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The rat has been extensively used as a small animal model. Many genetically engineered
rat models have emerged in the last two decades, and the advent of gene-specific
nucleases has accelerated their generation in recent years. This review covers the
techniques and advances used to generate genetically engineered rat lines and their
application to the development of rat models more broadly, such as conditional
knockouts and reporter gene strains. In addition, genome-editing techniques that remain
to be explored in the rat are discussed. The review also focuses more particularly on two
areas in which extensive work has been done: human genetic diseases and immune
system analysis. Models are thoroughly described in these two areas and highlight the
competitive advantages of rat models over available corresponding mouse versions. The
objective of this review is to provide a comprehensive description of the advantages and
potential of rat models for addressing specific scientific questions and to characterize
the best genome-engineering tools for developing new projects.

Keywords: CRISPR-Cas9, rat, knockout, knockin, transgenesis, genetic diseases, immune genes

INTRODUCTION

Genetically modified animal models are essential to answering questions in biology, modeling
human and non-human animal diseases, and generating therapeutic recombinant proteins. Among
animal models, small laboratory mammals are often used because they share many biological
features with humans, housing them is easy and relatively inexpensive compared to maintenance of
large animals, and ethical issues are less prominent than with species such as non-human primates.
Among the small laboratory animal models, the rat has been used since at least 1856 (Philipeaux,
1856) and still is an important experimental model (between 9 and 18% of all laboratory models in
the EU, The Commission to the European Parliament and the Council, 2015-2017).
Certain intrinsic characteristics of the rat, such as its larger size (10 fold) compared to the mouse,
allow easier and more rapid microsurgery, multiple sampling of larger blood and tissue volumes,
precise injection of substances into the brain, and in vivo and ex vivo organ function analysis.
Additionally, mice and rats differ in their physiology and more sophisticated traits in the rat have
made it a model of choice for toxicology, complex human diseases and neurobehavioral as well as
cardiovascular studies among several others (Jacob, 2010).
Such differences have been supported by comparative analyses of the rat and mouse genomes. The
rat genome is 2.75 gigabases (Gb), smaller than the human genome (2.9 Gb) but larger than the
mouse genome (2.6 Gb) (Gibbs et al., 2004). Overall, rats show enrichment of genes involved
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in immunity, metabolic detoxification and chemosensation, as
well as conservation of many genes involved in human diseases
(Dewey et al., 2004; Gibbs et al., 2004).

Despite these advantages, the use of rats has lagged behind the
use of mice in research, mainly because genetically modified mice
were generated earlier than genetically modified rats (Figure 1).
In mice, DNA microinjection was used in the early 1980s and
embryonic stem (ES) cells in the late 1980s (Gordon et al.,
1980; Palmiter et al., 1982; Doetschman et al., 1987). In contrast,
in rats, DNA microinjection and ES cells began in the early
1990s and 2010, respectively (Mullins et al., 1990; Kawamata
and Ochiya, 2010). In the meantime, researchers used classical
breeding approaches to develop a variety of rat strains that
model human diseases (Szpirer, 2020). The need for genetic
engineering tools for the rat and the continuous use of zygote
pronuclei microinjection of DNA in the rat, explain why gene-
specific nucleases were applied in rats in 2009, earlier than
in mice (2010) (Geurts et al., 2009; Carbery et al., 2010).

These gene-specific nucleases quickly facilitated the exponential
generation of knockout (KO) rats for many genes. In synergy
with these technological advances, sequencing of the rat genome
(Dewey et al., 2004; Gibbs et al., 2004) and characterization of
genetic quantitative trait loci (QTLs) linked to diseases (Aitman
et al., 2010, 2016) further accelerated the use of models of
genetically modified rats.

In this regard, different rat strains are prone to different
diseases present in humans and reproduce better than mice
some of these diseases. These rat strains have been used to
introduce genetic modifications to analyze the role of genes
(Aitman et al., 2010, 2016). For example, Wistar Kyoto, Dahl/SS,
and spontaneously hypertensive strains develop hypertension
and have extensively used to analyze the role of many genes
(Moreno et al., 2011; Rudemiller et al., 2014; Nayak et al.,
2015; Aitman et al., 2016; Lerman et al., 2019; Szpirer, 2020).
The diabetes-prone biobreeding rat strain is another model that
has been used to genetically modify genes involved in diabetes

FIGURE 1 | Timeline showing the major technical advances in genome editing and delivery in mice and rats from the 1980s to today. The green frames encompass
the 1st transgenic mice and rats generated by DNA microinjection. The blue frames contain the 1st ES cells-based mouse and rat models, and the orange frames
contain the 1st mouse and rat models generated using engineered nucleases delivered by different methods. Figure created with BioRender.com. AAV-TR, AAV
transduction; cKO, conditional KO; DNA-MI, DNA microinjection; EL, electroporation; ES, embryonic stem cells; GM, genetically modified; GONAD, genome-editing
via oviductal nucleic acids delivery; HR, homologous recombination; KI, knockin; KO, knockout; LV-MI, lentiviral microinjection; TALEN-MI, TALE nucleases
microinjection; TG, transgenic; ZFN-MI, ZFN microinjection.

Frontiers in Genetics | www.frontiersin.org 2 April 2021 | Volume 12 | Article 615491

http://BioRender.com
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-615491 April 19, 2021 Time: 11:29 # 3

Chenouard et al. Advances in Genetically Modified Rats

(Michalkiewicz et al., 2004; Pandey and Dvorakova, 2020). Lewis
rats are more susceptible than mice to the induction of
Th1-mediated autoimmune diseases, whereas Brown Norway
rats are highly susceptible to Th2-mediated immune diseases.
Genomic linkage analysis allowed identification of a region on
chromosome 9 that controls these phenotypes (Bernard et al.,
2010). Additionally, the rat has been extensively used to analyze
autoimmune diseases involving multiple genes (Aitman et al.,
2010; Bernard et al., 2010).

In this review, we first describe the evolution and advances
in genome editing and in delivery optimization of CRISPRs
for producing genetically modified models. Further details are
given on the rat to highlight needs and future research paths.
The second part of the review focuses on the advantages
of genetically modified rat models compared to mouse to
mimic human situation, in particular in genetic diseases
and immunology studies. Rats differ from mice in several
characteristics, manifesting different phenotypes for the same
genetic alteration. Rats also can sometimes better reproduce
clinical features observed in humans who carry these gene
variants (Hammer et al., 1990; Larcher et al., 2014). Our final
aim is thus to inform researchers about major progresses in rat
genome editing and advantages of rats as model organisms, to
give researchers the choice of the best experimental system to
answer their scientific questions. To facilitate rat models access
and development, major rat resources for finding existing models
or designing new ones with the latest gene editing tools, are
described in Table 1.

GENE-EDITING ADVANCES AND
DELIVERY SYSTEM OPTIMIZATION

The last four decades have brought major advances in genome
editing allowing for generation of animal models that harbor
targeted genetic modifications. Efforts have focused on increasing
the precision of these modifications, production efficiency and
on simplifying procedures to make them easier and cheaper. The
evolution of genome editing approaches and tools is discussed
in this section, illustrated in Figure 1 and nucleases compared
in Table 2. Clustered, regularly interspaced short palindromic
repeat (CRISPR)-associated (Cas) systems applied to rodents are
detailed in Table 3, with details of specifics regarding rats given
in this section. More particularly, Streptococcus pyogenes (SpCas)
system components are described in Figure 2 and compared
in Table 4. Published advances for enhancing knockin (KI)
generation rate are also detailed here and illustrated in Figure 3.
Finally, delivery systems and the evolution of their practice are
detailed and compared in Table 5.

Historical Overview of Major
Gene-Editing Techniques Developed in
Mice and Rats
Random Additive Transgenesis and Mutagenesis
The first transgenic rodents were successfully generated in the
early 1980s and 1990s (Gordon et al., 1980; Palmiter et al., 1982;

Mullins et al., 1990), by microinjection of exogenous donor DNA
into the pronucleus of one-cell embryos. The reported efficiencies
are quite low in rodents, ranging from 0.5 to 10% of injected
embryos in mice and 0.5–5% of injected embryos in rats (Brinster
et al., 1985; Charreau et al., 1996b; Hirabayashi et al., 2001). Other
problems include random integration, a high copy number of
integrated DNA sequences in cis and uncontrollable transgene
expression. These challenges make this approach labor intensive
and time-consuming and require considerable expertise.

N-ethyl-N-nitrosurea (ENU) is a highly potent mutagen that
was first administered into adult male mice (Bode, 1984) and
later into rats (Zan et al., 2003). Several ENU-induced mutant
rat (van Boxtel et al., 2010) (for a review see Huang et al., 2011)
and mouse models (for a review see Justice et al., 1999) have been
described. This method presents some advantages: it requires
no embryos or ES handling and the sperm of mutant offspring
can be cryopreserved. Disadvantages include uncontrolled and
random mutations in multiple loci throughout the genome,
which must be identified and localized using high-throughput
and time-consuming screening methods.

Transposon-mediated insertional transgenesis is an
alternative tool developed to increase the integration frequency
of the transgene into the host genome. Transposons are simple
and mobile elements, consisting of a DNA sequence encoding
transposase and a transgene flanked by binding sites (inverted
terminal repeats, ITR) for the transposase, promoting integration
into the genome. Transposon systems, such as Sleeping Beauty
(SB), piggyBac (PB) or Tol2, have demonstrated their efficiency
in rapidly producing stable lines of transgenic mice (Carlson
et al., 2003; Horie et al., 2003) and rats (Kitada et al., 2007; Lu
et al., 2007). The number of transgene insertions is, however,
difficult to control.

Targeted Mutagenesis
The derivation of germline-competent mouse ES cells in the early
1980s (Evans and Kaufman, 1981; Martin, 1981) and the first
experiments of targeted mutagenesis (Doetschman et al., 1987;
Thomas and Capecchi, 1987), allowed introducing mutations
into the host genome with a high precision (Joyner et al., 1989;
Koller et al., 1989; Schwartzberg et al., 1989; Zijlstra et al.,
1989) making mice a privileged model for genetic studies for
two decades. Rat ES cells were described in 2008 (Buehr et al.,
2008; Li et al., 2008) allowing generation of KO (Kawamata and
Ochiya, 2010; Meek et al., 2010; Tong et al., 2010) and KI rats
(Kobayashi et al., 2012; Yamamoto et al., 2015) with similar
homologous recombination (HR) efficiencies to those observed
in mice. Nevertheless, rat ES cells are less robust than mouse
ES cells and maintaining their stability in culture and germline
competence continues to be challenging.

The development of meganucleases, engineered zinc-finger
nucleases (ZFNs), transcription activator-like effector nucleases
(TALENs) and more recently the CRISPR-Cas system, has
unquestionably revolutionized genome editing, opening new
possibilities especially in the rat and other species in which ES
cells were not available (Fernández et al., 2017). Each of these
nucleases have their own properties of DNA-binding, recognition
type/site specificities, their own advantages and limitations,
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TABLE 1 | Resources on rat genomics and genome edited animals.

Resources Name Website and references Proposed resources

Genomic databases National Center for Biotechnology
Information (NCBI) including Gene,
Protein, Nucleotide, Blast, and others

www.ncbi.nlm.nih.gov/ (Sayers et al.,
2019)

Comprehensive suite for molecular analysis from rat genome to
protein expression and functionality

The European Bioinformatics Institute
(EMBL-EBI) including Ensembl,
UniProt, Clustal Omega and others

https://www.ebi.ac.uk/services
(Madeira et al., 2019)

From rat genome to protein databases a full suite with analysis
tools and multiple sequence alignments

The University of California, Santa
Cruz Genome Browser

https://genome.ucsc.edu/ (Lee et al.,
2020)

Genome browser, multiple sequence alignments and others

Model organism Aggregated
Resources for Rare Variant
exploration (MARRVEL)

http://marrvel.org/ (Wang et al.,
2019b)

Comparison of human genes with model oragnisms’ genes such as
the rat in a physiologic or pathologic context

Genomic databases
and strains repository

Rat Genome Database (RGD) in the
United States

https://rgd.mcw.edu (Smith et al.,
2020)

Repository of hundreds or rat strains and genome edited rats,
mostly for genes involved in hypertension and cardiovascular
function. Genetic, phenotype and disease data, sequences, QTLs,
mapping data, software tools.

Rat strains repository Rat Resource and Research Center
(RRRC) in the United States

http://www.rrrc.us/ Repository of hundreds or rat strains, genome edited lines,
cryopreserved embryos, sperm, and ES cells.

National Bioresource Project for the
rat (NBPR) in Japan

http:
//www.anim.med.kyoto-u.ac.jp/nbr/

Repository of hundreds or rat strains, ENU and genome edited
lines, cryopreserved embryos and sperm, BAC libraries

Rat Resource Database in China http://www.ratresource.com Repository of rat strains and genomic data.

Rodent Model Research in Taiwan https://www.nlac.narl.org.tw/ Strain depository of lines or rats including genome edited ones.

Academic platforms
producing
genome-edited rat
models

Wisconsin Gene Editing Rat Resource
Center and The Michigan University
Transgenic Animal Core facility in the
United States

https://rgd.mcw.edu/wg/gerrc/
https://brcf.medicine.umich.edu/
cores/transgenic-animal-model/

Distribution of already available models and generation of new ones
on demand

Transgenic Rat ImmunoPhenomic
(TRIP) facility in France

http://www.itun.nantes.inserm.fr/
Core-facilities/TRIP-Transgenic-Rats-
ImmunoPhenomic

Commercial vendors
for rat models

Charles River laboratories https://www.criver.com/ Distribution of already available models and generation of new ones
on demandJanvier Labs https://www.janvier-labs.com/

Envigo (include Horizon discovery
models)

https:
//www.envigo.com/research-models

Taconic Biosciences https://www.taconic.com

genOway (include Axenis models) https://www.genoway.com/

Cyagen https://www.cyagen.com/us/en/ Custom rat model generation

Hera Biolabs https://www.herabiolabs.com/ SRG
OncoRats (Noto et al., 2020)

Proprietary gene editing technologies and SRG OncoRats for
oncology studies

Ligand pharmaceuticals https://www.ligand.com/
technologies/omniab OmniRat (Joyce
et al., 2020) OmniFlic (Harris et al.,
2018)

OmniRat and OmniFlic for human antibodies generation

Software for the use of
CRISPR

CRISPOR http://crispor.tefor.net/ (Concordet
and Haeussler, 2018)

On and off target scores

CHOPCHOP https://chopchop.cbu.uib.no/ (Labun
et al., 2019)

E-CRISPR http://www.e-crisp.org/E-CRISP/
(Heigwer et al., 2014)

CCTOP https://cctop.cos.uni-heidelberg.de:
8043/index.html (Stemmer et al.,
2015; Labuhn et al., 2018)

CRISPRscan https://www.crisprscan.org/
(Moreno-Mateos et al., 2015)

CRISPRdirect http://crispr.dbcls.jp/ (Naito et al.,
2015)

Off-target prediction only

CRISPR RGEN tools http://www.rgenome.net/ Cas-OFFinder, Microhomology, Cas-designer, base-editing,
prime-editing. . .

