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Introduction 

Biological response modifier (BRM) is a recent 
term, first coined in 1982, which connotes an agent 
and treatment approach whose perceived action in- 
volves the modification of an individual's own bio- 
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logical responses [1]. Prior to 1982, the term immu- 
notherapy was used to refer to such agents and usu- 
ally referred to naturally-occurring products ob- 
tained and tested at various grades of purity. Per- 
haps the oldest strategy of immune modification for 
the good of the host is the bacterial vaccine, first 
developed against microbes in the 19th century [2]. 
Antimicrobial vaccines are now a well-established 
part of standard medical practice while anticancer 
vaccines remain in the developmental stages. Some 
of  these latter vaccines have been extracted from spe- 
cies used in the original vaccines of Coley and are 
undergoing clinical testing [3]. 
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However, the advent of hybridoma, recombinant 
DNA, and gene insertion technologies have explo- 
sively widened the number of agents available for 
clinical testing. Agents which have been called 
BRMs now range from monoclonal antibodies [4], 
recombinant forms of interferons [5], interleukins 
[6], and colony-stimulating factors (CSFs) [7,8] to 
traditional Chinese medicines [9]. This review will 
focus primarily on agents whose mechanisms of ac- 
tion are at least partially understood and on those 
which are being or may soon be applied to the infec- 
tious diseases. While most such agents are products 
of the creative technologies mentioned above, some 
natural products whose properties may be unique or 
complementary to technologically-produced prod- 
ucts will be discussed. A summary of these agents is 
presented in Table 1. 

Mechanisms of inflammation 

The rationale for the production and clinical ap- 
plication of BRMs for infectious diseases comes 
from our growing understanding of the inflamma- 
tory response to infectious agents. Two recent arti- 
cles have reviewed this response in detail from the 
perspective of degrees of infection [10] and from that 
of the interactions between the hypothalamic-pitui- 
tary-adrenal (HPA) axis and the immune system 
[11]. There is evidence that infectious agents act as 
stressors which can adversely alter the HPA axis re- 
sponse to such agents and thus disrupt the normal 
inflammatory response [12-14]. Glucocorticoster- 
oids play a vital role in the intensity of the immune 
response at several levels including gene expression, 
transcription, translation, post-translational proc- 
essing and the secretion of proteins, and cell progeni- 
tor proliferation and differentiation. These effects 
are inhibitory at virtually all levels of the immune 
system including macrophage antigen presentation, 
B-cell production of antibodies, and the prolifera- 
tion and differentiation of lymphocyte and granulo- 
cyte effector cells [15]. These inhibitory effects are, in 
turn, mediated through the inhibition ofinterleukins 
(ILs) such as IL-1, IL-2, IL-3, and IL-6 as well as the 
suppressor oftumour necrosis factor (TNF), gamma 
interferon (,/IF), endogenous CSF such as granulo- 
cyte-macrophage CSF (GM-CSF) and the inhibition 

TABLE 1 

Areas for therapeutic trials of BRMs in infectious diseases 

Colony-stimulating factors 
Prevention of neutropenia in congenital, and cyclic neu- 

tropenic states 
Prevention of neutropenia during intensive anti-cancer 

therapy 
Treatment of febrile neutropenia 
Prevention and treatment of AIDS-related neutropenia or 

infection 
Treatment with antibiotics for infections in various im- 

muno-compromised states (e.g. burns, asplenia, neona- 
tal infections) 

Interleukin-1 
Improving hematopoiesis 
T-cell and B-cell helper factor 

Interleukin-6 
Stimulates thrombopoiesis 
Down-regulates IL-1 
Interacts with other growth factors to amplify hematopoi- 

esis 

IL-1-Antagonist 
Blocks shock-like effects of IL-1 

Immunoglobin 
(1) IVIG 

Kawasaki's disease 
Prevention and treatment of viral disease in immuno- 

compromised patients 
Treatment of neonatal bacterial infection 
Treatment and prevention of infections in burn patients 

(2) Anti-endotoxin antibodies for prevention of sepsis 
(3) Anti-idiotypic antibodies as vaccines 

Interferons/Interferon inducers 
Intranasal prophylaxis against viral respiratory infections 
Treatment of hepatitis B and C 
Treatment of AIDS 

Others 
Nucleic acid analogs (isoprinosine) 
Thiols (diethyldithiocarbonate) 
Cyanoaziridine (azimexon) 
Herbal preparations 

of proinflammatory mediators such as prosta- 
glandins and leukotrines. Glucocorticosteroids also 
suppress or inhibit the functions ofeffector cells such 
as eosinophils, mast cells, neutrophils, and mono- 
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cyte-macrophages. Thus, the production and inhi- 
bition of inflammation is a complex phenomenon, 
involving any or all of a variety of mediators whose 
human genes have been identified and can be pro- 
duced for clinical intervention. 

Pathophysiology of inflammatory response to 
infectious agents 

For patients with localized infections, complete 
resolution with or without the aid of antibiotics is the 
rule in an otherwise healthy host. While these indi- 
viduals may not require further exogenously-admin- 
istered therapy, much can be learned about the re- 
sponse of endogenous mediators which could be use- 
ful in immunodeficient hosts. For example, studies 
have shown that alveolar macrophages produce G- 
CSF in response to infectious agents [16]. In vitro, 
G-CSF has been shown to improve the functional 
activity and survival of granulocytes against patho- 
gens such as Candida sp., Staph. aureus, and P. 
aeruginosa [17,18]. 

Various factors may contribute to the host's fail- 
ure to locally contain infection. These include the 
disruption of local barriers to infection dissemina- 
tion such as burns or trauma, advancing age, the 
presence of underlying disorders such as renal or 
cardiac failure, diabetes mellitus, hepatic cirrhosis, 
or asplenia, and the concomitant administration of 
immunosuppressive drugs. In ways that are not yet 
fully understood, these factors can alter the complex 
equilibrium between mediators which enhance in- 
flammation and those which suppress it. The factors 
mentioned above may detrimentally upset this bal- 
ance in several ways: by altering the capability of 
target cells to release mediators and by disturbing 
the type and quality of interdependent mediators in 
the local environment [10]. Inflammation is nor- 
mally controlled by the counter-effects of mediators 
which enhance or suppress inflammation. TNFo~ en- 
hances prostaglandin I2 release while the latter 
down-regulates further TNF~ production [19,20]. 
Similarly, G-CSF, ~IF,  and TNF~ can improve 
neutrophil function [21,22] while products of the 
neutrophilic burst can neutralize the effect of leuko- 
trines on increased vascular permeability at the in- 
flammatory site [23]. However, some mediator inter- 

actions are self-perpetuating and can lead to infec- 
tion dissemination and sepsis. Examples of this in- 
clude the release of ~ IF  by activated T-cells which 
then stimulates macrophages to release IL-1 [24]. 
The latter can then induce the release of TNF~ and 
platelet-activating factor (PAF), with all three fac- 
tors promoting the release of each other [25]. Since 
these three factors can induce symptoms of sepsis, 
much research is being directed toward understand- 
ing their relationship to states of sepsis and the devel- 
opment of counter-intervention which may prevent 
or reverse the septic state. 

