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Abstract: Spring mounds on Earth and on Mars could represent optimal niches of life 

development. If life ever occurred on Mars, ancient spring deposits would be excellent 

localities to search for morphological or chemical remnants of an ancient biosphere. In this 

work, we investigate models of formation and activity of well-exposed spring mounds in the 

Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We then use these models 

to explore possible spring mound formation on Mars. In the MCSH system, the genesis of 

the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics 

and/or hydraulics. As they are oriented preferentially along faults, they can be considered as 

fault spring mounds, implying a tectonic influence in their formation process. However,  

the hydraulic pressure generated by the convergence of aquifers towards the surface of the 

system also allows consideration of an origin as artesian spring mounds. In the case of the 
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MCSH system, our geologic data presented here show that both models are valid, and we 

propose a combined hydro-tectonic model as the likely formation mechanism of 

artesian-fault spring mounds. During their evolution from the embryonic (early) to the islet 

(“island”) stages, spring mounds are also shaped by eolian accumulations and induration 

processes. Similarly, spring mounds have been suggested to be relatively common in certain 

provinces on the Martian surface, but their mode of formation is still a matter of debate. We 

propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the 

spring mounds at MCSH could be relevant as Martian analogs because: (i) the Martian 

subsurface may be over pressured, potentially expelling mineral-enriched waters as spring 

mounds on the surface; (ii) the Martian subsurface may be fractured, causing alignment of 

the spring mounds in preferential orientations; and (iii) indurated eolian sedimentation and 

erosional remnants are common features on Mars. The spring mounds further bear 

diagnostic mineralogic and magnetic properties, in comparison with their immediate 

surroundings. Consequently, remote sensing techniques can be very useful to identify 

similar spring mounds on Mars. The mechanisms (tectonic and/or hydraulic) of formation 

and evolution of spring mounds at the MCSH system are suitable for the proliferation and 

protection of life respectively. Similarly, life or its resulting biomarkers on Mars may have 

been protected or preserved under the spring mounds. 

Keywords: Mechertate-Chrita-Sidi El Hani system; Mars habitability; terrestrial analogs; 

groundwater upwelling; seepage; tectonic model; hydraulic model; fault spring mounds; 

artesian spring mounds 

 

1. Introduction  

Terrestrial analogs to Mars are the subject of great attention due to the similar geological histories of 

the two planets [1–3] and due to the intense exploration of Mars that has occurred over the last  

decade [4]. This similarity may be extended from the simple analogy between geomorphologic features 

on the two planets to the identification of identical formation models and geological processes. The 

Martian subsurface could be more dynamic, geologically active, and having more hospitable conditions 

for life than its surface [5]. However, the direct study of the deeper Mars subsurface is currently out of 

reach due to major technical and financial challenges. Accordingly, indirect studies of the Martian 

subsurface through comparison with analog terrestrial sites are the only feasible alternative today.  

Worldwide, a number of sites have been studied for their application to understand geological and 

potential biological processes on Mars (e.g., [6–8]). To name but a few, the Channeled Scablands  

(e.g., [9,10]), central Australia (e.g., [11]), Sahara Desert (e.g., [12,13]), Tunisia (e.g., [14–17]),  

the Dead Sea (e.g., [18]), and the Arctic and Antarctica [2,19,20] are sites sharing similarities with Mars. 

Analogies of these terrestrial lands to Mars have been proposed from several viewpoints, including 

sedimentological (e.g., [21–27]), geochemical [22,23,28], mineralogical (e.g., [29,30]), hydrogeological 

(e.g., [25,30–35]) and biological (e.g., [29,31,36,37]).  
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In the analysis of terrestrial analogs, saline environments in their widest context have received special 

attention. The most general definition of a saline environment encompasses the depressions and the 

surrounding hydrological and hydrogeological watersheds. Depressions include sediment and water, 

showing topographical, geochemical, putative biological, and sedimentological similarities with 

Martian deposits, such as the sebkha sediments of the Burns formation [21,27]. Hydrological watersheds 

include eolian and hydraulic deposits, showing geomorphologic, stratigraphic, and sedimentologic 

similarities with Martian landscapes, such as the eolian sediments of the Burns formation [21,27]. 