Private company
webtool for design of
gRNA targeting rat
genome

Integrated DNA Technologies https://eu.idtdna.com/pages/
products/crispr-genome-editing

Include on and off target scores

Synthego https://www.synthego.com/products/
bioinformatics/crispr-design-tool

Horizon Discovery https://horizondiscovery.com/en/
ordering-and-calculation-tools/crispr-
design-tool

Benchling https://www.benchling.com/crispr/
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TABLE 2 | Comparison of engineered endonucleases.

Specificities, advantages, limitations Meganucleases ZFN TALEN CRISPR-Cas

DNA binding determinant Protein ZF protein TAL protein crRNA/sgRNA

Binding specificity Long sequences of nucleotidesa 3 nucleotides 1 nucleotideb 1/1 nucleotide pairing

Endonuclease I-CreI and I-SceIa FokIc FokIc Cas9

Function specificity Monomer Dimer Dimer Monomer

Design/Engineering Very difficult Difficult Simple Very simple

Restriction in target site Chromatin compaction G-rich sequence Start with T and end with A End with a NGG sequence

Target site length 18–44 bp 18–36 bpd 24–40 bp 22–25 bp

Targeting frequency Low High (one/100 bp) High (one/bp) High (one/4 or 8 bp)

Specificity High Moderatee High High

Sensitivity to DNA methylation Yes Yes Yes Nof

Off-targets Variable Lowe Very low Variable

Size Small size Small size (∼1 kb/monomer) Large size (∼3 kb/monomer) Large size (4.2 kb Cas9)

Commercially available, Cost Yes, high Yes, high Yes, moderate Yes, low

Patents concern Yes Yes Yes Yes

Type of editing

Gene KO
(Indels and frameshift)

Yes Yes Yes Yes

Multiplex KO No datah Very limited Limited Yes (up to eight alleles)g

Gene correction/point mutagenesis
(repaired basepairs)

No datah Yes Yes Yes

Gene addition/sequence replacement
(integrated gene cassette)

No datah Yes Yes Yes

Gene deletion (deleted gene fragments) No datah No data No data Yes

Prime and base editing No datah No data No data Yes

aDNA-binding specificities and cleavage mechanism combined in the same protein (Galetto et al., 2009). I-CreI and I-SceI are the main endonucleases used but a few
others have been applied to genome editing.
bTALE protein consist of 34 amino acid repeat domains, each one recognizing a single DNA nucleotide; highly conserved, excepting two hypervariable residues at
positions 12 and 13, which confer the specificity of TALE.
cFokI cleaves only in its dimeric form
dAssociation of 3–6 ZF DNA binding domains fused to the FokI catalytic domain. Binding of two ZFN-FokI heterodimers to two contiguous DNA sequences and separated
by a 5–7 bp gap.
eSpecificity depends on number and selected ZF modules.
f No direct effect of methylation on Cas9 binding or effectivity (Verkuijl and Rots, 2019).
gDifficult on same chromosome. Limitations overcome by Prime and base editing (cf Table 3).
hThe difficulty in designing meganucleases has limited their application in creating new model organisms.

which are listed in Table 2. Injection of these nucleases directly
into rat or mouse zygotes allows creation of a double-strand
break (DSB) at a targeted locus, repaired thereafter mainly by
non-homologous end-joining (NHEJ) or HR (these mechanisms
are reviewed in detail in a later section). Careful design of the
associated tools makes it possible to better control repair outcome
at any targeted locus of the genome with high efficiency and
much faster than with ES cells. Several reports demonstrated
the high efficiency of ZFN and TALEN in quickly generating
different types of modifications in mice and rats, ranging from
KO (Geurts et al., 2009; Carbery et al., 2010; Mashimo et al.,
2010, 2013; Tesson et al., 2011; Tong et al., 2012; Sung et al.,
2013; Sommer et al., 2014), simple point mutations, to large KI
by homology-directed repair (HDR) (Sung et al., 2013; Wang

et al., 2013a; Wefers et al., 2013; Ponce de León et al., 2014;
Remy et al., 2014). Meganucleases, although less used than the
other nucleases, were also applied to generate KO mouse and
rats (Ménoret et al., 2013). Nevertheless, the design complexity
and associated costs made these techniques accessible to only few
laboratories, leading to a search for alternative approaches.

The simplicity and rapidity of guided RNA design, compared
to complex protein engineering needed for ZFNs and TALENs,
made the CRISPR-Cas system largely accessible at low cost,
without sacrificing the specificity and reproducibility already
observed with ZFNs and TALENs. Nevertheless, the success of
CRISPR-Cas, especially in the generation of the first CRISPR
mouse (Wang et al., 2013b) and rat (Li D. et al., 2013; Li W.
et al., 2013), depended on knowledge gathered using the previous
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TABLE 3 | CRISPR variants applied to genetically modified mouse and rat models.

Application Type – Variant - Name PAM 5′-3′ Cleavage GM mice GM rats

Classical GE II- SpCas9 NGG Blunt DSB Wang et al., 2013b Li D. et al., 2013;
Li W. et al., 2013

Specificity enhancement II- E -Hypa SpCas9 NGG Blunt DSB Ikeda et al., 2019 −

II- E -SpCas9 nickase NGG Nick Ran et al., 2013 −

Enlarge targeting
possibilities

II- E -SpCas9 VQR NGA Blunt DSB Robertson et al., 2018 −

II- E -SpCas9 VRER NGCG Blunt DSB Robertson et al., 2018 −

II- E -SpCas9-NG NGN Blunt DSB Fujii et al., 2019 −

II- SaCas9 NNGRRT Blunt DSB Zhang X. et al., 2016 Zheng et al., 2020

II- E -SaCas9 KKH NNNRRT Blunt DSB Robertson et al., 2018 −

II- St1Cas9 NNAGAAW Blunt DSB Fujii et al., 2016 −

II- CjCas9 NNNVRYM Blunt DSB Kim et al., 2017 −

II- NmCas9 NNNNGATT Blunt DSB Xia et al., 2018 −

II- FnCas9 NGG 5′ staggered Hirano et al., 2016 −

V-A- AsCpf1 (Cas12a) TTTV 5′ staggered Hur et al., 2016; Kim et al.,
2016

Lee J. G. et al.,
2019; Yeo et al.,

2019

V-A- LbCpf1 (Cas12a) TTTV 5′ staggered Kim et al., 2016 Lee J. G. et al.,
2019

V-A- ErCas12a CRISPR-Mad7 TTTN, CTTN 5′ staggered Liu Z. et al., 2020 Liu Z. et al., 2020

V-A- CRISPR-Mb3Cas12a TTV 5′ staggered Wang Z. et al., 2020 −

V-B- AaCas12b (C2c1) TTN 5′ staggered Teng et al., 2018 −

Alternative editing Cytosine base editing
II- E -SpBE2
II- E -HF2-SpBE2
II- E -SpBE3
II- E -Sp-BE4
II- E -Sp-VQR-BE3
II- E -SaBE3

NGG
from NGG/A to NGG

NGG
NGG
NGA

NNGRRT

None
None
Nick
Nick
Nick
Nick

Lee et al., 2018
Liang P. et al., 2017

Zhang H. et al., 2018
Lee et al., 2018
Lee et al., 2018
Liu et al., 2018

−

−

−

−

−

−

Adenosine base editing
II- E -SpABE7.10
II- E -SpVQR-ABE
II- E -SaKKH-ABE

NGG
NGA

NNNRRT

Nick
Nick
Nick

Liu et al., 2018
Yang L. et al., 2018
Yang L. et al., 2018

Yang L. et al., 2018
−

−

Prime editing
PE3 NGG 2 Nicks Liu Y. et al., 2020 −

GE, genome editing; E, engineered Cas; GM, genetically modified model; DSB, double strand break; St1Cas9, Streptococcus thermophilus Cas9; CjCas9, Campylobacter
jejuni Cas9; NmCas9, Neisseria meningitidis Cas9; FnCas9, Francisella novicida Cas9.

gene-specific nucleases in terms of DNA cleavage outcomes,
repair pathways mechanisms (molecules involved and forms of
DNA donors) and genotyping techniques.

CRISPR-Cas Systems
The CRISPR-Cas9 system is originally based on a
ribonucleoprotein (RNP) complex composed of a nuclease
(Cas9) driven by a dual-guide RNA (dgRNA) duplex (Jiang
and Doudna, 2017). Cas9 cleavage capacity relies on its two
nuclease domains, each cleaving one strand of the genomic
DNA. Inactivation of either nuclease domain (nickase) generates
a nick on the corresponding strand (Jinek et al., 2012), whereas
inactivation of both domains (dead Cas9 or dCas9) completely
abolishes its cleavage capacity. The native dgRNA (Deltcheva
et al., 2011) is formed from a trans-activating CRISPR RNA
(tracrRNA) harboring a complex secondary structure to interact
with Cas9 and a CRISPR RNA (crRNA), that mostly encodes
the 20 nucleotides that give the system its specificity. When
formed, this RNP complex quickly interrogates genomic DNA

for its specific protospacer adjacent motif (PAM). The PAM
is a key factor because it defines the possibilities of DNA
targeting sequences. For SpCas9, the targets are limited to a
G-rich genomic region with a 5′-NGG-3′ PAM (Jinek et al.,
2014; Nishimasu et al., 2014). PAM recognition is followed by
specific gRNA (guide RNA) spacer (20 nucleotides) matching.
A perfect match creates a targeted blunt DSB three nucleotides
away from the PAM. A few mismatches between the gRNA and
the targeted genomic DNA are tolerated at certain positions
and may lead to off-target editing (Peng et al., 2018). Design
of gRNA with the highest homology specificity possible for
the targeted DNA sequence is essential to limit off-target edits
(Ayabe et al., 2019). Available tools for rat genome editing
with CRISPRs are described in Table 1. Off-target is less of
an issue for animal model generation when compared to the
use of gene editing as a therapeutic tool. Indeed, animals
require multiple breeding, clearing lines from off-targets on
chromosomes different from the one harboring the mutation
of interest.

Frontiers in Genetics | www.frontiersin.org 6 April 2021 | Volume 12 | Article 615491

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-615491 April 19, 2021 Time: 11:29 # 7

Chenouard et al. Advances in Genetically Modified Rats

FIGURE 2 | CRISPR-Cas9 component formats and advances to enhance editing efficiency. (A) CRISPR-Cas9 consists of a Cas9 nuclease and a gRNA that can be
used in different formats (plasmid, mRNA, or protein) to form the RNP complex. (B) A DNA donor can also be used to generate KI models, also in different formats
(ssODN, lsDNA, plasmid, dsDNA). In red are indicated advances to enhance efficacies of editing. Other Cas used for rodent models generation are described in
Table 3. Figure created with BioRender.com. IVT, in vitro transcribed; RNP, ribonucleoprotein complex; DSB, double-strand break; ssODN, single-stranded
oligonucleotide; lsDNA, long single-stranded DNA; dsDNA, linear double-stranded DNA.

To expand the CRISPR toolbox, many variants of SpCas9 have
been engineered and bacterial strains screened to either enhance
specificity or broaden PAM opportunities. Variants (Pickar-
Oliver and Gersbach, 2019) and SpCas9 ortholog classification
(Makarova et al., 2020) have been recently reviewed. Many
of these options have been used at least once to edit mouse
embryos, but only a few have been applied to the rat. Those
already applied to rodent genome editing are summarized in
Table 3. Type V Cas have T-rich PAMs and other interesting
features, such as staggered DSB generation, that make them
complementary to SpCas9. For this reason, some orthologs
of Cpf1 (Cas12a) are the most used after SpCas9, including
Acidaminococcus sp. (AsCpf1) (Lee J. G. et al., 2019; Yeo
et al., 2019) and Lachnospiraceae bacterium ND2006 (LbCpf1)
(Lee J. G. et al., 2019).

Classical genome editing, alternatives and their context of
application have been recently reviewed in detail (Anzalone
et al., 2020). Two of these, namely base editing and prime
editing, have been used for rodent genome editing and are
summarized in Table 3. Cytosine base editor has been engineered
using either dCas9 or nickase to transform cytosine into a
thymine (Komor et al., 2016; Nishida et al., 2016) and was
further improved (Rees and Liu, 2018; Schatoff et al., 2019).
Adenine base editor was engineered to mutate adenine into
guanine more efficiently than Cas9 genome editing in human
cells (Gaudelli et al., 2017). Several base editor variants have
been applied to mouse embryos for single (Liang P. et al.,

2017) or multiple (Liu et al., 2018; Zhang H. et al., 2018)
base editing, whereas only the SpABE7.10 system has been
applied in rats (Ma Y. et al., 2018; Yang L. et al., 2018).
The main advantage of base editing is its capacity to generate
targeted indels or a particular mutation without a DNA donor,
enhancing its efficiency compared to classical genome editing.
By avoiding DSBs, this system also allows multiplex editing
on the same region of a chromosome (Lee H.K. et al., 2019).
Its major limitations are bystander effect on non-targeted
bases, cytosine and adenine limitations, targeted precision that
restrict possibilities, and off-target effects as with classical
genome editing. Prime editing is overcoming some of these
limitations (Anzalone et al., 2019). This system allows mutation,
short insertion and short deletion editing with limited indels
generation in contrast to classical Cas genome editing. The first
two versions of this system relied on a Cas9 nickase fused to
a reverse transcriptase and a prime editing gRNA (pegRNA).
This system induces nicking on the non-target strand and
reverse transcription of the template encoded in the pegRNA
to specifically modify the targeted locus. Prime editing 3 and
3b have been enhanced by the use of a second nickase with its
own guide RNA, to target the strand that was not nicked by the
pegRNA. Very recently, prime editing 3 has been successfully
applied to genetically modify mouse embryos for the first time
(Liu Y. et al., 2020). This particularly interesting approach
will be applied eventually to generate genetically modified
rat models.
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TABLE 4 | CRISPR-Cas9 component format advantages, limits and advances.