The importance of the vascular endothelium in the 
evolution of septic states is rapidly becoming evi- 
dent. This defense system is not only a mechanical 
barrier to infection and mediator release from the 
local environment but is also a source of TNF~,  IL- 
l, PAF, IL-6 [26-28], endothelin-1, endothelium-de- 
rived relaxing factor (EDRF) [29], and arachidonic 
acid metabolites [30]. While the limited release of 
TNF~,  IL-1, endotoxin, etc., can induce a down- 
regulation of subsequent mediator release with a re- 
sultant abortion of the process of sepsis develop- 
ment, such down-regulation could be prevented by a 
shortage of down-regulating mediators or an over- 
whelming release of sepsis-inducing mediators. Such 
substances may damage the endothelium further, re- 
sulting in the release of more sepsis-promoting fac- 
tors, and the eventual development of end-organ is- 
chemia and multiple organ failure [10]. 

The final stage of sepsis is multiple organ failure 
(MOF), a well-recognized clinical syndrome associ- 
ated with a wide variety of clinical events or states. 
While infection and shock lead the list of predispos- 
ing factors, others include mechanical, thermal, and 
traumatic factors and pancreatitis [31]. Several 
mechanisms of MOF evolution have been put for- 
ward. The so-called macrophage hypothesis sup- 
ports the previously-outlined evolution of sepsis via 
endogenous moderators. Again, the unchecked re- 
lease of IL-1, IL-6, oqF, and TNFo~ and the self- 
perpetuating interaction of these agents forms the 
basis of this hypothesis [32]. 

In summary, several endogenously produced cy- 
tokines have been implicated as important promot- 
ers of the process of sepsis. In the remainder of this 
review, strategies which focus on the suppression of 
the uncontrolled release of sepsis-promoting agents 
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or on the stimulation or exogenous restoration of 
sepsis-preventing agents will be presented. At the 
end, other agents or strategies which show promise 
but whose mechanisms of action are less clear will 
also be reviewed. 

Colony-stimulating factors 

G-CSF and GM-CSF were the first CSFs ap- 
proved for clinical use in cancer patients. Effective- 
ness of either or both of these agents has been dem- 
onstrated in clinical situations where infection pre- 
vention is a primary concern: congenital, idiopathic 
chronic, and cyclic neutropenia; following standard 
doses of  myelosuppressive chemotherapy; in con- 
iunction with bone marrow transplantation (BMT) 
or peripheral blood stem cell (PBSC) reconstitution 
as support following myeloablative therapy; and as 
supportive therapy in patients with AIDS. G-CSF 
reduced infection, hospitalization, and febrile neu- 
tropenia rates as well as the frequency and duration 
of antibiotic usage in a randomized trial of patients 
treated with myelosuppressive therapy for small cell 
lung cancer [33]. Side effects were minimal. Survival 
was similar whether or not G-CSF was given. GM- 
CSF has not been tested in the setting of a random- 
ized trial in this situation but fever and flu-like symp- 
toms are more frequent than with G-CSF. No com- 
pleted randomized trial has been published compar- 
ing prophylactic antibiotics with G-CSF or GM- 
CSF, nor has a trial been conducted comparing the 
effectiveness of  G-CSF with antibiotics compared to 
antibiotics alone in the setting of febrile neutropenia 
following standard dose chemotherapy. 

In patients undergoing autologous BMT, ran- 
domized trials have demonstrated accelerated neu- 
trophil recovery and a reduced duration of antibiotic 
therapy and hospitalization with GM-CSF com- 
pared to placebo [34]. No such trial of G-CSF has 
been undertaken but non-randomized studies sug- 
gest a possible beneficial effect [35]. PBSCs can be 
harvested more efficiently after G-CSF or GM-CSF 
with or without the benefit of  a post-chemotherapy 
rebound phase [36,37]. Whether or not post-trans- 
plantation peripheral blood cell recovery can be fur- 
ther improved by the addition of either factor is not 
yet clear. The optimal schedule for CSFs is one of 

several issues that remains outstanding. The suppor- 
tive care of patients with chronic neutropenic dis- 
eases has made major advances due to these CSFs. 
Patients with congenital or idiopathic neutropenia 
have been treated for up to 3 years with G-CSF with 
associated elevations of neutrophil counts above 
1.0 x 109/1 and marked reduction in infection-related 
symptoms [38]. Adverse events of such chronic treat- 
ment have been infrequent and generally mild except 
for occasional thrombocytopenia,  bone pain, and 
hypersplenism. Treatment with GM-CSF has been 
less effective and also produces eosinophilia. Pa- 
tients with cyclic neutropenia have regular, 14 to 28 
day cycles of neutropenia resulting in recurrent 
fever, infections, and mucosal ulceration. Treatment 
with G-CSF can result in a reduced frequency of all 
three clinical problems coincident with an elevation 
of the cyclical nadir and a shortening of the cycle 
length [39]. Chronic therapy does not appear to re- 
sult in stem cell depletion [40]. Experience with GM- 
CSF has been limited and has not resulted in eleva- 
tions of  neutrophil levels. 

Patients with AIDS may undergo primary bone 
marrow failure or myelosuppression due to antiviral 
or supportive anti-infection therapy. G-CSF has 
demonstrated marked improvements in neutrophil 
counts in patients with anemia and neutropenia also 
receiving erythropoietin and zidovudine [41]. Such 
therapy allowed further treatment with zidovudine 
after zidovudine-induced myelosuppression was 
corrected. Similar benefits were seen with GM-CSF 
[42]. Whereas HIV and p24 antigen levels were un- 
changed with G-CSF, the latter level was elevated 
with GM-CSF, suggesting possible enhancement of 
HIV proliferation. However, this was offset by an 
enhanced antiviral effect of zidovudine in the pres- 
ence of GM-CSF as suggested in vitro [43]. In non- 
neutropenic states, infection may spread due to a 
disruption or circumvention of normal barriers (e.g., 
burns or intramuscular infections) or in other states 
where the immune deficiency is acquired (e.g., neo- 
natal sepsis, asplenic states). Animal model studies 
have suggested a possible role for CSFs in these situ- 
ations. Burn patients demonstrate multiple defects 
of neutrophil dysfunction which precede sepsis [44]. 
In a murine model of burns infected with P. aerugi- 
nosa, mice treated with G-CSF showed marked im- 
provement in survival compared to saline-treated 



controls [45]. In another study in the same model, 
mice receiving single dose gentamicin plus G-CSF 
for 7 days demonstrated improved survival com- 
pared to mice treated with G-CSF alone (P = 0.054), 
gentamicin alone (P = 0.007) or neither treatment 
(P < 0.0001) [46]. 

