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Abstract

Background: Transcriptome profiling of patterns of RNA expression is a powerful approach to identify networks of genes
that play a role in disease. To date, most mRNA profiling of tissues has been accomplished using microarrays, but next-
generation sequencing can offer a richer and more comprehensive picture.

Methodology/Principal Findings: ECO is a rare multi-system developmental disorder caused by a homozygous mutation in
ICK encoding intestinal cell kinase. We performed gene expression profiling using both cDNA microarrays and next-
generation mRNA sequencing (mRNA-seq) of skin fibroblasts from ECO-affected subjects. We then validated a subset of
differentially expressed transcripts identified by each method using quantitative reverse transcription-polymerase chain
reaction (qRT-PCR). Finally, we used gene ontology (GO) to identify critical pathways and processes that were abnormal
according to each technical platform. Methodologically, mRNA-seq identifies a much larger number of differentially
expressed genes with much better correlation to qRT-PCR results than the microarray (r2 = 0.794 and 0.137, respectively).
Biologically, cDNA microarray identified functional pathways focused on anatomical structure and development, while the
mRNA-seq platform identified a higher proportion of genes involved in cell division and DNA replication pathways.

Conclusions/Significance: Transcriptome profiling with mRNA-seq had greater sensitivity, range and accuracy than the
microarray. The two platforms generated different but complementary hypotheses for further evaluation.
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Introduction

New technologies permit the evaluation of global patterns of

gene expression – mRNA levels – from healthy and diseased

tissues. The simultaneous assessment of changes in expression of

many genes – up to the whole genome level – can then be analysed

simultaneously using bioinformatic tools that can reveal new

patterns or networks of differentially regulated genes [1]. These

technologies have transformed our conception of the molecular

mechanisms underlying complex diseases such as cancer and

degenerative illnesses [2,3]. Over the past five years, microarrays –

which are a hybridization-based technology – have been the main

platform used for transcription profiling. However, within the last

two years, high throughput next-generation mRNA sequencing

methods now allow for quantitative measurement of expression

levels on a genome-wide basis at the level of a single nucleotide.

We had the opportunity to compare technologies used to

generate expression profiles of cultured fibroblasts from Amish

children with a rare autosomal recessive condition called

endocrine-cerebro-osteodysplasia (ECO; MIM 612651). ECO is

a multi-system neonatal lethal disorder – a kinasopathy [4] –

affecting mainly the skeletal, cerebral and endocrine systems that

results from a homozygous nonsynonymous mutation (R272Q) in

the ICK gene encoding intestinal cell kinase [5]. ICK, also known

as MAK-related kinase (MRK), is ubiquitously expressed,

particularly in brain, spinal cord, testis, and ovary [6,7,8].

Catalytic domains of ICK share ,40% identity with those of

consensus MAPKs, which are regulators of cell-cycle entry and
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transition by cyclin-dependent protein kinases (CDKs) [9].

Residue 272 lies within the nuclear localization signal sequence

[5,9] and the R272Q mutation both impairs nuclear localization

and reduces catalytic activity [5].

Since very little was known about the downstream biological

pathways and gene networks that were affected in ECO patients,

we profiled the transcriptomes of cultured skin fibroblasts from

ECO patients. We used 2 independent technological platforms to

accomplish this, namely cDNA microarrays and next-generation

mRNA sequencing (mRNA-seq). This provided a unique

opportunity to validate the findings of each platform using

quantitative RT-PCR (qRT-PCR) and to compare the networks

of genes that were identified by GOStat, a database that lists all

the overrepresented GO terms according to statistical significance

[10], and KEGG pathway, a collection of manually curated

pathway maps [11].

Materials and Methods

Participants and Ethics Statement
Primary skin fibroblasts from two subjects affected with ECO

(designated 030950 and 040786) and one unrelated unaffected

from the community (070280) were obtained from forearm

puncture biopsies from affected individuals. The skin fibroblast

line AG03348 (or 3348) was obtained from the Coriell Cell

Repository (Coriell Institute for Medical Research, Camden NJ),

and served as another unaffected non-Amish control cell line.

Cultured primary skin fibroblasts were maintained at 37uC and

5% CO2 in Ham’s F-10 medium (Gibco, Carlsbad CA) with L-

glutamine supplemented with 10% fetal bovine serum and 16
antibiotic/antimycotic mixture (Gibco). For passaging, cells were

released from the dish using 0.1% (w/v) trypsin and 0.02% (w/v)

EDTA washes and re-distributed onto another dish. Samples from

all passages were stored in 280uC.