Format Advantages Limitations Advances demonstrated in any species
(rat in bold)

Cas9

Plasmid No limit on insert size
Easy engineering
High expression

Delayed activity
Mosaicism
Increased off-targets
Delayed activity

Cas9 protein allowing rapid and more efficient
editing
(Kim et al., 2014; Ménoret et al., 2015)
Large editing toolbox variants (Table 3)
Improved chromatin accessibility
(Chen F. et al., 2017; Ding et al., 2019)
Cas9 engineered to activate repair pathways
(Charpentier et al., 2018; Tran et al., 2019)
Cas9 engineering to be degraded in G1
(Gutschner et al., 2016; Charpentier et al., 2018;
Lomova et al., 2019)

mRNA Expression faster than plasmid
Limit mosaicism and off-targets

Delayed activity
In vitro transcription efficiency/toxicity

Protein Ready to cut
Limit mosaicism and off-targets
Affordable and high quality

Crystallization at high dose
In vivo stability
potentially immunogenic

gRNA

Plasmid No limit on insert size
Easy to engineer

Delayed activity Chemical modification
(Kim S. et al., 2018; Filippova et al., 2019)
Essential sequence, secondary structures and
functional modules of gRNA
(Briner et al., 2014; Kartje et al., 2018)
Overlapping gRNA
(Jang et al., 2018)
gRNA engineering to activate repair pathways
(Nakade et al., 2018; Tran et al., 2019)

IVT sgRNA Easy to produce and use
Flexible in sequence and length
Efficient

Time-consuming production
Induced immune responses
Limited in chemical modification

Synthetic
sgRNA

Affordable and high quality
Chemical modifications
Ready to use
Efficient

Order full sgRNA for each project
Long RNA synthesis
Difficulties in adding fluorophore for tracking

Synthetic
dgRNA

Short RNA synthesis
Low cost and high quality
Same tracrRNA for all project
Chemical modifications
Fluorophores added for tracking
Efficient

crRNA & tracrRNA hybridization in vitro

DNA donor

ssODN Low cost synthesis
High efficacy for mutation or short KI

Limited in length to 200nt DNA synthesis progresses
(Hao et al., 2020)
Chemical modification
(Renaud et al., 2016; Liang X. et al., 2017; Yu et al.,
2020)
Insertion close to cut site
(Inui et al., 2014; Liang X. et al., 2017)
3′ overhang DNA donor
(Liang X. et al., 2017; Hirotsune et al., 2020)
Carry to cut site by Cas9
(Ma et al., 2017; Aird et al., 2018; Gu et al., 2018; Ling
et al., 2020; Wang Z. et al., 2020)
Carry to cut site by gRNA
(Carlson-Stevermer et al., 2017; Lee et al., 2017)
Carry to cut site by DNA donor engineering
(Nguyen et al., 2020)
DNA donor in vivo excision from plasmid
(Aida et al., 2016; Yao et al., 2017; Zhang et al., 2017)

lsDNA Usable for long KI Limited in length
Difficult to produce
Mutated KI
Expensive to synthesize

dsDNA Usable for long KI
Easy to produce and engineer
No limit on insert size

Few random insertions

Plasmid Usable for long KI
Easy to produce and engineer
No limit on insert size

Few random insertions

IVT, in vitro–transcribed; gRNA, guide RNA; sgRNA, single gRNA; dgRNA, dual gRNA; ssODN, single-stranded oligonucleotides; lsDNA, long single-stranded DNA;
dsDNA, linear double-stranded DNA.

Advances in CRISPR-Cas Production
and Design for Rodent Genome Editing
The components of the CRISPR-Cas system, both for KO or KI,
have been closely studied and enhanced to increase efficiency,
decrease side effects, and offer better control over repair
outcomes, as reviewed below. In particular, we summarized
CRISPR-Cas9 component formats and their evolution in Table 4

and Figure 2, and advances to increase KI efficiency are illustrated
in Figure 3.

RNP Complex
KO and KI model’s generation mainly depends on RNP complex
cleavage efficiency. Many studies have been done to find
RNP complex best settings. It has been clearly demonstrated
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FIGURE 3 | Promising strategies to enhance KI model generation. (A) Carry DNA donor to the DSB via gRNA, via the RNP complex or via Cas9. (B) Degrade Cas9
by the proteasome in G1 to favor homology-directed repair pathways predominant in S/G2. (C) Activate homology-directed repair pathways via gRNA, via small
molecules or via Cas9. In red are indicated and illustrated the main approaches to enhance editing efficacy. Figure created with BioRender.com. DSB, double-strand
break; indels, insertions or deletions; KI, knockin; HA, homology arms; gRNA, guide RNA; RNP, ribonucleoprotein complex; tCTS, truncated Cas9 target sequences.

that the use of Cas9 protein allows transient and faster editing
(Kim et al., 2014) necessary for proper animal model generation
and increases efficiency of the RNP complex in mouse and rat
zygotes (Figure 2A and Table 4) (Ménoret et al., 2015). Guide
RNA’s sequence has been extensively studied to better understand
its flexibility and structure (Table 4) (Briner et al., 2014; Kartje
et al., 2018) for improved efficacy. In cells, the 5′ triphosphate
group on in vitro–transcribed gRNA induces the cell immune
system and reduces editing efficacy. This reaction can be limited
by phosphatase treatment or prevented by chemical modification
of synthetic gRNA (Kim S. et al., 2018). Chemical modifications
and gRNA optimization have been recently reviewed (Filippova
et al., 2019) and offer a clear advantage for synthetic gRNA

(Figure 2A and Table 4). Regarding their format, both dgRNA
and single gRNA (sgRNA) display similar efficiency (Terao et al.,
2016; Shapiro et al., 2020). Chromatin state can influence editing
efficiency (Janssen et al., 2019; Verkuijl and Rots, 2019) and even
prevent editing of gRNA with predicted high on target score.
Two main strategies have been developed in cells only to open
chromatin locally and increase editing efficiency with SpCas9 and
other orthologs (Table 4). The first approach uses one or multiple
dCas molecules to open chromatin in close proximity to the
targeted locus (Chen F. et al., 2017). The second approach relies
on fused chromatin-modulating peptides on SpCas9 and other
Cas proteins (Streptococcus pasteurianus Cas9, Campylobacter
jejuni Cas9, and others) (Ding et al., 2019). This field is still
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TABLE 5 | Delivery methods.

Delivery
methods

Cargo Species
/cell target

Location Advantages Limitations References

Physical delivery

Microinjection DNA donor
- dsDNA (linear/plasmid)
- dsDNA encoding
gene-specific nucleases
- lsDNA (>200nt)
- ssODN (∼100nt)

Mouse and rat
zygote

Pronucleus or
cytoplasm

- Delivery of large DNA fragments
- Stable DNA in cell

- Time-consuming method
- Expertise required (less for Cyt-MI)
- Poor visualization pronucleus,
flexibility of the oolemma and nuclear
membranes in rat
- Variability in efficiency depending on
size, DNA quality or purity
- Persistent expression and depending
on host transcriptional/transductional
machinery

1st description
(Gordon et al., 1980; Palmiter et al., 1982; Mullins
et al., 1990)
dsDNA-ZFN (Geurts et al., 2009)
dsDNA-TALEN (Tesson et al., 2011)
dsDNA-Meganuclease (Ménoret et al., 2013)
Efficiency
(Charreau et al., 1996b; Hirabayashi et al., 2001)
Complex/invasive method
(Brinster et al., 1985; Charreau et al., 1996b)

mRNA encoding gene
specific nucleases

Mouse and rat
zygote

Pronucleus or
cytoplasm

- Moderate efficiency
- Transient expression
- Cyt-MI more efficient than PN-MI
- Off-target reduced
- Independent expression dependency
of host transcriptional/transductional
machinery (mRNA)

- Time-consuming
- Expertise required (less for Cyt-MI)
- Variation among batches of IVT
mRNA
- mRNA liable to degradation

mRNA-ZFN (Geurts et al., 2009)
mRNA-TALEN (Tesson et al., 2011; Remy et al.,
2014)
mRNA-CRISPR
(Ménoret et al., 2015)
Meganucleases (Wang et al., 2014)

Protein (RNP) Mouse and rat
zygote Mouse/ES

Pronucleus or
cytoplasm

- Higher efficiency than using DNA or
mRNA encoding gene specific
nucleases
- Short half-life within cells
- Less mosaicism
- Off-target cleavage reduced

-In vivo stability
-Potentially immunogenic

(Ménoret et al., 2015; Wang et al., 2015; Jung C. J.
et al., 2017)

Electroporation DNA donor
- dsDNA (linear/plasmid)
- ssODN
- lssDNA (600–1.5 kb)

Mouse and rat
zygote

Uncontrolled
cytoplasm
(long DNA)
Pronucleus (short
lsDNA/ssODN)

- Easier delivery than DNA-MI
- Processing simultaneously 50–60
zygotes in a short time
- Efficient to deliver ssODN or lsDNA
(<1 kb)

- Inefficient nuclear transport
- Transient nuclear envelop breaking
or cell-division required
- Inefficient to deliver DNA > 1 kb

ssODN (Hashimoto and Takemoto, 2015; Kaneko
and Mashimo, 2015; Qin et al., 2015; Chen et al.,
2016; Wang et al., 2016; Remy et al., 2017)
lsDNA (Miyasaka et al., 2018)
Inefficient delivery dsDNA
(Takabayashi et al., 2018)

mRNA encoding
Cas9 + sgRNA

Mouse and rat
zygote

Uncontrolled - Easier delivery than mRNA-MI - Embryos are quite sensitive to pulse
and toxicity is observed

Rat/mRNA encoding Cas9+sgRNA (Remy et al.,
2017)
CRISPR/mice/KO/HDR-KI (Qin et al., 2015)
Mice/CRISPR/KO (Hashimoto and Takemoto,
2015; Hashimoto et al., 2016)
Rat/ZFN/TALEN/Crispr/KO (Kaneko et al., 2014;
Kaneko and Nakagawa, 2020)
Rat/mice/Crispr/KO/KI (Kaneko and Nakagawa,
2020)

Protein (RNP) Mouse and rat
zygote

Uncontrolled - Easier delivery than RNP-MI - High amount of cargo
- Uncontrolled delivery amount

Cas9-RNP/mice/indels/large KO/HDR-KI/ssODN-
KI (Wang et al., 2016)
Cas9-RNP/mice/KO (Hashimoto et al., 2016)
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emerging and requires further studies. There is a need for better
understanding of genome editing hurdles to allow edits at any
locus with high efficiency.

DNA Donor
DNA donors have been used in different formats to generate
KI models: plasmids, single-stranded oligonucleotides (ssODNs),
long single-stranded (ls)DNA, and linear double-stranded
(ds)DNA (Figure 2B and Table 4). These formats and their
design are important to direct repair toward KI. Because efficient
KI generation is the most important issue currently, here we
review the main aspects and advances regarding the DNA repair
template and pathways.

Historically, transgenesis (Gordon and Ruddle, 1982; Palmiter
et al., 1982; Mullins et al., 1990; Charreau et al., 1996b) and
targeted mutagenesis using nucleases have been achieved using
circular plasmids or an excised dsDNA, to introduce a complete
expression cassette in rat and mouse genome (Cui et al.,
2011; Brown et al., 2013). DNA synthesis advances in recent
decades (Hao et al., 2020) have supported progress in genome
editing (Table 4), allowing efficient synthesis of dsDNA, ssODNs
and lsDNA, with increasing size and purity from commercial
vendors. Nevertheless, yield issues persist with synthesis of long
DNA fragments. Today, short sequence insertion and precise
mutations are mostly generated using ssODNs. Its current
synthesis limit is 200 nucleotides or fewer for most providers.
A few years ago, lsDNA emerged as a new and efficient way
to generate complex KI mouse (Miura et al., 2015; Miyasaka
et al., 2018) and rat (Yoshimi et al., 2016; Miyasaka et al., 2018)
models. Different production strategies have been developed,
including in vitro transcription and reverse transcription (Miura
et al., 2015), plasmid excision by nicking endonucleases (Yoshimi
et al., 2016) and synthesis. High yield and purity are difficult to
achieve for lsDNA production, leading to unexpected mutations
in addition to the desired KI genotypes (Codner et al., 2018).
Synthesis is quite expensive and limited to some kilobases
depending on vendors (Figure 2B and Table 4). Chemically
modified ssODNs, in cells and rodents, generally lead to higher
editing efficiency (Renaud et al., 2016; Liang X. et al., 2017).
A study on human cells showed increased KI efficacy using 5’-
end–modified dsDNA (Yu et al., 2020). The proof of concept of
this protection has clearly been demonstrated and will probably
be tested for all DNA donor formats.

Several approaches have been developed to optimize DNA
donor design, but no clear consensus has emerged regarding
impact on KI efficiency. In human cells, some donors have shown
better KI efficiency with ssODN complementary to the non-target
strand (Richardson et al., 2016), but others have shown similar
efficacy for both designs (Liang X. et al., 2017). In the same way,
studies on human cells suggest better efficiency with asymmetric
ssODNs (Richardson et al., 2016), whereas others report similar
KI efficiency with both asymmetric and symmetric donors in
mouse embryos (Lanza et al., 2018). Furthermore, in human cells
(Liang X. et al., 2017) and mouse embryos (Hirotsune et al.,
2020), dsDNA with 3’ overhangs displays better KI efficiency
(Figure 2B and Table 4). This improvement could be explained
by necessary genomic DNA end resection for KI generation
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during repair pathways, as discussed later. The only consensus
regarding DNA donor design is that the inserted sequence should
be as close as possible to the Cas9 cut site (Table 4) to yield
efficient KI (Inui et al., 2014; Liang X. et al., 2017). To avoid
multiple cleavages on the KI inserted sequences, silent mutations
are introduced in the DNA donor close to the PAM.

Major hurdles remain for large (long donor) or complex
KI (several ssODNs with complex sequence). One clear way
to increase KI efficiency is to use the RNP complex to carry
the DNA donor to the DSB (Figure 3A and Table 4). In this
way, all KI components will be present at the same time and
concentrate at the cut site. The stable and high affinity between
biotin and streptavidin (Le et al., 2019) and the easy production
of biotinylated DNA donor have inspired several approaches.
Cas fused with avidin and a biotinylated DNA donor has been
tested to generate modified mice (Ma et al., 2017; Gu et al., 2018;
Wang Z. et al., 2020). The sgRNA has also been engineered
to insert a specific S1M aptamer of streptavidin and improve
KI generation in human cells (Carlson-Stevermer et al., 2017).
To ensure tight linkage, guide RNA and the ssODN donor
have also been chemically linked to crRNA (Lee et al., 2017).
Covalent attachment of the DNA donor to a Cas9 fused to porcine
circovirus 2 Rep protein has been also described (Aird et al.,
2018). Recently, Cas9-ssODN conjugates generated chemically
or via an adaptor complementary to part of the ssODN, have
been used to enhance HDR-mediated genome editing in mouse
zygotes (Ling et al., 2020). Another team has used the RNP
complex itself in human cells, without modifying it, but by
inserting 16-nucleotide truncated Cas9 target sequences (tCTSs)
in the linear dsDNA donor (Nguyen et al., 2020). This tCTSs
allows RNP recognition without cleavage or use of a dCas9.

Repair Pathways
NHEJ is the most used pathway for DSB repair which produces
indels alleles by ligase IV direct ends ligation through well-
described mechanisms (Frit et al., 2019). When a DNA repair
template is available at the DSB, other pathways may be
induced, based on homology recognition. In contrast to NHEJ,
other repair pathways, i.e., HR, microhomology-mediated end
joining (MMEJ), and single-strand annealing (SSA), depend
on a DNA template and are predominant in S/G2 phases. To
favor KI, different strategies with small molecules have been
used to arrest cells at different phase of the cycle (Yeh et al.,
2019; Bischoff et al., 2020) but these strategies are difficult
to apply to embryos. To favor HDR pathways predominant
in S/G2, Cas9 can be degraded by the proteasome in G1
phase (Figure 3B and Table 4) by fusion to geminin degron
(Gutschner et al., 2016; Charpentier et al., 2018; Lomova
et al., 2019). Mouse two-cell embryos have a long G2 phase
(Palmer and Kaldis, 2016) and open chromatin state that is
favorable for KI model generation. Gu et al. (2018) have
taken advantage of these features to develop the two-cell
homologous recombination (2C-HR)-CRISPR in mouse, to
increase large KI efficiency with WT Cas9 or Cas9 fused to
monomeric streptavidin coupled with a biotinylated donor. This
approach has been reproduced in mouse using Mb3Cas12a
(Wang Z. et al., 2020).