In newborns, group B streptococcus is the most 
common cause of neonatal sepsis. In a study of neo- 
natal rats, group B streptococcus was given subcuta- 
neously (sc). The survival of animals at 72 h receiving 
both G-CSF and antibiotics (ampicillin and genta- 
micin) was 91%; antibiotics alone, 28%; G-CSF 
alone, 9%, and no treatment, 4% (P < 0.001 when 
compared to controls) [47]. 

In a murine model ofintra-abdominal sepsis using 
cecal ligation and puncture (CLP), O'Reilly et al. 
showed a dose-dependent increase in survival in 
mice receiving 10-1000 ng of G-CSF at CLP and 
continued for 7 days compared to control. Those 
receiving G-CSF beginning 4 days prior to CLP and 
continued until 2 weeks post-CLP had significantly 
better survival at all doses tested in that range com- 
pared to control. When given with gentamicin in this 
setting, the two interventions together showed sur- 
vival similar to gentamicin alone [48]. 

Splenectomy is associated with an increased inci- 
dence of encapsulated organism infections, particu- 
larly pneumococcus. In a mouse model of pulmo- 
nary infection by aerosolized Streptococcus pneumo- 
niae, Hebert et al. reported 70% survival of splenec- 
tomized mice treated with G-CSF from 24 h prior 
to 3 days following infection compared to 20% sur- 
vival in saline-treated, splenectomized controls 
(P < 0.001) [49]. 

Alcohol abuse can increase the risk of severe 
pneumonia; impairment of neutrophil migration to 
the infection site has been implicated as a cause [50]. 
In a study of rats treated with G-CSF or its vehicle 
for 2 days, followed by ip administration of ethanol 
or saline prior to intratracheal challenge with 
Klebsiella pneumoniae, all rats receiving ethanol 
without G-CSF developed bacteremia (18/18) while 
none receiving G-CSF prior to ethanol (0/18) be- 
came bacteremic. Furthermore, all twelve ethanol- 
treated controls died at 72 h whereas only 1 of 12 
pretreated with G-CSF died. A study of pulmonary 
infection due to P. aerugenosa in the same model 
produced similar results [50]. 
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Other studies have suggested a role for CSFs in 
parasitic or less common bacterial infections. The 
functional improvement in eosinophils seen with 
GM-CSF may suggest a role in parasitic infections 
such as Schistosoma mansoni, where GM-CSF can 
improve the adherence to and killing of these organ- 
isms by eosinophils in vitro [51]. Cheers et al. demon- 
strated that susceptibility to Listeria monocytogenes 
infection and the endogenous response of M-CSF 
and G-CSF levels may in part have a genetic basis, at 
least in mice [52]. It should be noted that GM-CSF 
may be associated with a more adverse outcome 
compared to no GM-CSF in patients with sepsis. 
While only a preliminary observation [53], it has 
been found that GM-CSF treatment is associated 
with a twenty-fold increase in endogenous serum 
TNF levels following iv endotoxin challenge in rats. 
No effect on TNF levels was found using G-CSF 
[54]. Human peripheral blood monocytes have also 
been found to produce TNF and IL-1 when stimu- 
lated by GM-CSF in vitro [55]. These data support 
the hypothesis that clinical sepsis may be initiated 
and exacerbated by agents which stimulate TNF 
production in vivo. The use of such agents in these 
patients must be tested carefully even if concomitant 
treatment with antibiotics is used. 

IL-1, IL-6, and TNF 

Understanding potential clinical consequences as they 
relate to the infectious diseases 

IL-1 refers to two genetically and chemically dis- 
tinct polypeptides which recognize the same recep- 
tors and share most biological activities. The term 
'interleukin' is misleading in this context. The di- 
verse sources of IL-1 include macrophages, mono- 
cytes, neutrophils, T- and B-lymphocytes, astro- 
cytes, endothelial cells, keratinocytes, intestinal epi- 
thelium, maternal placental cells, and others. Leuke- 
mic cells can produce IL-1. Known since the 1940s as 
a heat-labile protein extracted from exudative fluid, 
it was known as endogenous pyrogen [56]. Since 
then, discoveries of its wide-ranging biological prop- 
erties have led to a succession of synonyms such as 
catabolin [57], osteoclast activating factor [58], he- 
mopoietin-1 [59], lymphocyte proliferation promot- 
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ing factor ofneutrophils [60], and tumour-inhibiting 
factor-2 [61]. These properties as well as the struc- 
tural and genetic aspects of IL-1 have been elo- 
quently reviewed previously [62,63]. This review will 
focus on aspects of IL-1 that apply to sepsis or other 
aspects of infectious diseases. 

IL-1 can autostimulate its own gene expression 
and synthesis in monocytes and endothelial cells 
[64,65]. IL-1 production is induced by M-CSF, GM- 
CSF, and TNF [66,67], and is inhibited by 7IFN [68]. 
I L-10, a T-helper cell product, inhibits lipopolysac- 
charide (LPS)-induced IL-1 production [69]. While 
endotoxin may be the most potent inducer of en- 
dogenous IL-1, exotoxins of Gram-positive organ- 
isms such as staphylococci and streptococci can also 
stimulate IL-1 as well as TNF production. Such a 
mechanism has been implicated in the development 
of toxic shock syndrome [62]. 

When given to patients with cancer in phase I tri- 
als, IL-1 has produced fever, arthralgias, myalgia, 
headache, anorexia, insomnia, and gastrointestinal 
upset at doses ranging from 10 to 100 ng/kg [70,71]. 
Such effects are more pronounced when given iv 
compared to sc. Increases in circulating neutrophils 
and platelets were seen and, with other observations, 
confirm the biological effects seen in animal models. 
Such hematopoietic effects have exciting potential 
for therapy. While hematopoietin-1 was eventually 
characterized as IL-lo~, no differences in hematopoi- 
etin-1 activity have been found between I L - l a  and 
IL-1[3. In animal models, IL-I accelerated neutro- 
phil recovery in 5-fluorouracil-treated [59] and le- 
thally-irradiated [72] mice. A low, prophylactic dose 
of IL-1 was shown to accelerate the recovery of che- 
motherapy-induced neutropenia in mice [73] and to 
protect mice infected with P. aeruginosa during cy- 
clophosphamide-induced neutropenia whether or 
not gentamicin was administered as well [74]. While 
a direct antibacterial effect was unlikely, the mecha- 
nism of this effect is unclear. However, this paradox- 
ical protection by an agent known to mediate sepsis 
is likely critically dependent on the dose given (low 
dose) and the time of administration. Endogenous 
release of G-CSF or GM-CSF from endothelial and 
bone marrow stromal cells has been reported and 
may play a role [59]. In addition, IL-1 acts directly 
and synergistically on the responsiveness of early 
progenitor stem cells to other CSFs [75]. While hav- 

ing no direct effect on stem cell differentiation or 
proliferation, IL-1 may induce stem cell factor [76]. 
Finally, IL-1 can regulate the cell cycle of progeni- 
tors and may allow for the protection of such cells 
from cytotoxic agents through such changes [77]. 
Short exposure is probably important to permit 
these effects and to avoid the induction of septic phe- 
nomena; continuous IL-1 exposure in vivo leads to 
TNF-mediated myelosuppression [78]. The benefi- 
cial effects of low dose IL-1 may also be mediated 
through the observed down-regulation of TNF and 
IL-1 receptors, the mediation of oxygen scavenger 
molecules, or the induction of corticosteroids 
[79,80]. The catabolic effects of IL-1 include its in- 
duction of anorexia and weight loss [81]. The latter 
has been shown to be blocked by antibodies to IL-1 
receptor [82]. While these features adversely contrib- 
ute to the sepsis syndromes, the most profound and 
serious effect is that on the vascular system. While 
inducible at doses below 1 gg/kg iv, hypotension is 
the dose-limiting effect of IL-1 at 300 ng/kg [70]. Cy- 
clooxygenase inhibitors block this effect as well as 
hypotension induced by the combination of IL-1 and 
TNF [831. 