Tissue samples were provided for research purposes, with

approval by the Office of Research Ethics (University of Western

Ontario). Participating parents provided informed consents and

did not receive any financial compensation.

Skin Fibroblast Cell Line Doubling Measurements
Each cell line was passaged and maintained in 90 mm diameter

dishes (Gibco) two to three times weekly. After release using

trypsin and EDTA, washed cells were diluted in enriched Ham’s

F-10 medium. Ten microlitres of re-diluted cells were counted

using a haemocytometer and seeded on fresh culture dishes. Cell

number counted (n) was used to calculate the number of cells per

mL (N), with the formula N = n6104. This procedure was carried

out until the same number of cells or fewer was obtained from sub-

culturing over three consecutive passages. Cell growth was

measured by calculation of population doubling (PD) using the

formula:

PD~ log H{ log Sð Þ=log 2:0,

where log H is the logarithm of the number of cells harvested after

3 or 4 days of growth and log S is the logarithm of the number of

cells on the first day of each passage. Accumulated population

doublings (APD) were calculated by the summation of PDs.

RNA Isolation
For each cell line, RNA from a ‘‘young’’ cultured age passage

was extracted at an APD of 3–5 whereas RNA from an ‘‘old’’

cultured age passage was extracted at an APD of ,20–22. In total

8 samples were extracted, with young and old passages for affected

cell lines 030950 and 040786 and for unaffected cell lines 070280

and 3348. RNA was extracted from cultured skin fibroblasts using

the RNEasy kit (Qiagen, Mississauga, ON). Briefly, cells were lysed

with a buffer containing guanidine-isothiocyanate and b-mercap-

toehtanol. Genomic DNA was sheared using a Shredder column

(Qiagen). Ethanol was added to the resulting solution allowing the

RNA to bind to the silicia-gel-membrane spin column. Bound

RNA was washed with ethanol and eluted with RNAse-free water.

Once RNA was extracted, its concentration and purity were

measured using the NanoDrop spectrophotometer (Thermo

Scientific; Ottawa, ON) and the Agilent 2100 Bioanalyzer (Agilent

Technologies; Palo Alto, CA). Samples were stored at 280uC.

cDNA Microarray Hybridization and Analysis
All microarrays were processed at the London Regional

Genomics Centre (http://www.lrgc.ca). Biotinylated RNA was

prepared from 2 mg of total RNA using the two–cycle amplifica-

tion protocol. Double-stranded cDNA was synthesized using

SuperScript II (Invitrogen, Carlsbad, CA) and oligonucleotide

primers. Biotin-labelled complementary RNA (cRNA) with

incorporated biotinylated UTP and CTP was prepared using in

vitro transcription of cDNA with the Bizarre High-Yield RNA

Transcript Labeling kit (Enzo Brioche, New York, NY). Fifteen

micrograms of labelled cRNA was hybridized to Human 1.0 ST

array GeneChips for 16 h at 45uC (Affymetrix, Santa Clara, CA).

The chips were stained with streptavidin-phycoerythrin solution.

Liquid handling was performed by the GeneChip Fluidics Station

450 (Affymetrix) and arrays were scanned using the GeneChip

Scanner 3000 (Affymetrix). Signal intensities for genes were

generated using GCOS1.4 (Affymetrix) using default values for the

Statistical Expression algorithm parameters. Probe level data was

imported into Genomics Suite software (Partek, St. Louis, MO);

the student’s paired t test was used to detect differences between

them.

mRNA Deep Sequencing Platform Hybridization and
Analysis

Five mg of total RNA was processed using proprietary kits from

Illumina (Hayward, CA). Briefly, PolyA+ RNA was isolated from

total RNA fragmented using Ambion RNA fragmentation buffer.