All of these repair mechanisms except NHEJ have a key first
step in common: DSB end resection (for a review, see Ranjha
et al., 2018). The MRE11-RAD50-NBS1 complex must first be
recruited to DSB ends, where it drives CtIP and other resection
molecules (Ranjha et al., 2018). Exo1 can further resect DSB
ends to produce 3′ overhangs that will be coated by replication
protein A (RPA). For HR, RPA will later be replaced by Rad51 to
promote strand exchange, whereas for SSA, RPA-coated resected
ends are recognized by Rad52 for processing by end annealing.
Factors unique for MMEJ are still unclear, but it requires short
resection, necessitating the inhibition by RPA end coating. The
size of this resection is linked to the repair pathway that is active.
Short resection will leave a short sequence for homology-driven
repair, as with MMEJ (5–25 bp) and SSA (>20 bp), whereas long
resection will allow for long homology recognition, as with HR
(>500 bp), and no resection will trigger NHEJ. These features
drive the design of DNA donor homology arms (Yao et al., 2017).

To favor KI, small inhibitors of NHEJ or essential molecules
carried to the DSB via gRNA, via Cas9 (Figure 3C and Table 4)
have been used. NHEJ inhibitors have mainly been tested on
cells (for reviews, see Yeh et al., 2019; Bischoff et al., 2020)
and SCR7, an inhibitor of ligase IV, has led to KI increase
in mouse (Maruyama et al., 2015; Singh et al., 2015) and rat
embryos (Ma et al., 2016). Cas9 in fusion with a domain of
CtIP has shown increased KI efficiency in human cells and
rats (Charpentier et al., 2018; Tran et al., 2019). In the same
way, the use of a MS2 aptamer on the gRNA to carry CtIP
showed better KI efficiency in cells than other molecules (Nakade
et al., 2018; Tran et al., 2019). Small molecules treatments to
increase KI efficiency have been reviewed (Yeh et al., 2019;
Bischoff et al., 2020). No data was reported to date in rats
or mice, and only two studies showed that RS-1 enhances KI
efficiency in rabbit (Song et al., 2016) and bovine embryos
(Lamas-Toranzo et al., 2020). Finally, tests on cells and mouse
embryos have shown that ExoI overexpression enhances KI
activity (Aida et al., 2016).

CRISPR-Cas9 has a repair profile closer to the environmental
DSB’s one compared to other nucleases with a high frequency of
insertions of one nucleotide (Trimidal et al., 2019) and mainly
repairs using out-of-frame indels (>70%) and microhomologies
(Guo et al., 2018; Taheri-Ghahfarokhi et al., 2018).

One study on mouse embryos showed that multiple
overlapping (at least > 5 bases) sgRNAs with ssODNs increase
KI efficiency, probably by inducing shorter deletions (Jang et al.,
2018) (Table 4). Several studies have designed plasmid donors
with inserts flanked by gRNA recognition sites to excise it within
a cell or zygote (Figure 2B and Table 4). This strategy may
coordinate DSB and DNA donor availability at the cut site but
can also create the same ends on both the DNA donor and
the genomic DNA. It has led to increased KI in cells with
various lengths of the homologous arms (Zhang et al., 2017), in
mouse and monkeys embryos with HMEJ arms of 800 bp (Yao
et al., 2017) or in cells and mouse embryos MMEJ homology
arms of 40 bp (Aida et al., 2016). The results of these studies
suggest that repair outcomes can be influenced or used to
favor KI. Further experiments should be done in the rat to
confirm these results.
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Delivery Strategy Overview and System
Optimization
Gene-editing efficiency by targeted-mutagenesis approaches,
unquestionably depends on the delivery system used. In the
following section, we describe the commonly used methods and
recently developed strategies, which are summarized in Table 5.
Latest methods are reported in Figure 1.

Microinjection
Since its development in mice in the early 1980s (Gordon et al.,
1980; Palmiter et al., 1982), microinjection has become the
most commonly used method to introduce different cargos into
mouse and rat zygotes. Pronuclear injection, is a well-established
method and allows the delivery of purified nucleic acid in any
form (plasmid or dsDNA, lsDNA or ssODN, mRNA, gRNA,
RNP) and any size (for review, see Giraldo and Montoliu, 2001).
Nevertheless, the efficiency of the method is variable, depending
in particular on the quality and size of DNA sources, and also
the skill of the manipulator (Charreau et al., 1996b; Hirabayashi
et al., 2001). In some cases, the pronucleus is hard to visualize
and the flexibility of the oolemma and nuclear membranes, as
in the rat, make delivery of DNA constructs more complex
and invasive (Brinster et al., 1985; Charreau et al., 1996b).
Cytoplasmic injection (CI) is an alternative to overcome these
technical problems and has been described to deliver linearized
DNA (Brinster et al., 1985), mRNA-encoding nucleases or sgRNA
(Geurts et al., 2009; Tesson et al., 2011; Remy et al., 2014; Wang
et al., 2014; Ménoret et al., 2015; Doe et al., 2018), allowing for
a transient expression of nucleases and thus reducing off-target
events. TALEN and CRISPR-Cas in the form of proteins can
also be directly injected into the zygote pronucleus, cytoplasm,
or both sequentially to achieve gene modifications (KO and/or
KI). For proteins, efficiencies are higher for CRISPR and lower
for TALEN than those observed with delivery in their DNA or
mRNA forms (Table 5; Ménoret et al., 2015; Wang et al., 2015;
Jung C. J. et al., 2017).

Electroporation
Delivery of ZFN, TALEN, or CRISPR-Cas9 nucleic acids
or protein components using zygote electroporation enables
generation of mice (Hashimoto and Takemoto, 2015; Qin et al.,
2015; Hashimoto et al., 2016; Wang et al., 2016) or rats
(Kaneko et al., 2014; Kaneko and Mashimo, 2015; Remy et al.,
2017) carrying various genetic modifications (Table 5). These
modifications include NHEJ-mediated indels (Kaneko et al.,
2014; Hashimoto and Takemoto, 2015; Kaneko and Mashimo,
2015; Qin et al., 2015; Hashimoto et al., 2016; Wang et al.,
2016; Remy et al., 2017), large segment deletions (Hashimoto
et al., 2016; Wang et al., 2016), conditional KO (Miyasaka et al.,
2018), double-KO (Teixeira et al., 2018), HDR-mediated precise
nucleotide substitutions (Kaneko and Mashimo, 2015; Qin et al.,
2015; Wang et al., 2016) or short sequence insertions using
ssODNs (typically < 200 bp) (Hashimoto and Takemoto, 2015;
Chen et al., 2016; Wang et al., 2016; Remy et al., 2017) and lsDNA
(from 600 bp to 1.5 kb) (Miyasaka et al., 2018). In some studies,
electroporation was done in mouse zygotes that were denuded of
the zona pellucida (ZP) by a Tyrod’s acid treatment (Qin et al.,

2015; Chen et al., 2016; Wang et al., 2016), without affecting the
early development unlike data reported in rats (Okuyama and
Funahashi, 2012). Electroporation also can be applied to mouse
and rat frozen zygotes for efficient introduction of CRISPR RNP
complexes, without affecting embryo viability or development
(Nakagawa et al., 2018; Kaneko and Nakagawa, 2020).

Electroporation is thus an excellent alternative to
microinjection for genome editing in mice and rats, with
similar or sometimes higher success rates. It also allows the
simultaneous processing of many zygotes in a short time
(e.g., a batch of 50 zygotes in few seconds) without requiring
expensive equipment and operators with extensive training and
expertise. Nevertheless, a major limitation is the low efficiency
or even absence of efficacy of this method for introducing a
large DNA fragment (>500 bp) using dsDNA; even if entry
into the zygote cytoplasm is achieved, the migration into the
nucleus is blocked (Remy et al., 2017). LsDNA (up to 1.5 kb)
has been described as an alternative (Miyasaka et al., 2018) but
with lower KI yields than those observed using short ssODNs.
These results have not always been reproducible, probably
because of an inefficient migration into the zygote pronucleus
(Remy et al., 2017).

Genome Editing via Oviductal Nucleic Acid Delivery
(GONAD)
GONAD has the advantages of electroporation without
requiring sacrifice of embryo donor animals or ex vivo embryo
manipulation. In this technique, the RNP complex is directly
injected into the oviduct of a pregnant mouse or rat, followed
by in situ electroporation. It was first described to generate
NHEJ using Cas9 mRNA (Takahashi et al., 2015; Gurumurthy
et al., 2016, 2019b) and then the improved GONAD (iGONAD)
was reported by Ohtsuka et al. (2018) in mice to efficiently
generate indels mutations, large deletions, and ssODN and
lsDNA-based KI (up to 1 kb), by replacing Cas9 mRNA by
Cas9 RNP. Other groups have demonstrated the efficiency of
iGONAD in rats for gene disruption and ssODN-based KI
(Kobayashi et al., 2018; Takabayashi et al., 2018) and in mice by
substituting Cas9 with AsCpf1 (Ohtsuka et al., 2018) (for review
see Sato et al., 2020).

Viral Vectors
Since efficacy of KI using long DNA donors is still low, AAV
vectors have been used to deliver DNA cargo. Although AAV
has a reduced packaging capacity (∼5.2 Kb), that limits their
use in delivering large functional components of TALEN and
SpCas9, some studies have reported AAV-mediated delivery
(mainly with the serotype 6) (Ellis et al., 2013) to generate
mutations in mouse and rat zygotes, by using either a dual-
AAV system carrying SpCas9 and sgRNA in separate vectors
(Yoon et al., 2018) or sgRNA and a shorter Cas9 ortholog
in an “all-in-one” vector (Edraki et al., 2019). Two groups
have also managed to generate KI mice (Mizuno et al., 2018;
Chen et al., 2019) and rats (Mizuno et al., 2018) by combining
zygote electroporation to deliver the RNP complex and AAV
transduction to introduce a large donor dsDNA (up to 4.9 kb)
with efficiency ranging from 6 to 100% depending on the viral
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concentration (Mizuno et al., 2018). The method has not been
rigorously compared with other methods and requires generation
of high-purity AAV vectors.

Sleeping Beauty and PiggyBac transposons systems have been
optimized to deliver CRISPR-Cas system into cells to increase

gene editing efficiency and allow multi-allele targeting (Weber
et al., 2015; Xu et al., 2017; Hu et al., 2018; Ye et al., 2019). Note,
however, that CRISPR-Cas integration by transposon into the
genome and its long-term expression in the cells could lead to
off-target effects.

FIGURE 4 | Rat research model generation by CRISPR-Cas9 and applications. Strategies to generate research models by CRISPR-cas9 are multiple and very
helpful for studies of gene function and diseases or to generate a reporter model. (A) The RNP alone can be used to create indels at one or more loci to generate
single or multiple KO or a large deletion. (B) RNP with a short DNA donor (ssODN) can be used to generate a stop codon or mutations or to insert a Tag in the
reading frame of the endogenous gene of interest. (C) A large DNA donor (either lsDNA, dsDNA, or plasmid) can be used to express a reporter gene in the reading
frame of the endogenous targeted gene with a self-cleaving peptide, to generate conditional or inducible Cre/lox models with or without a reporter, or to overexpress
the rat or human gene of interest or a reporter gene in a safe harbor locus. For expression of inserted genes, an endogenous or ubiquitous promoter or a specific
promoter can be used to restrict expression to tissues or cell types. Figure created with BioRender.com. SNP, single nucleotide polymorphism; RNP,
ribonucleoprotein complex; 2A, self-cleaving peptide; KO, knockout; indels, insertion or deletion; Cre, Cre recombinase.

Frontiers in Genetics | www.frontiersin.org 14 April 2021 | Volume 12 | Article 615491

http://BioRender.com
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-615491 April 19, 2021 Time: 11:29 # 15

Chenouard et al. Advances in Genetically Modified Rats

Rat Research Models and Applications
Today, it is possible to generate a broad range of genetically
modified models, from simple KOs with precise mutations or
gene overexpression, to conditional or reporter models. Below,
we describe the main strategies to develop these models, which
also are illustrated in Figure 4. Main resources available to find
and develop rat models are available in Table 1. Table 6 describes
models already developed to study genes of the immune system.
Genome editing application in genetic disease studies is also
explained and illustrated by the existing models listed in Table 7.
Advantages of the rat as a model for those two applications are
highlighted in this section.

Strategies to Develop Genetically
Modified Models
Single, Multiple or Large Modifications
A KO model can be efficiently generated through out-of-frame
indels (Figure 4A) by careful design of gRNA. Some of these will
lead to a reading frame shift with a premature termination codon
followed by mRNA degradation and no translation of the protein.
All mechanisms of premature termination codon followed by
mRNA degradation are not fully understood on mammals and
exceptions exist (Dyle et al., 2020). Most often, the CRISPR-Cas
system is designed to target one of the first exons of the gene,
but another approach is to generate a promoter-less allele that
can lead to a more severe phenotype than the KO model (El-
Brolosy et al., 2019). In that case, KO can be easily confirmed
by detection at the mRNA level. This strategy has not been used
commonly, but it could be particularly useful in the rat, for which
protein detection tools are limited. Mainly, these models have
been developed by nuclease DSB induction, but adenosine-base
editor is also an alternative with mouse and rat (Ma Y. et al., 2018;
Yang L. et al., 2018; Wang X. et al., 2020).

Multiple KO models can be generated using multiple RNP
complexes (Ma et al., 2014a,b), but to avoid large deletions, they
should not be located on the same chromosome (Figure 4A).
Translocation between chromosomes is also a risk that can be
reduced using ssODNs and different Cas (Bothmer et al., 2020).
Outcomes analysis for multiple KO can be challenging and
should be carefully considered when designing CRISPR tools.

For large genomic KOs involving several consecutive genes,
two DSBs can be induced by designing gRNA on both sides of
the region of interest (Figure 4A). If both DSBs occur at the same
time, the result will be a large deletion of this region of interest.
To our knowledge, the biggest deletion achieved to date in rats is
24,499 Kb (Birling et al., 2017).

ssODNs that include a STOP codon can be used to create a
nonsense mutation and inactivate a specific gene (Figure 4B).
The rate of KI is usually lower than the frequency of indels, but
because both the KI and a large fraction (>70%) of indels (Guo
et al., 2018; Taheri-Ghahfarokhi et al., 2018) induce out-of-frame
mutations, this increases the chance of obtaining a KO animal.

ssODNs containing a mutation observed in a human disease
have been used to generate animal models (Figure 4B) such as for
cystic fibrosis (Dreano et al., 2019; Table 7). The use of ssODNs
will allow inclusion of specific features, such as restriction sites, to

facilitate KI genotyping. Base- and prime-editing, are particularly
fitting tools for generating mutations. Base editing has already
been applied in the rat (Yang L. et al., 2018) but prime editing
only in the mouse for now (Liu Y. et al., 2020).

Gene Overexpression
Overexpression of the gene of interest might be useful for
gaining a better understanding of its role. The gene can be
overexpressed by its insertion with its promoter or with an
ubiquitous promoter (Figure 4C, right panel). In the past, this
effect has been achieved through transgenesis, but expression of a
randomly inserted cassette is affected by the genomic locus where
it is inserted. Advances in genome-editing tools have made it
possible to target a permissive locus, also called a “safe harbor,”
to overcome this issue (Saunders, 2020). Rosa26 and Hprt are the
most commonly used safe harbors that have been targeted in rat
embryos (Kobayashi et al., 2012; Remy et al., 2014).

Humanized animal models are of great value to better study
human diseases by insertion of the human gene into the animal
genome (Figure 4C, right panel). For some projects, cDNA of the
gene of interest is enough and can be used to generate humanized
models, as it was done for a humanized model of cystic fibrosis
(Birket et al., 2020).