Immunologically, IL-1 activates T-cells through 
IL-2 induction, although it is not clear whether or 
not IL-1 is a requirement for T-cell activation [84]. 
As with T-cells, IL-1 acts as a helper factor with 
other factors such as IL-6 and IL-4 in the activation 
of B-cells. Furthermore, most cells including B-cells 
that act as accessory cells to antigen recognition pro- 
duce IL-1 [85], suggesting a fundamental role for IL- 
l in this early step of immune recognition against 
foreign antigen. 

The synergistic actions of IL-1 and TNF have 
been alluded to earlier. Like IL-1, TNF can induce 
shock and is more potent than IL-1 in this regard 
[83]. However, in rabbits and primates, antibodies to 
TNF can prevent endotoxin-induced shock and the 
associated suppression of IL- 1 serum levels suggests 
that TNF may control IL-1 production [86]. These 
data suggest that monoclonal antibodies against 
TNF and/or the use of IL-1 receptor antagonists 
could be therapeutically useful in shock-like states. 
TNF, like IL-1, can induce CSF release in vivo and 
can act synergistically with TNF to protect rats from 
lethal irradiation [87]. 

IL-6 is an endogenous pyrogen and elevated 



serum levels correlate with the severity of fever and 
sepsis in patients. However, IL-6 may serve to down- 
regulate IL-1 and thus counter its effects [88]. Per- 
haps the most important interactions of IL-6 and 
IL-1 involve hematopoiesis [59]. Together, these 
agents stimulate multilineage colony formation of 
murine bone marrow cells after exposure to chemo- 
therapy in vitro [89]. However, as with IL-1, the tim- 
ing of IL-6 exposure may determine whether its ef- 
fects will be myeloprotective or detrimental by in- 
ducing progenitor proliferation too close to cyto- 
toxic exposures. 

Therapeutic implications of interventions which are 
antagonistic to IL-1, TNF, or endotoxin 

The discovery of agents antagonistic to the shock- 
like effects of IL-1, TNF, and endotoxin may afford 
us the therapeutic tools to prevent or treat sepsis by 
directly interfering with the endogenous mediators 
of sepsis. IL-lra or IL-1 inhibitor is one of several 
naturally-occurring inhibitors of IL-1. Others in- 
clude lipids, lipoproteins, TGF-[3, some neuropep- 
tides, a-2 macroglobulin, and a form of Tamm- 
Horsfall protein [62]. While these latter substances 
also inhibit IL-6, IL-2, and other cytokines, others 
have been detected which specifically inhibit IL-1. 
Sources of such inhibitors have included endotoxin- 
treated volunteers [90], urinary extracts from febrile 
patients [91], and from patients with leukemia [92]. 

The substance now known as IL-lra is a small, 
naturally-occurring protein which blocked the bind- 
ing of IL-1 to T-cells and fibroblasts but did not bind 
to IL-1 [93]. A recombinant human IL-lra (rhuIL- 
1 ra) has been developed and its biological properties 
are identical to those of the natural form. In rabbits 
and baboons, rhuIL-lra prevents the septic shock 
syndrome induced by E. coli suspensions [94]. In a 
rabbit inflammatory bowel disease model induced 
by IL-1, rhuIL-1 ra prevented the immune complex- 
mediated disease [95]. Other potential clinical roles 
for rhuIL-lra include the inhibition of ectopic IL-1 
secretion by various malignancies and the reduction 
of any IL-1-mediated inflammation. Phase I clinical 
testing is underway in humans. 
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Therapeutic roles for antibody therapy 

Anti-endotoxin antibody 

Other strategies are evolving for the prevention 
and treatment of sepsis. Human polyclonal antise- 
rum produced against endotoxin core determinants 
has been shown to reduce mortality in clinical trials 
of patients experiencing Gram-negative bacteremia 
[96] and to reduce the incidence of septic shock in 
surgical patients at high risk [97]. Suggested mecha- 
nisms by which such protection may occur include 
inhibition of neutrophil priming by endotoxin [98], 
the enhancement of endotoxin binding clearance 
[99,100], and inhibition of TNF production 
[ 101,102]. This antiserum was produced by injecting 
volunteers with a mutant E. coli known as J5; this 
inducer strain yielded a relatively specific immune 
response to lipid A and other core components. An- 
other human polyclonal IgM produced against a 
Salmonella sp. Re strain protected animals from le- 
thal challenges from several Gram-negative bacte- 
rial strains [103]. However, commercial production 
was hindered by toxicity in the donors, the theoreti- 
cal risk of infection transmission through pooled 
human serum, variability of the antibody titre, and 
no booster response which could allow for multiple 
donations. However, monoclonal antibody 
(MOAb) technology has permitted the development 
of highly specific antibody against the lipid A do- 
main ofendotoxin. Using the same E. coli J5 vaccine 
mentioned above, a human monoclonal IgM, 
known as HA-1A, was found through clonal selec- 
tion [104]. It binds to endotoxins among a broad 
range of clinical isolates of Gram-negative bacteria. 
This binding appears to be enhanced by concomitant 
presence of ceftazidine [105]. In rabbits, HA-1A can 
protect against septic death due to pseudomonas 
bacteremia [106]. HA-1A is cross-reactive with the 
polyclonal IgM preparation against both J5 and Re 
mutants. However, not all animal studies of anti- 
core antiserum or HA-1A have shown protection; 
interspecies differences, the relatively low affinity of 
anti-core antiserum, and variations in methods of 
producing or purifying the MOAb to HA-1A have 
been cited as possible reasons [103,107]. A recent 
blind, placebo-controlled, randomized trial of HA- 
1A in a standard canine model of endotoxic shock 
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showed no anti-endotoxic effect and decreased sur- 
vival in the HA-1A treated group [108]. A random- 
ized clinical trial of human IgG to E. coli J5 demon- 
strated no protection from Gram-negative shock but 
IgM may be necessary for protection [109]. 