cDNA synthesis was performed with Invitrogen random hexamer

primers and cDNA was purified using QIAquick PCR spin

column (Qiagen). Ends were blunted and 39-A overhangs

introduced using T4 DNA polymerase and E. coli DNA

polymerase I Klenow fragment. cDNAs were ligated to adapters

with a single ‘T’ base overhang. After selection of 150–200 bp

fragments from 2% low-range agarose gel, samples were amplified

by 18 PCR cycles to enrich cDNAs with correctly ligated adapters

and to amplify the amount of DNA in the library. Samples were

loaded on a Cluster Station to create flow cells of clonal single

molecular array (CSMA) and sequenced on the Illumina platform

[12]. The analysis pipeline encompassed primary data acquisition,

base calling, and calculating confidence scores from the fluores-

cence signals on the Genome Analyzer. Each transcriptome was

sequenced at a depth of 30–40 million single reads, with read

lengths up to 75 bp. Raw reads were converted to FASTQ data

format since this format compactly stores a quality score for each

base, which could be used to filter individual sequences. The

quality-filtered reads were then aligned by TopHat [13], which

map them to both the UCSC reference human genome and exon-

exon splice junctions as annotated by Ensembl. Cufflinks [14] then

provided the gene expression levels, based on the TopHat

alignments and Ensembl annotation. Gene expression was

quantified as ‘reads per kilobase of exon model per million
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mapped reads’ (RPKM) [15], and the expression cutoff was 0.5

RPKM — that is, the transcript of the gene was present if there

were $10 reads that mapped uniquely to a single genomic locus.

More than 18,815 Ensembl annotated protein-coding genes were

compared to create a gene list of differentially expressed genes

based on disease status of the cell lines. Transcript level data were

then imported into Genomics Suite (Partek, St. Louis, MO) for

additional analyses; comparisons were performed using student’s

paired t test.

Quantitative RT-PCR
For the mRNA-seq platform gene list, two probes per gene were

chosen for FBLN5, EMP1, CHPF, EXT1, CRIP1, MEST, STC2,

AFAP1, DKK2, LRRK2, LXN, FAM20A, DYNC1I1, KIF23, and

GPR160, while one probe was chosen for SOD3, RAP1B, CCRL1,

and HTR1B based on probe availability (Gene Expression Assay,

Applied Biosystems, Carlsbad, CA). qRT-PCR standard curves for

FBLN5, EMP1, SOD3, CHPF, CRIP1, DKK2, LRRK2, CCRL1,

FAM20A, and DYNC1I1 were acquired using cell line 070280,

while cell line 030950 was used to derive standard curves for

EXT1, MEST, STC2, RAP1B, AFAP1, LXN, KIF23, GPR160, and

HTR1B.

Total RNA (100 ng) was reverse transcribed using the High-

Capacity cDNA Reverse Transcription Kit (Applied Biosystems)

in a 20 mL reaction volume and amplified using TaqMan Assay

probes (Applied Biosystems) in a 7900 HT Real Time PCR

System (Applied Biosystems) with the 40 cycle amplification

protocol. Amplified sequences were detected using the Prism

sequence detector (Applied Biosystems) according to manufactur-

er’s instructions. Experiments were done in triplicate, using

GAPDH as an internal reference, on the young and old age

passages from affected cell lines 030950 and 040786 and from

unaffected cell lines 070280 and 3348. Expression values were

standardized to values obtained with the standard RNA using the

delta Ct method. Standard curves had r2 values.0.98.

Biological Interpretations
The cDNA microarray data set was first run on the gene

ontology (GO)-ANOVA analysis tool (Partek). The mRNA-seq

data set was also biologically interpreted using GO through a web-

Figure 1. Growth characteristics of skin fibroblasts from ECO-affected and unaffected individuals. The accumulated population
doublings (y-axis) achieved at indicated time in culture (x-axis) for four fibroblast cell lines. The fibroblast cell lines include: two homozygous normal
subjects (070280 and 3348) and the two homozygous affected subjects (030950 and 040786).
doi:10.1371/journal.pone.0025400.g001

Table 1. Fold change distribution of differentially expressed genes based on disease status using both platforms (P#0.05).

Platform Fold change

$30 $20 $10 $5 $2 $1

Upregulated genes in ECO-Affected cDNA microarray 0 0 2 6 62 618

mRNA-seq 11 16 42 99 453 1179

Downregulated genes in ECO-Affected cDNA microarray 0 1 3 11 144 974

mRNA-seq 5 7 29 74 255 457

Total differentially expressed genes cDNA microarray 0 1 5 17 206 1592

mRNA-seq 16 23 71 173 708 1636

doi:10.1371/journal.pone.0025400.t001
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based tool, GOStat (http://gostat.wehi.edu.au/), which finds

statistically overrepresented GO terms within the provided data

set. In addition, gene lists based on disease status from the

microarray and the RNA-seq platforms were analyzed by Pathway

Express (http://vortex.cs.wayne.edu/projects.htm), which uses the

KEGG pathway database to define biological and cellular

functions.