Conditional Models
Site-specific recombinase systems (SSR) are used for conditional
excision or inversion of the targeted site. Their application
requires the generation of two lines, one expressing the specific
SSR and one displaying the two specific DNA sites flanking
the locus of interest (Figure 4C, lower panel). These lines are
then crossed to combine both mutations in a single animal line
(Birling et al., 2009). The Cre/lox system is the most commonly
used SSR system option for mouse conditional models, even
though other variants and other systems (FLP-FRT, Dre-rox,
Nigri-nox, and others) have been used and combined. To the
best of our knowledge, Cre/lox is the only SSR system that
has been used to generate conditional rat models. The use of
targeted nucleases permits precise insertion of Cre behind the
endogenous promoter (Figure 4C, lower panel), allowing reliable
and relevant tissue or cell specific expression of Cre (for a review
see Kim H. et al., 2018). To achieve temporal control of the
gene of interest, drug-inducible systems are used (Navabpour
et al., 2020). Fusion of Cre with estrogen receptor 2 (Cre-
ERT2) leads to sequestration of Cre in the cytoplasm, and the
addition of tamoxifen at a certain time point induces Cre-ERT2
translocation into the nucleus, allowing Cre to recombine loxP
sites (Figure 4C, lower panel). These animal lines should be
carefully bred and analyzed to limit toxicity and leakage (Song
and Palmiter, 2018). Cre/CreERT2 models characterization at
some point requires the use of Cre reporter models expressing
a floxed STOP before a reporter gene (Figure 4C, lower panel).
After Cre recombination, reporter expression is turned on and
specific expression can be characterized. Validation of loxP
models requires Cre or CreERT2 models (Figure 4C, lower
panel). The observed phenotype will then be specific to the Cre
expressing tissues and the loxP line tested.
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TABLE 6 | Genetically engineered rat models for genes of the immune system.

(A)

Immunology
domain

Gene/genetic
modification

Genomic
tool used

References Phenotype and
rats vs. mice

Depository or
breeder

company ID

Immuno-
deficient
models

Rag1/KO or
Rag2/KO

Meganuclease
CRISPR

Zschemisch et al.,
2012; Ménoret et al.,
2013; Tsuchida et al.,
2014; Chang et al.,
2015; Noto et al., 2018

T-B-NK+. Rag1/KO or Rag2/KO rats and mice show similar
phenotypes

Rag2 KO;
NBRP Rat

#0894

Foxn1/KO CRISPR Goto et al., 2016 T-B+NK+. Foxn1/KO rats and mice show similar immune and
albino phenotypes

RGD
#10053598
#10053601

Il2rg/KO TALENs
CRISPR

Mashimo et al., 2010;
Samata et al., 2015;
Kuijk et al., 2016

T-B+/-NK-. Il2rg/KO rats and mice show similar phenotype #0585

Rag1/KO or
Rag2/KO or
Prkdc/KO or
and Il2rg/KO

ZFNs
TALEN
CRISPR

Mashimo et al., 2012;
Ménoret et al., 2018;
He et al., 2019

T-B-NK-. KO rats and mice show similar phenotypes IL2Rg-Rag2
KO;

NBRP Rat
#0895

RRG (TRIP)

Human SIRPa/Tg BAC microinjection Goto et al., 2016; Jung
et al., 2016; Yang X.
et al., 2018; Ménoret
et al., 2020

↓ phagocytosis human cells. hSIRPa/Tg rats and mice show similar
phenotype

Rag1/KO or
Rag2/KO or
Prkdc/KO or
+Il2rg/KO+human
SIRPa/Tg

ZFNs, TALENs,
CRISPR

Yang X. et al., 2018;
Ménoret et al., 2020

T-B- NK-, ↓ phagocytosis human cells
Similar phenotypes in KO and Tg rats and corresponding mice as
well in KO NOD mice which have a spontaneous mutation in Sirpa

RRGS (TRIP)

Ighm, Iglc, Igkc /KO ZFNs Ménoret et al., 2010;
Panzer et al., 2018

T+B-NK+. Ighm/KO and IgKc/KO rats and mice show similar
phenotype

IgM KO
(Ligand)

Human Ig heavy
and/or light chain
loci/Tg

BAC microinjection Osborn et al., 2013;
Ouisse et al., 2017; Xu
et al., 2018

Production of human IgG binding domains for the generation of fully
human mAbs
Human Ig heavy and/or light chain loci/Tg rats and mice show
similar phenotype

Ligand

C3/KO CRISPR Xu et al., 2018 Role of complement in neuropathy during chemotherapy model not
available in mice because of defects in complement activation in
mice

RGD
#19165133

CDs and
membrane
molecules

HLA-
B27 + hb2m/Tg

DNA microinjection Hammer et al., 1990 HLA-B27 + hb2m/Tg rats are a much better model of
spondyloarthropathy than are HLA-B27 + hb2m/Tg mice

HLA-B27 RGD
#7387221

hCD55+ hCD59/Tg DNA microinjection Charreau et al., 1996a,
1999

hCD55 + hCD59/Tg rat hearts were heterotopically grafted in
primates
Not possible for corresponding mice

/

hCD46/Tg DNA microinjection Niewiesk et al., 1997 Model of measles infection and complement control.
hCD46/Tg rats and mice show similar phenotypes

/

hCD4/hCCR5/Tg DNA microinjection Keppler et al., 2002 hCD4/hCCR5/Tg rats are a closer model to human
hCD4/hCCR5/Tg mice exhibited very little or no productive infection

/

hFasL/Tg DNA microinjection Tesson et al., 1999;
Bouchet et al., 2002

Expression in endothelial cells
Model not available in mice

/

hCD21/Tg DNA microinjection Yang et al., 2003 Model of EBV infection hCD21/Tg rats and mice show similar
phenotypes

/

hCD64/Tg DNA microinjection van Vuuren et al., 2006 Depletion of macrophages a CD64-immunotoxin and inhibition of
arthritis
Transgenic rats and mice have similar expression

/

hP2Y2R/Tg Lentiviral vector Agca et al., 2009 Tissue inflammation, increase in certain leukocyte populations
No hP2Y2R transgenic mouse line generated

/

Cd247 (CD3 ζ

chain)/KO*
ZFNs Rudemiller et al., 2014 Fewer kidney lesions in a model of hypertension similar immune

phenotype in Cd247/KO rats and mice in T cell signaling and
depletion of T cells
No model of hypertension analysis in Cd247/KO mice

RGD
#6484582
#6484564
#6484568

(Continued)
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TABLE 6 | Continued

(A)

Immunology
domain

Gene/genetic
modification

Genomic
tool used

References Phenotype and
rats vs. mice

Depository or breeder
company ID

Tlr4/KO TALENs Ferguson et al., 2013 Tlr4/KO rats and mice show similar decreased
pro-inflammatory cytokine secretion upon
lipopolysaccharide stimulation

RRRC
#694

Cd40/KO* CRISPR Haller et al., 2017 Cd40/KO rats have fewer kidney lesions in a model of
hypertension than mice
No model of hypertension analysis in Cd40/KO mice

RRRC
#840

Adora2b/KO* ZFNs Nayak et al., 2015 Adora2b/KO rats but not mice showed decreased
pro-inflammatory cytokine secretion and less cardiac and
renal injury/fibrosis in response to hypertension

RGD
#6484715

Clec1/KO ZFNs Lopez Robles et al.,
2017

Clec1/KO rats but not mice showed increased inflammatory
responses by DCs

(TRIP)

Cd59/KO CRISPR Yao and Verkman,
2017b

Cd59/KO rats and not mice (showed mild hemolytic anemia
and a faithful model of neuromyelitis optica

RGD
#13792606

Kv1.3/KO ZFNs Chiang et al., 2017 Kv1.3 KO rats are a better and closer model to human.
Mouse T cells, unlike rat or human T cells, co-express
additional redundant Kv1 channels

/

Cytokines/
secreted
products and
their receptors

Avp/Tg DNA microinjection Jessop et al., 1995 A model for the study of thymic arginine vasopressin in T
cell differentiation
No analysis of AVP expression in thymus of transgenic mice

/

Ifng/Tg DNA microinjection Egwuagu et al.,
1999a,b

IFNgamma expression in the eye in a model of uveitis
Conflicting results: IFN-g exacerbates uveitis in the rat and
confers protection in the mouse

/

TGFb1/KO* ZFNs Chen et al., 2013 Rats and mice TGFb1/KO with a T cell-specific deletion of
the Tgfb1 gene developed lethal immunopathology in
multiple organs

RGD
#5131989

Il22bp/KO CRISPR Martin et al., 2016 IL22BP protective in models of colitis and psoriasis (TRIP)

Ifnar1/KO CRISPR Qaisar et al., 2017 Absence of IFN-I responses
Ifnar1/KO rats and mice not analyzed in the same way

RGD
#12910493 #12910494

Il15/KO ZFNs Renaud et al., 2017 A genetic model of NK-cell deficiency in rats
Il15/KO rats and mice show similar phenotypes

RRRC
#769

Tbet/KO ZFNs Ma Z. G. et al., 2018 T-bet can direct Th1 lineage commitment
Tbet/KO rats and mice show similar phenotypes

/

Csf1r/KO ES cells Pridans et al., 2018 Absence of most macrophages in most tissues.
Macrophages effects in development of multiple organ
systems in rats were distinct from those reported in mice

/

Csf1r-GFP/KI DNA microinjection Irvine et al., 2020 Csf1r-GFP/KI rats and mice show similar phenotypes /

Intracellular
molecules

HMOX1/Tg DNA microinjection Braudeau et al., 2003 HMOX1/Tg only described in rats /

Hmox1/KO ZFNs Atsaves et al., 2017 Hmox1/KO rats and mice show similar phenotype with
generalized inflammation and kidney lesions and lethality

Ian5/Tg PAC microinjection Michalkiewicz et al.,
2004

A model that shows the essential role of IAN5 for lymphoid
development. IAN5 rescues lymphopenia in BB rats with a
mutation in the Ian5 gene

/

Notch1/Tg DNA microinjection van den Brandt et al.,
2005

Blockade of thymic development and T cell lymphopenia
Notch1/Tg rats and mice show similar phenotypes

/

Selenoprotein
M/Tg

DNA microinjection Hwang et al., 2008 Maintenance of a high level of antioxidant status
Selenoprotein M/Tg rats and mice show similar phenotypes
in brain

/

Bcl2/Tg DNA microinjection Iscache et al., 2011 Increased B cells and immunoglobulins
Bcl2/Tg rats and mice show similar phenotypes

/

Cyp2j4/KO ZFNs Behmoaras et al., 2015 Cyp2j4 determines a profibrotic macrophage transcriptome
Implications in various inflammatory conditions
Similar results in Cyp2j4/KO rats and mice

RGD
#12904679

(Continued)
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TABLE 6 | Continued

(A)

Immunology
domain

Gene/genetic
modification

Genomic
tool used

References Phenotype and
rats vs. mice

Depository or breeder
company ID

Ahr/KO ZFNs
TALENs
CRISPR

Harrill et al., 2013;
Phadnis-Moghe et al.,
2016

A variety of T and B cell alterations. Ahr/KO rats are more
analyzed than Ahr/KO mice
Rats showed other organ alterations

RGD
#12903250 (Horizon

Discovery);
RGD

#12903272 (Horizon
discovery)

RGD
#13838845 (not available)

RRRC#831 (CRISPR)
RGD

#15090819
#15090817 (TALEN, not

available)

Aire/KO ZFNs Ossart et al., 2018 Autoimmunity in several organs Aire/KO rats not observed
in Aire/KO mice

(TRIP)

Prox1
promoter-
EGFP/Tg

BAC microinjection Jung E. et al., 2017 Visualization of all lymphatic vessels Prox1
promoter-EGFP/Tg rats and mice show similar phenotypes

/

Eogt/KO TALENs Hao et al., 2018 O-GlcNAc glycosylation deficiency with defect in Notch
signaling in autoimmune hepatitis
Eogt/KO rats and mice show similar phenotypes

/

Paraoxonase
1/KO

CRISPR Bai et al., 2018 Thymocyte blockade at the CD4/CD8 double-negative to
double-positive transition stage
No mouse model reported

RGD
#12790692 #12790698

#12790695

S100A8
transgenic
rats/Tg

DNA microinjection Okada et al., 2018 Altered macrophage function in a colitis model
S100A8/Tg rats and mice show similar phenotypes

/

(B)

Gene/KO

Miscellaneous Snx25/KO, Axl/KO*, Cd14/KO*, Cd55/KO, Cd226/KO,
Cyba/KO*, Cybb/KO*, Fyn/KO*, Gpr183/KO*, Ifnar1/KO

Unpublished,
available at MCW RGD

*Performed in the Dahl/S strain. WCM RGD, Wisconsin Medical College Rat Genomic Database. EBV; Epstein Barr virus.

Other systems have been used in mouse and rat for
spatiotemporal control. Tetracycline (Tet) on or off systems,
like SSR systems, require two lines, one carrying a Tet (or
doxycycline, its derivative)-sensitive transcriptional activator and
one on the targeted locus carrying the Tet-responsive promoter
element (Kim H. et al., 2018). The use of Tet systems for the
development of transgenic mice has been reviewed previously
(Sun et al., 2007) and applied to the generation of inducible rat
models (Tesson et al., 1999; Table 6). For cell specific depletion,
the diphtheria toxin receptor can be expressed under a cell
specific promoter such as CX3CR1 for microglia depletion in rat
(Vichaya et al., 2020).

Rat research is long way behind mouse studies for
development of conditional models because of the decades-long
use of mouse ES cells (Ramírez-Solis et al., 1995). Use of ES cells
remains time consuming in mouse and technically challenging in
rat. Efforts have currently been deployed to generate conditional
models using CRISPR-Cas9 with all the difficulties previously
discussed for large and complex insertion. Overcoming these
hurdles is a major issue for both mouse and rat but it is required

for the rat. A multicenter study in mice showed that loxP KI
using two ssODNs and RNP complexes is less efficient than
using a single long DNA donor (Gurumurthy et al., 2019a).
Sequential insertion of each loxP ssODN by microinjection and
electroporation of one and two-cell embryos has also been tested
but is technically demanding (Horii et al., 2017).

Reporter and Tagged Rat Models
Transgenic ubiquitous reporter models have been generated with
different fluorophores and promoters. The most developed and
used models are animals that express fluorogenic proteins in
different tissues, such as CAG-GFP rats (Remy et al., 2014;
Ménoret et al., 2015). Today, with CRISPR-Cas systems, a
reporter gene or a tag can directly be inserted at the end of the
reading frame by replacing the stop codon of the endogenous
locus of interest (Figures 4B,C, upper left panel). A fusion protein
or two separated molecules expressed at the same level can be
generated using self-cleaving peptides. Our team has generated
a KI IL22bp-T2A-eGFP rat model to identify cells expressing
this gene (submitted). For advanced reporter models, conditional
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TABLE 7 | Genetically modified rat models of human genetic diseases.