HA°IA has been tested in humans in phase I and 
phase II trials in which safety and protection from 
sepsis were demonstrated [110,111]. A randomized, 
double-blinded, placebo-controlled trial treated 543 
patients with sepsis, of whom 200 had culture- 
proven Gram-negative bacteremia as a cause [112]. 
The MOAb or placebo (human serum albumin) were 
administered as a single iv injection over 15 to 20 min 
immediately following enrolment. Other interven- 
tions such as antibiotic, corticosteroid, or cardiac 
and respiratory support were not controlled and pa- 
tients were eligible if they developed sepsis according 
to a standard definition. In follow-up over 28 days 
for patients with culture-proven Gram-negative 
bacteremia, a statistically significant reduction in 
deaths was seen among the HA-1A treated patients 
(30% versus 49% for placebo, P = 0.014). No benefit 
was found among the other 343 patients with sepsis 
but without culture-proven Gram-negative bactere- 
mia (P = 0.68). Similarly, no mortality reduction 
was seen when all 543 patients were analyzed 
(P = 0.24). While the follow-up period at this report 
is short, the results are provocative as is their conclu- 
sion to treat all patients with sepsis suspected but not 
necessarily proven to be due to Gram-negative 
bacteremia. However, the validity of  this study has 
been questioned on the grounds of methodological 
flaws [113]. Furthermore, this criticism, and the sub- 
sequent publication of the canine model study cited 
above [108], has lowered the justification for using 
HA- 1A in clinical practice until more information as 
to which subgroups of patients may benefit is availa- 
ble. Other criticisms and concerns were expressed. 
Wolff suggested that a non-specific IgM could have 
been a better control to test for the specific nature of 
the protection, or the polyclonal anti-J5 antiserum 
could have been the control [114]. However, since 
neither of these are used as standard treatment, the 
decision to use albumin was appropriate. A subse- 
quent published response to the randomized trial 
suggested that patients without proven Gram-nega- 
tive bacteremia who received HA-1A may have had 
a higher mortality rate [115]. 

A subsequent cost analysis of this study assessed 
the cost of treating all patients with sepsis as in the 
study versus treating only culture-proven cases, as- 
suming the availability of a more rapid test for 
Gram-negative sepsis than that presently available 
[116]. The former strategy prevented, on average, 5.4 
deaths per 100 treated patients while the cost-effec- 
tiveness was $24 100 per year of life saved. The latter 
strategy yielded a cost-effectiveness of  $14 900 per 
year of life saved. Sensitivity analysis demonstrated 
the importance of patient selection; if, for example, 
only 10% of patients were proven to have Gram- 
negative bacteremia after all patients were treated, 
the cost-effectiveness would deteriorate to $65 900 
per year of life saved. 

Another  monoclonal antibody against endotoxin, 
known as E5, has been tested in a multicenter, dou- 
ble-blind, randomized clinical trial [117]. Four-hun- 
dred-and-eighty-six hospitalized patients with signs 
of  Gram-negative infection and sepsis were enrolled. 
At entry, patients received a single dose of E5 or 
placebo, followed by the same treatment 24 h later. 
Three-hundred-and-sixteen patients had Gram-neg- 
ative sepsis confirmed, with bacteremia documented 
in 54%. While there was no survival difference 
among the treatment groups overall, a subgroup 
analysis found a significant survival advantage in 
patients with Gram-negative sepsis, but not in 
shock, who received E5 compared to those who re- 
ceived placebo (P = 0.01). Resolution of  organ fail- 
ure was more frequent in the E5 group (54% versus 
30%; P = 0.05) and toxicity was infrequent and re- 
versible. A recent study also suggests that E5 may 
improve the survival of ciprofloxacin-treated ani- 
mals in a neutropenic rat model of Pseudomonas sep- 
sis [118]. 

When the randomized, placebo-controlled trials 
of HA-1A [112], and E5 [117] are compared, it is 
clear that (1) no significant reduction in mortality 
was found among all patients treated with the 
MOAb in each trial and (2) different subsets of  pa- 
tients seemed to benefit in the two trials. These pa- 
tients constituted a minority of all study patients. In 
a recent statement of guidelines from the Infectious 
Disease Society of America, Wenzel et al. have con- 
cluded that '... conclusive evidence for reduction of 
the mortality rate with use ofendotoxin antibodies is 
not available.' [119]. What is clearly needed now is 
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research into factors which prospectively identify 
patients with sepsis who would benefit the most from 
this exciting but somewhat costly new intervention. 

Intravenous immunoglobulin (IVIG) therapy 

Despite the availability and use of immunoglob- 
ulin in patients since 1952, a recent Consensus De- 
velopment Conference Report recommended IVIG 
without reservation for only two non-immunodefi- 
ciency conditions: (1) acute autoimmune throm- 
bocytopenic purpura of childhood, and (2) Ka- 
wasaki's syndrome [120]. This is due in part to the 
long time required to develop a concentrated but 
safe preparation for iv use [121] but is also due to the 
relatively low levels of evidence in the literature that 
IVIG is clinically effective. Nine commercial prepa- 
rations are available and variability in physical fea- 
tures and specific antibody titres exist amongst these 
preparations, as well as from lot to lot of the same 
preparation [122]. 

The mechanism by which IVIG may be effective is 
still speculative but more attention has been focused 
on the role of anti-idiotypic antibodies (AIA) in the 
preparations. Detailed reviews of the role of these 
antibodies in normal antibody feedback regulation 
are available [123,124]. In essence, IVIG may induce 
reticuloendothelial blockade [125], increase T-sup- 
pressor or natural killer cells [126], and/or may de- 
crease antibody synthesis [127]. AIA within IVIG 
may neutralize autoantibodies [128], may block the 
B-cell receptor for antigen and thus block autoanti- 
body production, or may complex with idiotypic 
complements to activate different T-cell subsets 
[129]. In animal models, AIA in IVIG have been 
shown to decrease autoantibody production [130]. 
Situations involving infectious diseases for which 
IVIG may be useful include the prevention and treat- 
ment of cytomegalovirus (CMV), the prevention of 
varicella zoster (VZ) infection, Kawasaki's syn- 
drome, neonates at risk for group B streptococcal 
infection, and possibly children with HIV infection. 
Patients with primary hypogammaglobulinemia 
also may benefit. 