Results

Hyperproliferation of Cultured Skin Fibroblasts from
ECO-Affected Individuals

The complete lifespan growth curves of the cell lines are shown

(Figure 1). To reach senescence, the 030950 cell line was passaged

27 times for 96 days, 040786 was passaged 25 times for 88 days,

070280 was passaged 25 times for 88 days, and 3348 was passaged

19 times for 66 days. The mean PD from the 2 normal fibroblast

lines was 0.5960.03, while the mean PD for the 2 ECO-affected

fibroblast cell lines was 1.0760.05 (P,0.05). These findings,

obtained from experiments performed in duplicate, indicated an

approximate doubling of the proliferation rate in affected skin

fibroblasts compared to unaffected skin fibroblasts.

Transcriptome Profiling
Both microarray and mRNA-seq platforms showed consistently

high numbers of genes that were differentially expressed in ECO-

affected versus unaffected fibroblasts. Table 1 shows a comparison

of the number of significantly differentially expressed genes based

on fold change determined by each platform. Overall, mRNA-seq

identified a greater number of differentially expressed genes with

fold changes $2.0 than microarrays (708 versus 206, respectively),

with virtually identical numbers of genes with fold changes

between 1.0 and 2.0 (1636 versus 1592, respectively) indicating

that mRNA-seq was more sensitive in identifying significantly

differentially expressed genes than the cDNA microarray.

The cDNA microarray identified more downregulated genes,

while the mRNA-seq platform identified more upregulated genes.

Most differentially expressed genes from the cDNA microarray had

a fold-change range from 2 to 10, while the differentially expressed

genes from the mRNA-seq platform had a greater range in fold-

change values, and many more genes with fold changes $20.0.

We next validated 20 significant differentially expressed genes

from the mRNA-seq platform using qRT-PCR. Candidate genes

were chosen based on conventional criteria [16] such as .2-fold

change between conditions, with P#0.05, regardless of the ‘age’ or

passage number (see Table 2). By inspection, the direction and

degree of fold- changes were more similar to the qRT-PCR

findings for mRNA-seq identified genes than for microarray

identified genes. Also, by inspection, there appeared to be

systematic underestimation in fold-change values from the cDNA

microarray data set, for about half of the validation gene set,

namely SOD3, CRIP1, MEST, DKK2, LXN, CCRL1, FAM20A,

DYNC1I1, HTR1B, and RASGRP1. Also, 5 genes, namely STC2,

Table 2. Comparison of fold change values of 20 genes (with P#0.05) selected from the mRNA-seq platform to qRT-PCR and cDNA
microarray.

Gene symbol Gene Name mRNA-seq data (P#0.05)
qRT-PCR
(Fold change)

cDNA microarray
(Fold change)

Affecteda Unaffecteda Fold change

AFAP1 Actin filament associated protein 1 75.1 37.5 2.00 1.97 1.94

CCRL1b Chemokine (C-C motif) receptor-like 1 0.19 22.8 2119.3 298.3 21.87

CHPF Chondroitin polymerizing factor 142.3 231.9 21.63 21.80 21.59

CRIP1 Cysteine-rich intestinal protein 1 39.0 95.0 22.44 26.32 21.81

DKK2 Dickkopf homolog 2 0.16 2.81 218.1 217.3 22.30

DYNC1I1 Dynein, cytoplasmic 1, intermediate chain 1 0.02 0.56 230.8 235.9 21.08c

EMP1 Epithelial membrane protein 1 99.4 217.2 22.18 22.06 22.72

EXT1 Exostosin 1 184.3 104.3 1.77 1.95 1.55

FAM20A Family with sequence similarity 20, member A 0.27 7.48 227.7 232.2 22.04

FBLN5 Fibulin-5 73.1 172.8 22.36 22.60 22.03

GPR160 G protein-coupled receptor 160 0.78 0.02 41.8 1.37 1.08c

HTR1Bb 5-hydroxytryptamine (serotonin) receptor 1B 0.87 0.01 62.0 4.15 1.51

KIF23 Kinesin family member 23 601.9 2.03 295.9 1.17 1.30c

LRRK2 Leucine-rich repeat kinase 2 0.05 1.30 227.1 229.8 n/a

LXN Latexin 10.7 0.10 111.4 166.3 2.22

MEST Mesoderm-specific transcript homolog 83.6 4.56 18.3 36.7 1.80

RAP1Bb Ras-related protein 1b 78.9 39.1 2.02 1.46 21.21c

RASGRP1 RAS guanyl releasing protein 1 (calcium and
DAG-regulated)