System/organ
affected

Human genetic
disease

Gene/genetic
modification

Genomic tool
used

References Rats vs. mice Depository or
breeder
company ID

Cardiovascular pulmonary arterial
hypertension

BMPR2/KO ZFN Ranchoux et al.,
2015; Hautefort
et al., 2019;
Manaud et al.,
2020

Bmpr2 KO rats showed pulmonary vascular cell
phenotypes closer to human patients than in
Bmpr2 KOmice

RGD#38501086
(not available)
RGD #14975305
#14981588

Primary pulmonary
hypertension 4
(PPH4)

Kcnk3/KO CRISPR-Cas9 Lambert et al.,
2019

Rats have a Kcnk3 gene as humans do but mice
do not

/

Atrial fibrillation,
familial, 18 (ATFB18)

Myl4/KO CRISPR-Cas9 Peng et al., 2017 This model reproduces the human disease
No Myl4/KO mouse model is reported

/

Familial hypertrophic
cardiomyopathy and
myocardial genetic
diseases

Myh7b/KO CRISPR-Cas9 Chen et al., 2020 This model reproduces the human disease
No Myh7b/KO mouse model is reported

/

Danon disease Lamp2/KO TALEN Wang et al., 2017;
Ma S. et al., 2018

Lamp2-KO rats could be a more valuable animal
model for DD than Lamp2/KO mice

RGD #13703119

Nervous
system

Epileptic
encephalopathy, early
infantile, 63 (EIEE63)

Cplx1/KO CRISPR-Cas9 Xu et al., 2020 Cplx1/KO rats and mice show different phenotypes
Rat model reproduces the disease better

Dystonia 25 (DYT25) Gnal/KO CRISPR-Cas9 Yu-Taeger et al.,
2020

Gnal/KO rats show early symptoms as in patients
not seen in Gnal/KO mice

/

Cockayne syndrome Ercc6/KO (KI
R571X)

CRISPR-Cas9 Xu et al., 2019 The brain is more affected in CSB-deficient rats vs.
mice

/

Neonatal
hydrocephalus

L1cam/KO CRISPR-Cas9 Emmert et al.,
2019b

L1cam/KO rats and mice show similar phenotypes
similar to those of patients

RRRC #850 +
851

Ccdc39/KI point
mutation
c.916+2T

CRISPR-Cas9 Emmert et al.,
2019a

Ccdc39 KO rats and mice show similar phenotypes
Rats are more suitable for imaging and surgical
experiments

/

Schizophrenia Drd2/KI
reporter

CRISPR-Cas9 Yu et al., 2016 Inter-species difference of DRD2 expression
between rats and mice

/

Amyotrophic lateral
sclerosis

Fus/KI point
mutation
R521C

CRISPR-Cas9 Zhang T. et al.,
2018

Fus/KI rats and mice show an altered phenotype
with subtle differences

/

Neurofibromatosis
type 1

Nf1/KO CRISPR-Cas9 Moutal et al., 2017;
Dischinger et al.,
2018

Nf1/KO rats have a more pronounced phenotype
than Nf/ KO mice

/

Cystic
leukoencephalopathy

RNaseT2/KO
BigDel

CRISPR-Cas9 Sinkevicius et al.,
2018

No RNaseT2/KO mice reported RGD #13781890,
not available

Epileptic
encephalopathy, early
infantile, 24 (EIEE24)

Hcn1/KO TALEN Nishitani et al.,
2019

Hcn1/KO rats but not Hcn1/KO mice exhibited
epilepsy

NBRP Rat #0821
#0820 #0819
#0822

MECP2-related
severe neonatal
encephalopathy,
Rett-like syndrome
(RTT)

Mecp2/KO ZFN Engineer et al.,
2015

Mecp2/KO rats displayed more symptoms of RTT
than KO mice

RGD #11567272;
Horizon
Discovery

Fragile X syndrome/
Asperger syndrome,
X-linked, 1 (ASPGX1)

Fmr1/Nlgn3/DKOZFN Hamilton et al.,
2014

Similar phenotype for Fmr1/Nlgn3/DKO rats and
mice. Rats more suitable than mice for analysis of
complex behavioral and social activities

RGD #11568700;
Horizon
Discovery; Nlgn3)
RGD #11568040;
Horzon
Discovery; Fmr1
KO; RGD
#11553873

Phelan-McDermid
syndrome

Shank3/KO
Shank3/KO
BigDel

ZFN
CRISPR-Cas9

Harony-Nicolas
et al., 2017
Song et al., 2019

Shank3-KO rats showed normal social interaction
and self-grooming behaviors whereas Shank3-KO
mice do not

/

Angelman syndrome Ube3A/KO
BigDel

CRISPR-Cas9 Dodge et al., 2020 As in patients, Ube3A/KO rats bear a large deletion
of the gene whereas Ube3A/KO mice not

/

(Continued)
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TABLE 7 | Continued

System/organ
affected

Human genetic
disease

Gene/genetic
modification

Genomic tool
used

References Rats vs. mice Depository or
breeder
company ID

Intellectual deficiency
from genetic origin

Cplx1/KO CRISPR-Cas9 Xu et al., 2020 Cplx1/KO rats showed ataxia, dystonia, exploratory
deficits, anxiety and sensory deficits but normal
cognitive function

/

Essential tremor Aspa and
Hcn1/KO

TALEN Nishitani et al.,
2020

Aspa and Hcn1/KO rats developed tremor NBRP Rat #0806
#0805 (Aspa
KO); Cf Table 6
pour Hcn1 KO

Ataxia-telangiectasia Atm/KO ZFN Quek et al., 2017 Atm/KO rats show cerebellar atrophy and
neurodegeneration which are poorly recapitulated in
Atm/KO mice

NBRP #0627
#0649

Autism spectrum
disorder

Cntnap2/KO ZFN CRISPR Scott et al., 2018 Cntnap2/KO rats better recapitulate certain
behavioral symptoms than do Cntnap2/KO mice

RGD #11568646;
Horizon
Discovery; RGD
#25330087
(CRISPR);

Shank2/KO ZFN Modi et al., 2018 Shank2/KO rats show behavior and
electroencephalography abnormalities not seen in
Shank2/KO mice

/

Canavan disease Aspa/KO TALEN Nishitani et al.,
2016

Aspa/KO rats and mice show similar phenotypes
similar to those of patients

NBRP Rat #0806
#0805

Familial focal epilepsy Depdc5/KO TALEN Marsan et al., 2016 Homozygous Depdc5/KO rats and mice have
similar phenotypes but heterozygous Depdc5/KO
rats and not mice had altered neuron excitability
and firing patterns

NBRP Rat #0739

Parkinson’s disease Lrrk2/KO ZFN Ness et al., 2013 LrrK2/KO rats and mice show similar phenotypes
similar to those of patients

RGD #7241053;
Lrrk1/Lrrk2 KO
Horizon
Discovery RGD
#7241047;
Lrrk1/Lrrk2 KO
Horizon
Discovery RGD
#7241050;
Lrrk2/KO;
Horizon discovery
RGD #7241056;
Lrrk2/KO;
Horizon
Discovery

Alpha-synuclein
autosomal dominants
forms of Parkinson’s
disease

SNCA-A53T-
A30P/Tg

DNA
microinjection

Lelan et al., 2011 SNCA-A53T transgenic rats and mice have similar
phenotypes

/

Familial Parkinson’s
disease

DJ-1 and
Pink1/KO

ZFNs Sun et al., 2013 DJ-1 and Pink1/KO rats and mice show similar
phenotypes similar to those of patients

DJ-1 RGD
#7241054 + RGD
#7241049
Pink1/KO;
Horizon discovery

congenital
generalized
lipodystrophy

Bscl2/KO ENU Ebihara et al., 2015 Bscl2/KO rats have brain reduction and
azoospermia as in patients, Bscl2/KO mice do not
reproduce these pathologies

NBRP Rat #0763

Autosomal-dominant
lateral temporal lobe
epilepsy

LGI1/KO ENU Baulac et al., 2012 Rats reproduce the human disease and are
complementary to the KO mice

NBRP Rat #0656

Gastrointestinal Hereditary
tyrosinemia type I

Fah/KO CRISPR Zhang et al., 2016 Fah/KO rats developed liver fibrosis and cirrhosis,
not observed in Fah/KO mutant mice

RGD #10002791
(TALEN;
PhysGenKO)
RGD #14398825
(CRISPR) RGD
#14398828
(CRISPR

(Continued)
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TABLE 7 | Continued

System/organ
affected

Human genetic
disease

Gene/genetic
modification

Genomic tool
used

References Rats vs. mice Depository or
breeder
company ID

Hirschsprung disease Ednrb/KO CRISPR-Cas9 Wang et al., 2019a Ednrb/KO rats in a particular strain caused
embryonic lethality and megacolon as in certain
strains of Ednrb/KO mice

/

Rotor syndrome OATP1B2 /KO CRISPR-Cas9 Ma et al., 2020 OATP1B2 /KO rats reproduce the
hyperbilirubinemia observed in patients

/

Atypical hereditary
non-polyposis
colorectal cancer

Msh6/KO ENU
mutagenesis

van Boxtel et al.,
2008

Msh6/KO develop a spectrum of tumors /

familial colon cancer Apc/KO ENU
mutagenesis

Amos-Landgraf
et al., 2007

Apc/KO recapitulates pathology better than mouse
models

RRRC#00782 +
RRRC#718
(Amos-Landgraf)
NBRP Rat #0443

Muscle Muscular dystrophy
(Duchenne and
Becker forms)

Dmd/KO and
BigDel

TALENs and
CRISPR-Cas9

Larcher et al.,
2014; Nakamura
et al., 2014

Dmd/KO rats better recapitulate the pathology than
Dmd/KO mice

NBRP Rat #0779
NBRP Rat #0780
NBRP Rat #0781
RGD #12880037;
(TRIP)

Myostatin-related
muscle hypertrophy

Mstn/KO ZFN Mendias et al.,
2015; Gu et al.,
2016

In contrast to Mstn/KO mice, Mstn/ KO rats
showed higher muscle fiber contractibility and
lifelong increase in weight in male but not female

RGD #5131964
(PhysGen KO)
RGD #5143985
(PhysGenKO)
RGD #5131954
(PhysGen KO)

Lung Cystic fibrosis Cftr/KO ZFN Tuggle et al., 2014 Cftr/KO rat and mice show similar phenotypes that
are mostly similar to those in patients.
Rats but not mice have tracheal and bronchial
submucosal glands.

RGD #14392817
(SAGE, not
available) RGD
#14392813;
Horizon discovery
RGD #14392815;
Horizon discovery

Cftr/KO and
DF508

CRISPR-Cas9 Dreano et al., 2019 Cftr/KO and DF508 rats and mice show similar
phenotypes. DF508 rats and mice show
phenotypes that are milder than in their Cftr/KO
counterparts. Rats but not mice have tracheal and
bronchial submucosal glands

/

CFTR/KI and
G5551D

ZFN Birket et al., 2020 CFTR/KI G5551D humanized rats display
normalization of several pulmonary parameters after
ivacaftor treatment

/

Endocrine Glucocorticoid
resistance

Nr3c1/cKO CRISPR-Cas9 Scheimann et al.,
2019

Nr3c1/cKO in CNS specific brain regions using
injection of AAV-Cre vectors not possible in mice

/

Estrogen resistance
(ESTRR)

Esr1/KO and
Esr2/KO

ZFN Rumi et al., 2014;
Khristi et al., 2019

Esr1/KO rats and mice show similar phenotypes
similar to those of patients

RRRC#701 (Esr1
KO) RRRC#849
(Esr1 KO)
RRRC#742 (Esr2
KO) RRRC#677
(Esr2 KO)

Congenital
hypothyroidism

Tshr/KO CRISPR-Cas9 Yang et al., 2018 Tshr/KO rats and certain strains of Tshr KO mice
show similar phenotypes similar to those of patients

/

Allan-Herndon
Dudley-syndrome

Mct8/KO CRISPR-Cas9 Bae et al., 2020 Mct8/KO rats showed growth and reduced sperm
motility and viability Mct8/KO mice did not show
growth retardation

/

Metabolic Congenital leptin
deficiency

Lep/KO CRISPR-Cas9 Guan et al., 2017 Lep/KO rats and mice show similar phenotypes
similar to those of patients

/

Leptin receptor
deficiency

Lepr/KO CRISPR-Cas9
and TALEN

Bao et al., 2015;
Chen Y. et al.,
2017

Lep/KO rats and mice show similar phenotypes
similar to those of patients

/

Aceruloplasminemia Cp/KO CRISPR-Cas9 Kenawi et al., 2019 Cp/KO rats show similar plasma biochemical
alterations and profile of iron overload in liver and
spleen as in humans Cp/KO mice showed different
results

RGD #38501060
#38501061
#38501059; not
available

(Continued)
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TABLE 7 | Continued

System/organ
affected

Human genetic
disease

Gene/genetic
modification

Genomic tool
used

References Rats vs. mice Depository or
breeder
company ID

Multiple mitochondrial
dysfunctions
syndrome, among
them pulmonary
artery hypertension

Nfu1/KI point
mutation
G206C

CRISPR-Cas9 Niihori et al., 2020 Nfu1/KI point mutation G206C is only reported in
rats.
The model shows both mitochondrial dysfunction,
and pulmonary artery hypertension with more
prevalence in females than in males, as in patients

/

Generalized arterial
calcification of infancy
and
pseudoxanthoma
elasticum

Abcc6/KO ZFN Li et al., 2017 Abcc6/KO rats allowed ex vivo perfusion of liver
and spleen and definition of the liver as the primary
site of the disease

RGD #13792683
#13792682
#10413850
#10413852
#10413854
#10413858
#10413856

Diabetes mellitus,
non-insulin-
dependent, 5
(NIDDM5)

AS160
(TBC1D4)/KO

CRISPR-Cas9 Arias et al., 2019 AS160-KO rats and mice showed similar alterations
in whole body assessment
Rats’ bigger size allowed measurements using
single myofibers

RGD #38596327

multiple mitochondrial
dysfunctions
syndrome

Isca1/KI-
mCherry-Cre

CRISPR-Cas9 Yang et al., 2019 Developmental block in embryos at 8.5 days Not
reported in mice

/

Primary hyperoxaluria
type 1 (PH1)

Agxt/KO CRISPR-Cas9 Zheng et al., 2020 Agxt/KO rat model better recapitulate the disease
than the Agxt/KO mice

/

Agxt/KI
mutation
D205N

CRISPR-Cas9 Zheng et al., 2018 Agxt/KI mutation D205N model recapitulates the
disease in rats
Not reported in mice

/

Familial
hypercholesterolemia

Ldlr-ApoE/DKO CRISPR-Cas9
and
CRISPR-Cpf1

Zhao et al., 2018;
Lee J. G. et al.,
2019

Double Ldlr-ApoE/DKO rats better recapitulate the
pathology than do double Ldlr-ApoE/DKO mice

/

Dwarfism Ghsr/Tg
Ghsr/KO

DNA
microinjection
ENU
mutagenesis

Flavell et al., 1996
Shuto et al., 2002

Dwarfism in rats as in GshR/KO mice
Analysis of the role of GSHR in behavioral
pathologies including eating disorders

RGD #12910127
RGD #1642278
(PhysGen)
RRRC#421RRRC
#405

Ghsr/KO CRISPR-Cas9 Zallar et al., 2019 RRRC#827

Hyaline fibromatosis
syndrome

Antxr2/KO CRISPR-Cas9 Liu X. et al., 2017 Antxr2/KO rats and mice show similar phenotype
Antxr2/KO rats did not develop hypertension

/

Obesity (OBESITY) Mc3R-
Mc4R/DKO

CRISPR-Cas9 You et al., 2016 Double Mc3R-Mc4R/DKO rats better recapitulate
the pathology than do double Mc3R-Mc4R/DKO
mice

RGD #13825199
(Mc4R KO)
(Hubrecht
Laboratory,
Centre for
Biomedical
Genetics, 3584
CT Utrecht, The
Netherlands.
Hera Biolabs,
Taconic.)