As mentioned above, two studies have demon- 
strated the efficacy of IVIG in Kawasaki's syn- 
drome. Two controlled trials showed fewer coronary 
artery abnormalities with high-dose IVIG and aspi- 

rin compared to aspirin alone [131,132]. Evidence 
suggests that IVIG may alter the effects of cytokines 
excessively produced by a bacterial toxin by block- 
ing the effects of the toxin [133]. Alternatively, sup- 
pression of activated T-cells may play a role [134]. 
The next most convincing clinical situation for IVIG 
efficacy involving infectious diseases is in the preven- 
tion of CMV infections in immunodeficient, particu- 
larly transplant patients. Clinical trials have sup- 
ported a reduction in the incidence in CMV intersti- 
tial pneumonia but not infection per se [135-137]; 
only one non-randomized trial suggested CMV in- 
fection could be reduced by IVIG [136]. These effects 
appear to depend on the evidence for previous CMV 
infection in the recipient or donor; a study of serone- 
gative recipients and donors showed no benefit of 
IVIG above that achieved by seronegative donor 
blood products [138]. Benefit has also been sug- 
gested in patients with CMV infection receiving 
IVIG with ganciclovir [139,140]. While patients re- 
ceiving either intervention had a survival rate of 
13%, those receiving both had a 60% chance of sur- 
vival. A recent randomized trial was designed to test 
the ability of IVIG to reduce the morbidity of allo- 
geneic transplantation. Primary and secondary out- 
comes included graft versus host disease (GVHD) as 
well as infection rates [141]. Three-hundred-and- 
eighty-two patients received IVIG or no IVIG 
weekly for 90 days post-transplant, then monthly to 
day 360. All CMV-seropositive patients received 
prophylactic acyclovir, all patients received co-tri- 
moxasole, and ganciclovir was added if CMV pneu- 
monia developed. The 2-year survival of the two 
groups was identical; IVIG was, however, associated 
with reduced risk of GVHD, Gram-negative septice- 
mia and local infection, and reduced risk of intersti- 
tial pneumonitis among CMV-seropositive patients. 
The data also showed a reduction in mortality other 
than that due to tumour relapse in the IVIG-treated 
group at or above age 20. Further study is required 
to determine the long-term effectiveness of IVIG in 
this setting. Renal transplant patients can also bene- 
fit and IVIG may be cost-effective; seronegative re- 
cipients had a three-fold reduction in the incidence of 
CMV infection [142,143]. Patients with hypogam- 
maglobulinemia may experience fewer CMV infec- 
tions when given IVIG [144]. While CMV infection is 
a common problem in patients with acquired immu- 
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nodeficiency syndrome (AIDS), the potential enthu- 
siasm of prophylactic IVIG in this population may 
be tempered by the fact that CMV often results from 
endogenous reactivation in this setting which may 
reduce the effectiveness of this intervention. The 
same may be said for Pneumocystis carinii infections. 
Two non-randomized studies suggested improved 
survival associated with IVIG therapy. Over a 2-year 
period, 2 of 14 children with AIDS who received 
IVIG and antibiotics as needed died compared to 14 
of 28 patients treated with antibiotics alone [145]. 
Siegel and Oleske reported deaths in 10 of 12 un- 
treated children with AIDS over 2 years compared to 
3 of 19 patients receiving IVIG [146]. Coincident im- 
provement in immunoregulatory function has also 
been reported [147]. However, a controlled trial by 
the National Institute of Child Health and Human 
Development found no improvement in mortality 
using IVIG compared to placebo; infection risk was 
only reduced in patients with CD4 counts at or 
above 0.2x 10 9 per litre [148]. Unfortunately, 
zidovudine was not standard treatment and there- 
fore the relevance of these results is questionable. A 
randomized trial comparing IVIG and appropriate 
antibiotics would be helpful in this area. 

IVIG has been used in the prevention or treatment 
of other viral illnesses. IVIG may be as effective as 
V-Z immune globulin in those immunocompro- 
mised children unable to take the latter for V-Z infec- 
tion prevention. V-Z antibody titers are similar in 
appropriate doses of IVIG [149]. There is, however, 
evidence that IVIG does not improve the recovery of 
such patients with established V-Z infection [150]. 
IVIG did not shorten hospital time and no deaths 
occurred in either arm of a double-blind, random- 
ized, placebo-controlled trial in children with respi- 
ratory syncytial virus pneumonitis [151]. No ran- 
domized trials are available for the treatment of 
adenovirus, influenza, or parainfluenza viruses. Un- 
controlled studies suggest that IVIG may improve 
symptoms and/or recovery of patients with hypo- 
gammoglobulinemia and echovirus-associated 
polymyositis or meningoencephalitis [152] as well as 
some patients with chronic Epstein-Barr virus 
(EBV) infection [153]. In another disease which may 
be related to EBV infection, authors of a double- 
blind, placebo-controlled trial in 49 adults with 
chronic fatigue syndrome reported improvement in 

symptoms and elevated levels of work, leisure, and 
social activities I information obtained by inter- 
view at 3-month follow-up [154]. An even smaller 
randomized trial reported no clinical benefit [155], 
but both studies suffered from a high type II error in 
the study design. IVIG has been suggested for EBV- 
seronegative boys with X-linked lymphoprolifera- 
tive syndrome because of the frequently fatal out- 
come of that disease [156]. 

As mentioned earlier, IVIG has been used in the 
management of bacterially-mediated neonatal sep- 
sis. Two uncontrolled studies reportedly demon- 
strated improved survival in patients suspected of 
neonatal sepsis who were treated with IVIG plus an- 
tibiotics versus antibiotics alone [157,158]. The bene- 
fit was particularly evident among low-birth weight, 
premature infants [157]. Despite these results and 
minimal adverse side effects, the level of evidence 
was considered insufficient to support its use as 
standard therapy by the NIH Consensus Conference 
[120] and randomized, comparator trials are needed. 
Patients with burns could also theoretically benefit 
from IVIG in the prevention or treatment of bacte- 
rial infection. This is based on evidence of a correla- 
tion between decreased serum immunoglobulin lev- 
els and the severity of injury in these patients [159]. 
However, human studies have been contradictory 
and flawed by inadequate study designs [160,161]. 
One double-blind, placebo-controlled study showed 
no significant improvement in mortality from infec- 
tions but the high type II error and low power of the 
study precluded any conclusion that a real difference 
was not missed [162]. Again, a randomized trial with 
sufficient statistical power is required. Finally, pa- 
tients with cystic fibrosis have been treated with 
IVIG but reports remain anecdotal and any per- 
ceived benefits were short-lived [ 163,164]. 

Anti-idiotypic antibodies as vaccines 

A region on an antibody against which antibodies 
can be produced and which, in turn, is specifically 
recognized by these antibodies is known as an idio- 
type. The existence of such regions was suggested in 
the early 1900s [165], confirmed in the 1960s [166], 
and incorporated into a network theory of anti- 
body-antibody interaction thought to occur nor- 
mally in the human immune system [167]. Ehrlich 
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had suggested at the turn of the century that autoim- 
munity against red blood cells (RBC) could be 
stopped or prevented by antibodies produced 
against the auto-antibodies to the antigen (in this 
case, RBC) [165]. These early pioneers suggested 
that these anti-antibodies had side chains which were 
similar to those on the RBC. This idea was further 
developed through the idiotypic network theory of 
Jerne and led to the idea that such 'internal images' 
of the antigen that exist on the anti-antibody could 
act as surrogate antigens within vaccines [168,169]. 