19.1 0.47 40.3 35.7 17.3

SOD3b Superoxide dismutase 3, extracellular 6.44 81.1 212.6 225.1 21.44

STC2 Stanniocalcin 2 149.3 85.9 1.74 1.90 1.52c

avalues based on RPKM normalization;
bone qRT-PCR probe used;
cnot significant.
doi:10.1371/journal.pone.0025400.t002
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RAP1B, DYNC1I1, KIF23 and GPR160 were not statistically

different in terms of gene expression between the platforms. There

was much better correlation between the mRNA-seq platform and

qRT-PCR values (r2 = 0.794, P = 7.1061027, Figure 2A) than

between the cDNA microarray and qRT-PCR (r2 = 0.137,

P = 0.12, Figure 2B).

Biological Interpretations of Differentially Expressed
Genes

Using GOStat [10] we determined the top 20 overrepresented

GO terms based on the total number of genes that were

significantly (P,0.05) differentially expressed from microarray

and mRNA-seq platforms (Tables 3 and 4, respectively). GO

categories identified as significant by microarray tended towards

anatomical and organ development and morphogenesis. In

contrast, GO categories identified as significant by mRNA-seq

data tended towards genes involved in cell cycling and cell

division. Together, the findings suggest that differentially

expressed genes in the ECO syndrome are found in pathways

involved in the proliferation and regulation of cell cycle.

We also evaluated the top GO categories in ECO-affected cells

versus unaffected cells using KEGG pathway analysis for the

microarray and mRNA-seq data sets (Tables 5 and 6, respectively).

Interestingly, although several overrepresented pathways were the

same using data from each platform, the most significant pathway

- found from the mRNA-seq data - was the cell cycle. Overall,

KEGG pathway analysis suggested downstream transcriptional

consequences of the germline ICK mutation affect JAK-STAT and

Wnt signalling pathways, cell adhesion and cytoskeletal structure,

consistent with a role in regulation of cell proliferation.

Figure 2. Correlation graphs of the fold change of the 18 genes selected from the mRNA-seq platform. (A) The fold-change values from
the mRNA-seq data (x-axis) are plotted against the fold change value from the qRT-PCR experiments (y-axis), giving good correlation (r2 = 0.794,
P = 7.1061027). (B) The fold-change values from the cDNA microarray data (x-axis) are plotted against the fold change value from the qRT-PCR
experiments (y-axis), with non-significant correlation (r2 = 0.137, NS).
doi:10.1371/journal.pone.0025400.g002
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Discussion

We used two different methods, namely cDNA microarrays and

the mRNA deep sequencing platform, to profile transcriptomes of

fibroblasts from patients with ECO syndrome due to the

homozygous R272Q mutation in ICK. We identified a hyperpro-

liferative phenotype for cultured ECO cells and showed

differential expression of genes involved in cell growth and

proliferation. We also had a unique opportunity to compare the

findings of these two platforms. We found that the mRNA-seq

platform was more sensitive in identifying significantly differen-

tially expressed genes than the cDNA microarray platform. Also,

correlation with qRT-PCR validation experiments of fold-changes

with mRNA-seq was also superior compared to cDNA micro-

arrays. It is interesting to note that results from cDNA microarray

and qRT-PCR do not correlate well for the top 20 genes acquired

from the mRNA-seq platform data, indicating that although qRT-

PCR shows biological differences for these genes, their changes in

expression were not appreciated using the cDNA microarray. This

also implies that the cDNA microarray platform contains

numerous false-negatives, which may lead to inaccurate conclu-

sions about the transcripts expressed in cases versus controls.

Initially transcription profiling studies largely relied on hybrid-

ization-based technologies. However with the introduction of

mRNA-seq technology, RNA analysis through deep sequencing is

achievable on a massive scale. Although the discussion of the

advances and challenges of both platforms used here is beyond the

scope of this paper, we will briefly address them. The microarray-

based approach to study gene expression is high throughput and

relatively inexpensive; however it has a limited range of detection

due to both background and saturation of signals [17] and seems

largely limited in its ability to catalogue and quantify diverse RNA

molecules due to the reliance on probes for pre-specified targets

[18]. mRNA-seq technology, on the other hand, has highly

reproducible results with relatively little technical variation and

has the potential to detect and quantify RNAs with low and

moderate abundance since this approach digitally counts sequence

reads [19]. However, by using sequence reads for RNA

quantification, other issues arise; for instance, a small number of

very highly expressed genes (7%) accounts for most of the reads

(75%) [20]. More specifically in this study RPKM (Reads Per

Kilobase of exon model per Million mapped reads), was the unit of

measurement used to quantify transcript abundance. However,

this unit is biased towards larger genes and ignores the fact that

that different isoforms of a gene may be of different lengths [14].