Congenital
hyperinsulinism

Sur1/KO TALEN Zhou et al., 2019 Sur1/KO rats and mice reproduce the disease Rats
showed a particular glucose control profile

/

Fumarase deficiency Fh/KO TALEN Yu et al., 2019 Fh/KO rats and mice show similar phenotype and
reproduce the disease

RGD #13792795
#13792794 (not
available)

Fabry disease Gla/KO CRISPR-Cas9 Miller et al., 2018 Gla/KO rats better recapitulate the pathology than
do Gla/KO mice

RGD #10054398

Oculocutaneous
albinism type 1

Tyr/KO TALEN Mashimo et al.,
2013

Tyr/KO rats and mice show similar phenotype and
reproduce the disease

NBRP Rat #0666

Wolfram syndrome Wfs1/KO ZFN Plaas et al., 2017 Wfs1/KO rats better recapitulate the pathology than
Wfs1/KO mice

/

Nephrology Focal segmental
glomerulosclerosis 2
(FSGS2)

Trpc6/KO
BigDel

CRISPR-Cas9 Kim E. Y. et al.,
2018

Trpc6/KO rats and mice were protected from
FSGS2

RGD #11553908
#11553912
#11553902

(Continued)
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TABLE 7 | Continued

System/organ
affected

Human genetic
disease

Gene/genetic
modification

Genomic tool
used

References Rats vs. mice Depository or
breeder
company ID

C3 glomerulopathy C3/KO
C3/KO

ZFN
CRISPR-Cas9

Negishi et al., 2018)
Xu et al., 2018

C3/KO rats and mice display a similar phenotype
Most mouse strains have a defective complement
system downstream of C3

/
RGD #19165133

REN-related kidney
disease

Ren/KO ZFN Moreno et al., 2011 Rats like humans have 1 copy of the Ren gene
whereas mice have 2 copies
Rats faithfully recapitulate the disease

RGD #4139880
(PhysGen)

Ophthalmology Autosomal dominant
congenital stationary
night blindness and
retinitis pigmentosa

Rho s334ter/Tg DNA
microinjection

Liu et al., 1999 This is a unique widely used model of this disease

Retinitis pigmentosa
85 (RP85)

Ahr/KO ZFN Harrill et al., 2013 Ahr/KO rats and mice showed distinct phenotypes
in the eye, liver and kidneys during normal
development and toxic responses

Cf Table 6

Autosomal dominant
congenital stationary
night blindness

Pde6b/KO CRISPR-Cpf1 Yeo et al., 2019 Pde6b /KO rats and mice reproduce the disease
Slower progression and larger anatomic
architecture in rats are advantages versus the
mouse model

/

Familial exudative
vitreoretinopathy

Lrp5/KO CRISPR-Cas9 Ubels et al., 2020 Lrp5/KO rats show retinal and bone abnormalities
Similar phenotype inLrp5/KO mice

/

Cancer Li-Fraumeni
syndrome

Tp53 ES ZFN McCoy et al., 2013 Tp53/KO rats developed more diverse tumors and
more frequently than Tp53/KO mice

RGD #12904897
(Horizon
Discovery) RGD
#11553886NBRP
Rat #0726 RRRC
#00485 (ES)

Immune and
hematological
systems

Von Willebrand
disease

Vwf/KO BigDel CRISPR-Cas9 Garcia et al., 2020 Vwf/KO rats and mice display a similar phenotype RGD #18182946
#39128242
#18182944

Hemophilia A F8/KO ZFN Nielsen et al., 2014 F8/KO rats and mice show similar phenotype RGD #11531094
(Novo Nordisk,
Maaloev,
Denmark)

F8/KO (gene
inversion)

CRISPR-Cas9 Shi et al., 2020 RGD #13800746

ALSP Csf1r/KO ES cells Pridans et al., 2018 Csf1r/KO rats showed a more severe phenotype
than patients and Csf1r/KO mice an even stronger
one

/

SCID Rag1/KO Meganucleases
and
CRISPR-Cas9

Tsuchida et al.,
2014; Zschemisch
et al., 2012;
Ménoret et al.,
2013

Rag1/KO rats and mice show similar phenotype Cf Table 6

Rag2/KO CRISPR-Cas9 Liu Q. et al., 2017;
Noto et al., 2018

Rag2/KO rats and mice show similar phenotype Cf Table 6

Prkdc/KO CRISPR-Cas9 Mashimo et al.,
2012; Ma et al.,
2014a

Prkdc/KO rats and mice show similar phenotype Cf Table 6

X-linked SCID Il2Rg/KO ZFN, TALEN
and
CRISPR-Cas9

Mashimo et al.,
2012; Samata
et al., 2015; Kuijk
et al., 2016;
Ménoret et al.,
2018

Il2rg/KO rats and mice show similar phenotype Cf Table 6

APECED Aire/KO TALEN Ossart et al., 2018 Aire/KO rats showed a more pronounced
phenotype than Aire/KO mice

Cf Table 6

Agammaglobulinemia
non-Bruton type

Ighm/KO TALEN
CRISPR-Cas9

Ménoret et al.,
2010; Panzer et al.,
2018

Ighm/KO rats and mice show similar phenotype Cf Table 6
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tools can be used and combined, in particular for genetic lineage
tracing (Liu K. et al., 2020).

Models to Study Genes of the Immune
System
In general terms, rats share more immune characteristics
with humans than mice do (Wildner, 2019). As an example,
complement levels in humans and rats are comparable (Ong
and Mattes, 1989; Ménoret et al., 2020), whereas in most inbred
mouse strains, they are undetectable or very low because of
different genetic mutations (Ong and Mattes, 1989; Wetsel et al.,
1990; Shultz et al., 1995).

The roles of genes identified in different immune
pathophysiological processes, as well as others involved in
normal immune responses, also have been analyzed and are
listed in Table 6. For the sake of space and relevance of the rat
model, only some of these generated genetically modified models
are described in more detail below.

Immunodeficient Rat Strains
KO of genes involved in early rearrangements of
immunoglobulin in B cells and of the T cell receptor genes
in T cells, such as Rag1 (Zschemisch et al., 2012; Ménoret et al.,
2013; Tsuchida et al., 2014), Rag2 (Kuijk et al., 2016; Liu Q.
et al., 2017; Noto et al., 2018), and Prkdc (Mashimo et al., 2012;
Ma et al., 2014a; Beldick et al., 2018) have resulted in defective
development of B and T cells (Tables 6, 7). KO of the gamma
chain receptor of the IL-2 receptor (Il2rg) results in defects of
differentiation of T, B, natural killer (NK), and innate lymphoid
cells (Mashimo et al., 2010; Samata et al., 2015; Kuijk et al., 2016).
Additionally, rat lines combining several genetic modifications,
such as with the Rag1, Rag2, Il2rg, Prkdc, and Foxn1 genes, have
been developed (Mashimo et al., 2012; Goto et al., 2016; Ménoret
et al., 2018; He et al., 2019). Transgenic rats for human SIRPa to
inhibit phagocytosis in human cells have been described in recent
years (Goto et al., 2016; Jung et al., 2016; Yang X. et al., 2018;
Ménoret et al., 2020). These rats have been used in humanization
of their immune system and/or other tissues in transplantation
and regenerative medicine settings (for a review, see Adigbli
et al., 2020) and in cancer research (He et al., 2019). In these
models as in others, the larger size of the rat allows to do analysis
of human cells of the blood more frequently than in mice.
Furthermore, the normal complement levels in rats allow to
analyze the effector function of different anti-human antibodies,
not possible to do in mice (Ménoret et al., 2020). Other genetic
modifications to improve immune or liver humanization that
have been developed in mice, will probably also be applied to the
present generation of immunodeficient rats (Adigbli et al., 2020).

B cell–deficient rats have been described (Ménoret et al.,
2010; Panzer et al., 2018) and used in organ transplantation
models, and the rat may better recapitulate lesions mediated by
complement activation through antibodies in the transplantation
setting (Platt and Cascalho, 2018). One of these B cell–deficient
strains (Ménoret et al., 2010) was obtained by disrupting the
J sequence of the immunoglobulin heavy chain and further
rendered deficient for both immunoglobulin light chains (Osborn
et al., 2013). With the objective of generating fully human

monoclonal antibodies (mAbs), these immunoglobulin-deficient
rats were humanized for immunoglobulins by transgenesis using
BACs (Osborn et al., 2013). These animals can generate human
mAbs with diversity and affinity (Osborn et al., 2013) and
different versions of these animals have been generated (Harris
et al., 2018; Clarke et al., 2019).

Inactivation of the C3 complement gene has allowed
confirmation of a new role for complement in a model of
polyneuropathy following chemotherapy. As stated earlier, the
fact that complement levels in humans and rats are comparable
(Ong and Mattes, 1989; Ménoret et al., 2020), makes the rat a
model of choice for exploring the role of complement in different
pathological situations (Xu et al., 2018).

Cluster of Differentiation (CD) or Other Cell
Membrane Molecules
In model of neuromyelitis optica induced by passive
administration of human IgG autoantibodies targeting
aquaporin-4, rats deficient in the cell membrane inhibitor of
complement activation CD59 showed a much more pronounced
neurological pathology than CD59 KO mice (Yao and Verkman,
2017a,b). This model emphasizes the role of complement in this
pathology and the availability of a more relevant model of the
disease than mice.

CLEC-1 is a cell membrane receptor expressed by dendritic
cells (DCs) that reduces immune responses and plays a role in
immune tolerance models (Thebault et al., 2009). CLEC-1 KO
rats show enhanced Il12p40 subunit mRNA expression in DCs
and an exacerbation of downstream in vitro and in vivo CD4+
Th1 and Th17 responses (Lopez Robles et al., 2017).

Human and rat (Maruoka et al., 2004) but not mouse cells
express the Fc receptor for IgA (FcaRI, CD89; mice bear only
a FcarI pseudogene) (Launay et al., 2000). CD89 KO rats have
been generated and have provided interesting new information
on a model of IgA-induced nephropathy a frequent pathology in
humans (submitted).

Similarly, human and rat DCs display quite similar profiles of
Toll-like receptor (TLR) expression in different DC subsets,
allowing to better explore their role in infectious and
inflammatory diseases. DCs from both species express the
TLR10, whereas mouse DC subsets do not show a particular
profile of TLR expression and TLR10 is not expressed (mice bear
only a Tlr10 pseudogene) (Hubert et al., 2006). Rats deficient
for TLR10 have been generated and are being characterized
(in preparation).

A human CD4/CCR5 transgenic rat model (Keppler et al.,
2002) has been extensively used to analyze different aspects
of HIV infection and treatment with more relevant results as
compared to mice with similar transgenes (Goffinet et al., 2007).

In humans, HLA-B27 is strongly associated with a series
of inflammatory diseases grouped together under the term
“spondyloarthropathies.” In contrast to the negative results in
transgenic mice, transgenic HLA-B27 rats spontaneously develop
inflammatory disease in the same organs as those involved in
humans (Hammer et al., 1990). This model has been extensively
used and is the model of choice in this pathology (for a review,
see Braem and Lories, 2012).
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Cytokines and Their Receptors
Il22bp KO rats show that IL22-binding protein is protective in
models of inflammatory colitis (Martin et al., 2016) and psoriasis
(Martin et al., 2017). Il22bp-GFP KI rats have facilitated precise
definition of cell subsets that express IL22bp by different subsets
of DCs in different tissues (submitted).

Viral infections can trigger autoimmune diabetes in rats and
type I IFN α/β receptor (IFNAR1) KO rats have a significantly
delayed onset and frequency of diabetes. These findings support
the idea that innate immunity influences autoimmune diabetes
and encourage the use of targeted strategies to inhibit type I IFN
α/β (Qaisar et al., 2017).

NK cells could play a role in placenta generation, and
IL-15 KO rats showed an absence of NK cells and several
abnormal placental characteristics, supporting a role for NK cells
(Renaud et al., 2017).

A Csf1r reporter gene (Irvine et al., 2020) and Csf1r KO
(Pridans et al., 2018) lines are useful tools for the analysis of
macrophages and of CSF1R biology (Hume et al., 2020). CSF1R
is also the receptor for IL-34, and Il34-mutated rats exhibit
depletion of microglia and Langerhans cells, as well as defects in
tolerogenic immune responses (submitted).

Intracellular Molecules
Certain molecules that regulate metabolic functions in many
cell types, including in immune cells, have been analyzed using
genetically modified rats. Transgenic rats for heme oxygenase-
1 (HO-1) under the control of the ubiquitous H-2Kb promoter
(Braudeau et al., 2003) and HO-1 KO rats (Atsaves et al., 2017)
have facilitated dissection of different aspects of HO-1 effects,
particularly in kidney, where the lesions observed in rats differ
from those in mice.

The hydrocarbon receptor (AHR) is a transcription factor with
an essential role in mediating toxic responses to environmental
pollutants and in regulating many cellular pathways involving
endogenous ligands. In Ahr KO rats, the percentages of T CD3+,
T CD8+, and CD11c+ cells in the spleen and the activation of
T cells are decreased, whereas the percentage of NK T cells and
the activation of B cells is increased compared to wild-type rats
(Phadnis-Moghe et al., 2016).

The lymphopenia observed in diabetic biobreeding rats
results from a spontaneous mutation in the immune-associated
nucleotide gene 5 (Ian5), a protein expressed in the mitochondria
membrane where it regulates apoptosis. Lymphocyte numbers
are normalized when a normal Ian5 gene is transgenically
expressed (Michalkiewicz et al., 2004).

Some of the most commonly used immune system models
developed in rats are based on intrinsic characteristics of the
species. For example, the rat has always been an important model
of autoimmune arthritis (Holmdahl et al., 2001) and HLA-B27
transgenic rats recapitulate spondyloarthropathies much better
than do HLA-B27 transgenic mice.

Certain immune reagents, such as antibodies recognizing
leukocyte differentiation antigens, are less abundant in rats than
in mice but more so than in other experimental species. High-
density flow cytometry techniques have not yet been applied
in the analysis of the rat immune system and will clearly

be of great interest when coupled with modification of rat
immune system genes.

Genetic Diseases Models
For 150 years, spontaneous or induced (ENU) genetic mutations
in the rat have been used as models of human genetic diseases.
For a decade, the advent of genetic engineering tools such as
ZFN, TALEN, and CRISPR-Cas have led to a real revolution in
obtaining specific and targeted genetic mutations in rats for the
study of human genetic diseases. These advances, coupled with
historical knowledge and use of the rat in many research fields,
have increased the generation of rat models of human genetic
diseases. More than 6000 genetic diseases have been described,
and several databases have recorded variants that are associated
with or responsible for genetic diseases. Several important genetic
diseases have been modeled in rats. A complete list is presented
in Table 7, and a brief description of the most useful models
is provided below.

Cardiovascular Diseases (CVD)
Because of its larger size allowing catheterization, lower cardiac
frequency versus mice, and historical use in CVD, the rat has
been an important model for a series of genetically modified
rat models of CVD.

