circuit voltage of the flexible thermoelectric device, and Rin is its inter-
nal resistance. The formula showed that the output voltage increased with the increasing
load resistance at a certain temperature difference. Eventually, it was infinitely close to the
open-circuit voltage. When the load resistance was equal to the device’s internal resistance
of 1750 Ω, the device’s output was 162.48 nW. The power density (Pd) of the flexible ther-
moelectric device at the ∆T of 35 K was 0.0016 W·m−2, which could be calculated by the
formula [40]:

Pd =
Pmax

N × S
(4)

where Pmax is the maximum output power, N is the number of the f-TEG bands, and S
is the cross-sectional area. The results have shown that the flexible thermoelectric films
prepared by screen-printing had excellent application potential in self-powered energy.
For increasing output capability, the f-TEG can be prepared by multi-layer stacking; the
method is easy to process. Figure 8g shows that f-TEG, prepared by the stacking method,
will be the ideal self-power supply method for the long-term wireless monitoring system
of the underground pipe network status.
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4. Conclusions

In summary, the flexible thermoelectric films with different content ratios of Cu2S
and PEDOT:PSS were prepared by screen printing. With the increase in the proportion
of PEDOT:PSS, the S of the film decreased. The P1.2 film had the best thermoelectric
properties, with a maximum PF of 20.60 µW·m−1·K−1. After 1500 times bending, the
conductivity of the film is 75%, which indicates that the film has good toughness. In
addition, the f-TEG prepared by Cu2S and Ag2Se was studied. When the ∆T was 35 K, the
output voltage of the f-TEG was 33.50 mV, and the maximum output power was 163.20 nW.
The f-TEG is expected to obtain high electrical output capability after being prepared by
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multi-layer stacking, which can provide an effective solution for continuous underground
pipe network self-supply wireless monitoring.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano12142430/s1, Figure S1: The cross-sections of P1.1, P1.2, P1.3, and P1.4 films.; Figure S2:
Element mapping diagram of P1.2 film, (a) SEM diagram of P1.2 film, (b) C element, (c) O element,
(d) S element, (e) Cu element; Figure S3: The image of the P1.1 film module no longer adheres to the
PI substrate.
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