Recently, others have compared the results of deep sequencing-

and microarray-based transcriptional profiling in a mouse model

of cardiomyopathy [21]. As we have now shown with our human

transcriptome findings, those authors similarly concluded that

mRNA-seq was sensitive and reliable in quantifying lower-

abundance genes, which represented the majority of the regulated

genes in their model.

We note that skin fibroblasts of the affected individuals were

hyperproliferative in culture compared to those from normal

individuals, which was consistent with the presumed role of ICK as

a human cyclin-dependent kinase 2 (CDK2) member of the

MAPK family. MAPKs are regulators of cell cycle and thus of

cellular proliferation and apoptosis [22]. The expression experi-

Table 3. Top 20 overrepresented Gene Ontology (GO) terms
using GOStat in the cDNA microarray data set (based on
disease status, P#0.05 and $62.0 fold change, 206 genes).

GO ID GO category P-value
# Genes/
GO ID

48856 anatomical structure development 5.84610214 39

7275 multicellular organismal development 8.70610214 42

32502 developmental process 6.80610213 52

32501 multicellular organismal process 5.57610211 54

48731 multicellular organismal system
development

5.18610210 30

48513 organ development 2.0061027 22

8283 cell proliferation 2.1361027 21

7165 signal transduction 9.4461027 58

7154 cell communication 1.0461026 61

9653 anatomical structure morphogenesis 1.0461026 20

65007 biological regulation 1.7561025 67

65008 regulation of biological quality 7.3861025 17

48523 negative regulation of cellular process 7.3861025 19

48519 negative regulation of biological process 1.7661024 19

48869 cellular developmental process 2.1661024 25

30154 cell differentiation 2.1661024 25

50789 regulation of biological process 3.6361024 59

50794 regulation of cellular process 7.3361024 55

7259 JAK-STAT cascade 2.7361023 4

9605 response to external stimulus 2.7361023 13

doi:10.1371/journal.pone.0025400.t003

Table 4. Top 20 overrepresented Gene Ontology (GO) terms
using GOStat in the mRNA-seq data set (based on disease
status, P#0.05 and $62.0 fold change, 708 genes).

GO ID GO category P-value
# Genes/
GO ID

278 mitotic cell cycle 3.98610253 44

279 M phase 5.26610252 42

22403 cell cycle phase 6.64610248 45

22402 cell cycle process 1.37610242 58

7049 cell cycle 4.51610241 68

48856 anatomical structure development 2.50610230 105

8283 cell proliferation 1.05610229 56

7275 multicellular organismal development 5.74610229 113

32502 developmental process 5.74610229 145

32501 multicellular organismal process 5.72610228 157

48731 multicellular systemic organismal
development

9.09610226 86

48513 organ development 1.38610224 68

87 M phase of mitotic cell cycle 2.21610224 40

7067 mitosis 8.97610224 39

51301 cell division 2.17610223 39

65007 biological regulation 2.27610218 211

50789 regulation of biological process 1.37610214 188

74 regulation of progression through cell cycle 3.22610214 27

48869 cellular developmental process 6.84610214 77

30154 cell differentiation 6.84610214 77

doi:10.1371/journal.pone.0025400.t004
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ments, as well as such clinical manifestations of ECO as cleft lip

and palate, polydactyly, and dysplastic organs, support a role for

ICK as a regulator of cell growth. Functionally, GO analysis

showed some overlap between microarray and mRNA-seq data

with respect to overrepresented pathways in cells from ECO

patients. However, emphasis on biological pathway involvement is

based on platform selection, such that cDNA microarray

concentrates on pathways with phenotypic relevance to the

disorder, while the mRNA-seq platform identifies a higher

proportion of upstream genes involved in cell division and DNA

replication pathways. It would be of interest to examine

transcription profiles in cells of other types and from other tissues

in ECO patients. Thus, mRNA-seq discovered more differentially

expressed genes and showed better correlation with qRT-PCR

than did microarrays in cultured skin fibroblasts from ECO

patients. Because of the growing use and accessibility of new

genomic technologies for clinical applications, the findings show

that results should be carefully interpreted, since different methods

can generate very different hypotheses. Further, the findings

emphasize the importance of validation of high-throughput

genome-wide approaches using an independent method, such as

qRT-PCR.
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