Over the past decade, attempts have been made to 
produce and test such vaccines for protection 
against various infectious agents [170]. While such 
anti-idiotypic antibodies (AIA) can afford some pro- 
tection in certain models, some practical issues must 
be considered. The production of such a vaccine 
would be expensive and may outweigh the benefits. 
These antibodies have usually been murine in na- 
ture; therefore, adverse reactions have been a prob- 
lem. Genetic engineering might allow for the intro- 
duction of human regions but this again will add to 
the cost. Therefore, applications of this approach are 
unlikely where effective native antigen-based vac- 
cines already exist, such as in the case of hepatitis B 
[171,172]. However, an AIA vaccine might be useful 
where existing vaccines can be toxic (e.g., pertussis), 
or where present vaccines are ineffective; such is the 
case in the immunization of infants with carbohy- 
drate antigens from Hemophilus influenza and group 
B streptococci. As a protein-based preparation, an 
AIA vaccine may be more antigenic in such individu- 
als. Examples of agents against which such vaccines 
have an AIA are being tested and include hepatitis B 
virus, rabies virus [173], reovirus [174], diphtheria 
toxin [175], polivirus [176], and of course, HIV [177]. 
Clearly, more work is needed before such vaccines 
can become commercially viable for selective indica- 
tions. 

Interferons: the treatment of infectious diseases 

While interferons were first characterized as en- 
dogenous antiviral agents, clinical applications have 
been more directed toward the exploitation of their 
anti-neoplastic properties rather than antiviral po- 
tential. However, some applications to viral illnesses 

have been made and three of these areas will be re- 
viewed here to illustrate the scope of these applica- 
tions: as prophylaxis against naturally-acquired res- 
piratory infections, as treatment against viral hepati- 
tis, and as treatment of HIV infection. 

Intranasal alpha-interferon for viral upper respiratory 
infection 

Studies have demonstrated that prophylactic in- 
tranasally administered interferon can prevent rhi- 
novirus and coronavirus infections in experimental 
models and human volunteers [178-180]. Two recent 
randomized trials were designed and implemented to 
test whether or not intranasat alpha2-interferon 
(o~2IF) could reduce the incidence of colds when 
given to household members of individuals with es- 
tablished colds. Previous studies involving commu- 
nity-based field studies demonstrated that long-term 
administration of c~2IF was effective but nasal intol- 
erance with nasal bleeding, stuffiness, and dryness 
developed after 2 weeks in up to 40% of patients 
[ 181,182]. This reduced effectiveness resulted in two 
randomized trials of shorter term therapy. In the 
study by Hayden et al., healthy family members from 
60 families were randomly allocated to receive inter- 
feron intranasally at 5 x 106 IU or placebo daily for 
7 days, beginning with 48 h of onset of cold symp- 
toms [183]. During the initial 8 days, the incidence of 
respiratory illness was significantly reduced by 39% 
in the interferon group (P = 0.02). Similarly, among 
those with culture-proven rhinovirus infections, the 
incidence in family members receiving interferon 
was reduced by 79% (P = 0.02). During the 2-week 
period, starting at the beginning of treatment, rhi- 
novirus colds developed in only 1.3% of those receiv- 
ing interferon versus 15.1% receiving placebo 
(P = 0.003). Almost twice the number of interferon 
users developed blood-tinged mucus or nasal bleed- 
ing (13.6% vs 7.7%; P = 0.04) but these and other 
symptoms were much less frequent than described in 
studies of longer administration. Among families 
who used the interferon, there was no evidence of 
cumulative nasal toxicity if repeated use occurred. 

The second larger study was of similar design and 
used the same dose and duration of ~2IF [184]. This 
study demonstrated a 41% reduction in respiratory 
illness overall and an 86% reduction in rhinovirus 
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infection. Again, the rates of nasal bleeding were 
comparable to the previous study. No efficacy was 
shown involving infections or symptoms not associ- 
ated with rhinoviruses. Therefore, at this time, evi- 
dence does not support the effectiveness of this ap- 
proach in influenza, coronovirus, or other causes of 
viral upper respiratory infection. While suppression 
or prevention of rhinovirus infection may be cost- 
effective, a much greater impact may be achieved if 
other studies of other doses and schedules can show 
protection against influenza. A detailed cost analysis 
study of  rhinovirus infection prophylaxis is also 
lacking and necessary. 

Interferon and viral hepatitides 

One of several human viral infections against 
which interferon was tested in the early 1970s was 
hepatitis B infection [185,186]. At that time, inter- 
feron was available as a relatively crude preparation 
from virally-stimulated human blood buffy coats 
[187]. In 1976, Greenberg et al. reported the first ex- 
perience of treating patients with chronic active hep- 
atitis due to hepatitis B infection with interferon 
[186]. This anecdotal report described a reproduci- 
ble fall in Dane particle-associated DNA and DNA 
polymerase activity, as well as core antigen levels in 
three patients with high levels of circulating Dane 
particle markers. The suppression was dependent on 
the duration of interferon administration. Long- 
term (> 1 month) administration was also associated 
with e antigen elimination and surface antigen sup- 
pression. While no effect on the chronic liver disease 
was found, these results were encouraging, particu- 
larly in the suggestion that infectivity may be sup- 
pressed or abrogated. 

With the advent of recombinant czIF, a small ran- 
domized trial was reported to show elimination of e 
antigen in one-third of patients treated for 4 months 
[188]. A subsequent randomized trial was carried out 
to test the efficacy of interferon alpha-2b as well as to 
test any added efficacy associated with a 6-week 
course ofprednisone prior to antiviral therapy [189]. 
One-hundred-and-sixty-nine patients were ran- 
domly assigned to one of four treatments: (1) predni- 
sone 60 mg daily tapering over 6 weeks followed by 
interferon alpha-2b 5 x 106 units daily for 16 weeks; 
(2) placebo followed by interferon as in (1); (3) pla- 

cebo followed by interferon 1 x 10 6 units daily for 16 
weeks; or (4) observation alone. The primary objec- 
tive was to test the efficacy of interferon; and the 
secondary objective the efficacy of adding predni- 
sone. No estimated sample size was given, nor were 
the accepted levels of type I and type II errors. How- 
ever, despite a small number of patients per group, 
the disappearance of markers of infection (i.e., e an- 
tigen and viral DNA) was significantly more fre- 
quent in the higher dose interferon arms, with or 
without prednisone. Furthermore, signs of  hepatitis 
such as periportal necrosis improved (P = 0.03) and 
liver function tests normalized in 87% of responding 
patients. In short, over one-third of patients had his- 
tological and biochemical evidence of remission 
from viral hepatitis B at this dose and schedule of 
interferon. The lower dose was not effective. Patients 
with lower levels of hepatitis B viral DNA in their 
serum had a greater likelihood of  response. Longer 
follow-up will be needed to determine if long-term 
remissions can be achieved (91% of patients in this 
study were followed for 1 year) and whether or not 
the incidence of hepatocellular carcinoma is re- 
duced. Also, better therapy is needed for those with 
high circulating levels of viral DNA. 