Pulmonary arterial hypertension (PAH) results from a
reshaping and thickening of the walls of medium and small
caliber pulmonary vessels. By their frequencies and effects, the
mutations in the BMPR2 gene are the main variants responsible
for inheritable forms of isolated PAH. Bmpr2 KO rats show
some of the critical clinical, cellular, and molecular dysfunctions
described in human PAH both in the heart and vessels (Ranchoux
et al., 2015; Hautefort et al., 2019; Manaud et al., 2020).
Although rarer, mutations in the KCNK3 gene encoding a
potassium channel have also been described as causative in
PAH. Kcnk3 KO rats develop age-dependent PAH associated
with characteristic electrophysiological and molecular alterations
in the myocardium and vessels (Lambert et al., 2019). Because
the Kcnk3 gene is not functional in mice, this rat model offers
new insights into the mechanisms of PAH and in the testing
of therapeutics.

To investigate the role of the MYL4 gene in atrial
cardiomyopathy, Myl4-KO or mutated rats have been generated.
Both show a phenotype similar to affected patients and are new
models for further mechanistic analysis (Peng et al., 2017).

Danon disease (DD) is a metabolic disease caused by
mutations in the LAMP2 gene, and the most common symptom
is cardiomyopathy. Recently generated Lamp2 KO rats show
similarities to DD patients at the heart tissue level and with
multisystem lesions, constituting an important new animal
model of DD (Ma S. et al., 2018).

Neurological Diseases
In neurobiology and cognitive studies, the rat, because of its
larger size and more complex and richer behavior, is preferred
as a rodent model. Genetically modified rats have provided
several important models for neurological disorders with a
genetic component.
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Mutations in complexin-1 (CPLX1) gene lead to epileptic
encephalopathy with onset on infancy. Cplx1 KO rats have
different phenotypes from mice. Both show profound ataxia, but
in rats, behavior is more affected, and they have more abnormal
histomorphology of the stomach and intestine, resulting in early
death (Xu et al., 2020).

A nonsense mutation in the Cockayne syndrome B gene,
Ercc6, more profoundly affects the rat brain than the mouse KO
for the same gene (Xu et al., 2019). In these rats, RNA-seq analysis
has revealed transcription dysregulation that contributes to the
neurologic disease.

Neonatal hydrocephalus has been analyzed using two different
models of mutated rats, one with an invalidation of the
L1cam gene (Emmert et al., 2019b) and the other with a KI
of a specific mutation in the Ccdc39 gene (Emmert et al.,
2019a). These models allow for neurosurgery procedures that
are difficult to perform in mice, with resulting characterization
of the lymphatic-mediated cerebrospinal fluid circulation and
inflammation in this disease.

As a model for familial amyotrophic lateral sclerosis, rats
with a FUS point mutation KI via CRISPR-Cas9 express
a physiological level of this mutant, along with cognitive
impairment and neuromuscular signs. In this rat model, FUS KI
highlighted sleep–wake and circadian disturbances as early alarm
signals (Zhang T. et al., 2018).

Neurofibromatosis type 1 is an autosomal dominant disease
arising from mutations in the NF1 gene that results in the
development of tumors in the nervous system, neurological
disorders and chronic idiopathic pain (Dischinger et al.,
2018). Nf1 KO rats show increased nociceptor excitability and
hyperalgesia. These models are important in the search for
a potential key target (CRMP2) for therapeutic intervention
(Moutal et al., 2017).

RNASET2 deficiency in humans is associated with cystic
leukoencephalopathy. RnaseT2 KO rats are the only rodent
model of this disease. Despite a less severe neurodegeneration
phenotype than in patients, this model is useful for
studying RNASET2 function, especially for hippocampal
neuroinflammation (Sinkevicius et al., 2018).

A group of neurodevelopmental diseases, gathered under the
name of autism spectrum disorders (ASDs), are characterized
by heterogeneous capabilities in social interactions and by
stereotyped behaviors. One subtype of ASD is associated
with mutations in the MECP2 gene, causing an X-linked
neurodevelopmental disorder named Rett syndrome. Mecp2 KO
rats clearly show both motor and behavioral deficits early in
development, more pronounced than in mice (Patterson et al.,
2016). Another subtype of ASD is ASD/Fragile X syndrome.
Two KO rat models have been generated for this condition, one
syndromic (Fmr1) and one non-syndromic (Ngln3) (Hamilton
et al., 2014). These KO rats show some ASD-relevant phenotypes
for investigations at the genetic level. Phelan–McDermid
syndrome is another ASD-associated condition, caused by
mutations in the SHANK3 gene. In contrast to Shank3 KO mice,
Shank3 KO rats showed normal social interaction but impaired
social memory (Harony-Nicolas et al., 2017; Song et al., 2019).
Similarly, Shank2 KO rats better recapitulate the condition than
the KO mice (Modi et al., 2018). Angelman syndrome results

from mutations in the UBE3A gene, which in most cases is a
large gene deletion, and in a small fraction with mutations in
exon 2. The Ube3A mouse model bears a null mutation of exon
2, whereas the rat model is closer to the human condition with a
large deletion of the Ube3a gene. The rat model mimics human
Angelman syndrome with abnormalities in motor coordination
and cognitive function (Dodge et al., 2020).

Muscular Diseases
Myopathies are a set of neuromuscular diseases, the most
common of which is Duchenne’s muscular dystrophy (1
in 3300 newborn babies) resulting from mutations in the
dystrophin gene (DMD). As in humans, Dmd KO rats show
decreased muscle strength as well as a degradation/regeneration
phenotype in skeletal muscles, heart, and diaphragm (Larcher
et al., 2014; Nakamura et al., 2014). Of note, Dmd KO
rats but not mice present cardiovascular alterations close to
those observed in humans, which are the main cause of
death in patients. All of these clinical signs and pathological
features are much more pronounced than in Dmd KO
mice. Rats are becoming an increasingly used model for
the study of different aspects of Duchenne’s and Becker’s
myopathies, including biomarkers, neurological abnormalities,
and immune/inflammatory responses (Robertson et al., 2017;
Ouisse et al., 2019; Caudal et al., 2020; Szabó et al., 2021).

Pulmonary Diseases
Cystic fibrosis is one of the most common genetic diseases in
western populations (approximately 1 in 4000 newborns) and
is caused by mutations in the CFTR gene. The most common
mutation in humans is the missense mutation DF508, which leads
to abnormal CFTR function and mucus accumulation. Cystic
fibrosis is characterized by airway and digestive pathology with
a reduced life expectancy. Mice do not have submucosal glands,
in contrast to humans and rats. Rats with the DF508 mutation
(Dreano et al., 2019), as well as with a complete KO for Cftr,
have been generated (Tuggle et al., 2014; Dreano et al., 2019).
Cftr KO rats showed a very severe digestive phenotype and
lung lesions in surviving older animals, and reduced weight and
life expectancy, although milder in DF508 rats. Very recently,
a humanized model of cystic fibrosis was created by inserting
the human CFTR cDNA sequence harboring a G551D mutation
by KI into the rat genome, downstream of the endogenous Cftr
promoter (Birket et al., 2020).

Metabolic Diseases
To study disorders of metabolism, leptin, a cytokine-like
hormone principally produced by white adipose tissues, was
deleted in rats. Microarray analysis has been performed in Lep
KO rats to evaluate alterations in white adipose gene expression
and to explore pathways involved in metabolic diseases with
leptin deficiency (Guan et al., 2017). The leptin receptor (Lepr)
has also been deleted in rats, and these animals show hyperphagia,
obesity, hyperglycemia, and dyslipidemia. This model could
complement the existing models (db/db mice and Zucker rats)
and be useful for research in obesity and diabetes (Bao et al., 2015;
Chen Y. et al., 2017).

Hereditary aceruloplasminemia is a genetic disease
characterized by progressive iron overload (liver and brain)
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and is related to mutations in the ceruloplasmin (CP) gene. In
contrast to Cp KO mice, Cp KO rats mimic the human phenotype
with hepatosplenic iron load and could be more appropriate
for providing information to understand and treat the disease
(Kenawi et al., 2019).

Abnormal calcification and phosphate deposition are the
basis of generalized arterial calcification of infancy and
pseudoxanthoma elasticum, both caused by mutations in the
ABCC6 gene. These mutations lead to generalized arterial
calcification through the body in infancy. Because ABCC6 is
expressed in liver and kidney, an important question is the
respective role of these organs in the generalized disease. Given
their small size, mice KO for Abcc6 are not suitable for ex vivo
perfusion experiments. Ex vivo perfusion of liver and kidneys
from Abcc6 KO rats has revealed that the liver is the primary
site of molecular pathology in these process and points to a
preferential target of the liver to treat them (Li et al., 2017).

The low-density lipoprotein receptor (LDLR) and
apolipoprotein E (APOE) genes control normal levels of
cholesterol and other forms of fat in the blood. A deficiency
in LDLR is the cause of familial hypercholesterolemia and a
deficiency in APOE is involved in several age-related fatty acid
diseases. Recently, two reports (Zhao et al., 2018; Lee J. G. et al.,
2019) described double-KO for Ldlr and Apoe genes in rats.
These rats mimic more closely than KO mice the pathological
changes observed in hyperlipidemia and atherosclerosis in
humans with genetic deficiencies and in normal individuals.

Melanocortin-3 and -4 receptors (MC3R and MC4R) regulate
energy and body weight. Mc3R-Mc4R double-KO rats exhibit
worse phenotypic features than single-KO rats and Mc3R-Mc4R
double-KO mice (You et al., 2016).

Fabry disease is an X-linked lysosomal storage disease
caused by α-galactosidase A (α-Gal A) deficiency resulting from
mutations in the GLA gene. α-Gal A KO mouse models do not
recapitulate the cardiorenal findings observed in humans and Gla
KO rats more closely mimic the disease phenotypes observed in
patients (Miller et al., 2018).

Wolfram syndrome (WS) is a genetic disorder caused by
mutations in the WFS1 gene. Previous mouse models of WS
involved only partial diabetes and other symptoms of the disease,
whereas Wfs1 KO rats developed diabetes as well as neuronal
degeneration, as do patients (Plaas et al., 2017).

Kidney Diseases
Renin (REN) mutations are involved in REN-related kidney
disease and tubular dysgenesis. The role of RAS in the
regulation of blood pressure and kidney function has
been extensively analyzed in rats (Jacob, 2010), including
the generation of one of the first transgenic rat models
(Mullins et al., 1990). Although humans and rats have
only one copy of the renin gene, mice have two genes
and thus increased renin expression levels (10-fold higher
than their one-copy counterparts) (Hansen et al., 2004).
Ren KO rats have lower blood pressure and severe kidney
underdevelopment, reproducing the kidney lesions observed
in REN-related kidney disease and tubular dysgenesis
(Moreno et al., 2011).

Ophthalmology Diseases
Retinitis pigmentosa (RP) is a group of inherited mutations
causing photoreceptor degeneration, loss of night vision, and
blindness. Rhodopsin mutations comprise an important fraction
of autosomal dominant RP. Transgenic rats harboring the Rho
s334ter mutation are a widely used model for this pathology
(Liu et al., 1999).

As noted, AHR is a ligand-activated transcription factor
involved in the development of multiple tissues and activated by
a large number of exogenous toxic compounds and endogenous
ligands, such as kynurenines. Ahr KO rats and mice show
ophthalmologic lesions as well as different renal and hepatic
developmental and homeostatic lesions (Harrill et al., 2013).

Cancer
The tumor suppressor TP53 is a central player in cancer biology,
and mutations in the TP53 gene are the most frequent mutations
observed in human cancers. Tp53 KO rats develop a wide variety
of tumors, most frequently sarcomas, which are rarely observed
in mice. These rats have been used in carcinogenicity assays for
drug development (McCoy et al., 2013).

Immune and Hematological Systems
For hemophilia A, FvIII KO rats have no detectable FVIII activity,
and their activated thromboplastin time and clotting time
are significantly prolonged. Episodes of spontaneous bleeding
requiring treatments were observed in 70% of the FvIII KO rats
(Nielsen et al., 2014; Shi et al., 2020). In the rat genome, it is
interesting to note that the F8 gene is situated on chromosome
18, rather than the X chromosome as in humans, mice, dogs, and
sheep (Lozier and Nichols, 2013).

Monocyte colony-stimulating factor (CSF-1) is, along with IL-
34, a regulator of macrophages and myeloid DC development,
acting through the CSF-1R (Ma et al., 2012). Humans with point
mutations or less frequently deficiency for CSF-1R develop adult-
onset leukoencephalopathy with axonal spheroids and pigmented
glia, likely because of a decrease in the number of microglia
(Hume et al., 2020). Csf1r KO rats (Pridans et al., 2018) develop
some or all of the symptoms and lesions of the disease, but with
greater severity and more bone lesions than in humans, whereas
Csf1r KO mouse models show an even more severe phenotype
(Hume et al., 2020).

AIRE plays a key role in central tolerance by regulating the
expression of peripheral tissue antigens in epithelial cells of the
thymus and by eliminating autoreactive T cells. Patients with
the autoimmune polyendocrinopathy-candidiasis-ectodermal-
dystrophy syndrome have genetic defects in AIRE. Aire KO rats
show signs of generalized autoimmunity and clinical signs of
disease that are much more pronounced than in Aire KO mice
and closer to manifestations in humans (Ossart et al., 2018).

CONCLUSION AND PERSPECTIVES

CRISPR-Cas system is now the tool of choice for genome editing,
particularly for the rat for which ES cells are limited compared to
the mouse. In the last decade, efforts have been made to improve
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this tool and its delivery but two main hurdles persist. Some loci
are still difficult or impossible to edit, and the efficiency of large
or complex KI is still too low. Although many advances have been
developed in the application of the CRISPR-Cas system to human
cells and sometimes in mice, many remain to be applied in rat
model generation.

Rats often proved to be better mimics of human situation
than mice. It is particularly evident in CVD, neurobiology,
ophthalmology, muscular diseases, and immunology, but few of
the large number of genetic diseases in these or other organ
systems have been modeled in rats. It is difficult to predict
when the rat will be better than the mouse, nevertheless, it
seems reasonable to try to generate new genetically modified
rats in these areas. Moreover, to the best of our knowledge
and among the models that can be compared, there are no
mouse genetic or immune models that better reproduce human
disease than rat. Future work using the CRISPR-Cas system will
likely generate new rat models of genetic diseases and to study
genes functions. Extensive work in QTLs associated with major
polygenic diseases has been performed in rats (Gauguier, 2016;
Shimoyama et al., 2017). Within these QTLs, the genes that could
be responsible for a given disease will likely be targets of choice in
future studies.

Other genes that would be logical to target in rats are
those that are absent in mice and present in humans, given
that 78 out of the 2544 Mb of the rat genome is common
between humans and rats but not humans and mice (Gibbs
et al., 2004). Examples within the immune system include Tlr10
and Cd89.

A limitation of rats versus mice that cannot be resolved
is also one of its advantages: its bigger size, which brings
higher breeding costs.

The rat will continue to be a critical experimental model based
on its bigger size and its inherent physiological characteristics,
as well as a large and growing body of physiology and genomic
data. Tools for modifying the rat genome as well as analyzing
the genome are key to the development of new models for
understanding biology and diseases.
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