Two recent randomized trials tested interferon 
alpha against chronic hepatitis C. In the smaller tri- 
als, Bisceglie et al. randomized 41 patients with 
chronic hepatitis C to receive 2 x 106 units subcuta- 
neously three times per week for 6 months or placebo 
[190]. Samples of serum and tissue were analyzed 
and results were compared using a two-sample t-test 
and a two-sample Wilcoxon test. Significant im- 
provements in liver function and histological tests 
were seen in interferon-treated compared to pla- 
cebo-treated patients. Serological complete remis- 
sion occurred in 48% of interferon-treated patients 
but by 6-12 months after therapy, only two of these 
ten patients still had normal liver function values. 
Therefore, the benefit was temporary and short- 
lived. 

The larger trial randomized 166 patients to one of 
two doses of interferon alpha (3 x 10 6 units versus 
1 x 10 6 units) three times weekly for 24 weeks or no 
treatment [191]. Thus, nearly three times as many 
patients were treated per arm. Primary outcomes in- 
cluded serological and histological evidence of re- 
mission and relapse rates. After the 6-month treat- 
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ment period, a significant proportion of patients re- 
ceiving the high (P < 0.001) or low (P < 0.02) dose of 
interferon entered a serological complete or near 
complete remission compared to control patients. A 
higher proportion of high-dose patients had a com- 
plete remission when compared to low-dose patients 
(85% vs 56%). Again, however, relapse occurred 
within 6 months of completing therapy in 51% and 
44% of patients receiving high and low-dose inter- 
feron, respectively. As with hepatitis B, the results 
are encouraging but not yet definitive. Improve- 
ments in survival and quality of life must be pursued 
in future trials. 

The treatment of HIV infection with BRMs 

The treatment of HIV infections with CSFs, anti- 
idiotypic antibodies (AIA), and IVIG has already 
been discussed. However, other strategies are also 
being tested for this devastating disease. Lane et al. 
randomly allocated 34 patients with asymptomatic 
HIV infection (CD4 counts -< 400 cells/mm 3, posi- 
tive peripheral blood cultures for HIV, or p24 anti- 
genemia) to receive odF 35 x 10 6 units daily for up to 
12 weeks or placebo [192]. Despite this small sample 
size, 7 of 17 patients receiving interferon who were 
HIV positive became HIV negative compared to two 
patients (13%) receiving placebo (P = 0.05). How- 
ever, 35% of interferon-treated patients stopped 
treatment due to toxicity, leaving an average daily 
dose of 17.5 x 10 6 units over the study group. Gran- 
ulocytopenia and elevated liver enzymes were noted 
in addition to the usual flu-like symptoms. Despite 
this, during a follow-up period ranging from 5 to 33 
months, no patients receiving interferon had devel- 
oped AIDS-related opportunistic infection com- 
pared to 5 placebo-treated patients (P = 0.02). These 
results show that interferon has activity against HIV 
infection but at doses not well tolerated by these pa- 
tients. A similar problem is evident for the treatment 
of AIDS-related Kaposi's sarcoma with interferon 
[193]. Carter et al. have demonstrated clinical and 
immunologic improvement in AIDS patients using 
ampligen, a double-stranded RNA interferon in- 
ducer [194]. Much more work needs to be done to 
find the effective dose and schedule of ~IF, either 
alone or, more likely, in combination with other 
agents. One non-randomized trial ofzidovudine and 

interferon a suggested a greater tolerance of lower 
doses of interferon, depending on the dose of 
zidovudine, with evidence of antiviral activity [195]. 

One vaccine strategy for HIV infection using AIA 
has been already mentioned. Other strategies focus 
on the delivery and recognition of natural or syn- 
thetic HIV-specific antigen. Early studies have 
found poor recognition of these antigens by the im- 
mune system when delivered alone. 

Attempts to favourably modify these immune re- 
sponses have included the use of whole-killed virus 
[196] and antigen-vaccinia constructs [197]. The lat- 
ter involve the combining ofvaccinia virus with HIV 
antigens in a vaccine in order to improve the recogni- 
tion and immune response to HIV antigens. This ex- 
ample of biological modification is also being used as 
a strategy in tumour vaccine development [198]. 
While some primate studies have suggested that 
some vaccines may protect against HIV infection 
[199], much work is necessary before comparative 
human trials can be designed and implemented. 

Serum with high anti-HIV titres and monoclonal 
antibodies are being tested as passive serotherapy. 
Uncontrolled trials of the former have documented 
remission of p24 antigenemia, symptomatic im- 
provement, and loss of culturable HIV from blood 
[200,201]. Clinical trials of HIV monoclonal anti- 
bodies (MOAb) can not be done until MOAb with 
greater affinity and those directed against conserved 
epitopes can be developed in order to overcome the 
genetic fluctuation of HIV strains [202]. Other mole- 
cules which may be useful as passive therapy due to 
their ability to bend and neutralize HIV include ge- 
netically engineered CD4 protein [203] and conju- 
gates of CD4 such as CD4-IgG constant region [204] 
and CD4-pseudomonas enterotoxin [205]. The for- 
mer could also be used to bind to HIV-infected cells; 
CD4 would bind to HIV surface antigens and cell 
killing could be mediated by complement or anti- 
body-mediated cytotoxicity. 

Besides interferon, other immunomodulating 
drugs are being tested including thymic hormones, 
some of which have demonstrated immunorestora- 
tion but no clinical benefit thus far [206,207] and 
chemical immunomodulators. The latter include nu- 
cleic acid analogs (isoprinosine), thiols (diethyl- 
dithiocarbomate, DTC), imidazoles, and cyanoazir- 
idine (Azimexon). Isoprinosine has demonstrated 
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improved cell-mediated immunity, symptomatic im- 
provement, and fewer infections in HIV patients 
[208]. DTC has been tested in randomized trials with 
amelioration of symptoms, reduction in infections 
and improved survival demonstrated, among other 
benefits [209,210]. It appears particularly promising 
in patients at advanced stages of AIDS [210]. Fi- 
nally, Azimexon has undergone preliminary human 
trials and has been associated with restoration and 
symptom relief [211]. 

Non-conventional therapies as BRMs against 
infections 

The use of traditional Chinese treatments as 
BRMs has been recently reviewed [9]. There is exper- 
imental evidence that some of these preparations can 
reduce the symptoms of sepsis induced by LPS ad- 
ministration [212]. Oral administration of any of 
three traditional preparations for 2 weeks prior to ip 
instillation of P. aeruginosa in mice resulted in im- 
proved survival, though statistical testing of the data 
was not reported [9]. In vitro studies of macrophages 
from Shosaiko-to (a traditional preparation) 
primed mice showed enhanced chemiluminescence 
and greater numbers of splenic macrophages com- 
pared to controls [213]. These, and other studies, 
have demonstrated other increases in immune re- 
sponsiveness, including antibody responses and in- 
creased phagocytosis of stimulated macrophages 
[214]. Active components seem to be found in crude 
herbal components such as Bupleuri radix and An- 
gelica radix. The former contains pharmacologically 
active glycosides with anti-inflammatory and im- 
mune-modulating properties similar to corticoster- 
oids [215]. These and other preparations are being 
actively investigated and tested in Japan for their 
therapeutic potential in cancer and the infectious 
diseases. 
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