Hydrogeological watersheds may converge toward discharge playa surfaces and cause the formation of 

springs and spring mounds (e.g., [35,38–40]). On Mars, an analogous process of convergence of fluids 

could be in the origin of spring mounds (e.g., [35,41–43]), conical features [44], and mud volcanoes 

(e.g., [45]). Occurring on the surface, these features show an exceptional scientific interest, because,  

(i) they extrude subsurface materials to the surface, which are therefore readily accessible for analysis; 

and (ii) subsurface materials would have been more probable ecological niches for the development of 

extremophile organisms [41], as they or their remains could have been protected from the harsh 

conditions that have dominated the surface of Mars during at least the last 3.5 Ga. These mounded spring 

deposits are a unique subset of spring sediments, which develop through the accumulation of suspended 

sediment, peat, eolian material and groundwater precipitates in areas of direct discharge [46]. In the few 

modern environments where they are found, artesian spring mounds are often evaporative systems that 

allow for evaporites (e.g., carbonate) precipitation near active spring vents (e.g., [47,48]). The 

precipitates that result from this evaporative process contribute to the overall development of the mound 

form, while precipitate mineralogy is controlled by groundwater chemistry [49]. 

The apparent similarity between terrestrial analogs and Martian systems likely reflects parallel modes 

of formation and geological processes. Here we argue that the Mechertate-Chrita-Sidi El Hani (MCSH) 

system in eastern Tunisia may be considered as a potential analog to Mars due to the presence of specific 

geologic features on the surface of its depressions, such as spring mounds [35], which appear to be 

similar to those observed on the surface of Mars [41]. The enhancement of spring mounds formation 

within MCSH is still an enigma. On the one hand, previous hydrogeological and geochemical  

works [38–40,50] advocate the hydraulic initiation of these features. On the other hand, more field 

expeditions and tectonic analyses [35] suggest that the tectonic origin is worth to be defended. In this 

paper, after a multi-disciplinary investigation of the terrestrial analog of MCSH, we discuss different 

geological models that may indicate the existence of surface-subsurface connectivity leading to the 

formation of spring mounds in similar terrestrial environments and Martian systems. We will also infer 

the hydraulic and geodynamic conditions at the subsurface of Mars, which are likely favorable  

for life development. 

2. Study Areas  

The word “systema” originated from the Greek means an organized set. Many authors tried to define 

the concept used in different scientific disciplines [51,52]. On Earth, the term “endorheic system” was 

used as the hierarchical combination between endorheic basins [52]. Previous geomorphologic studies 

(e.g., [53,54]) defined the endorheic system of Mechertate-Chrita-Sidi El Hani (MCSH) (Figure 1).  

In addition, Essefi [42] integrated the tectonic settings and the hydrogeological context in the 
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multidisciplinary definition of this system. Similarly, many Martian sites satisfy the conditions of 

surface-subsurface connectivity. To name but a few, Meridiani Planum [55], Gale crater [31], and 

Vernal Crater [25] are zones with at least groundwater influence controlling the sedimentation and 

setting of specific features such as springs and putative spring mounds. In this paper, due to their 

apparent similarity [35], the putative spring mounds [25] at Vernal Crater are compared to the spring 

mounds at the system of Mechertate-Chrita-Sidi El Hani (MCSH).  

Figure 1. Geographical location and topography of the Mechertate-Chrita-Sidi El Hani 

system [53]: the rectangles within depressions of Chrita and Sidi El Hani indicate positions 

of Figures 9 and 10 respectively.  

 

2.1. The System of Mechertate-Chrita-Sidi El Hani (MCSH) 

The system of Mechertate-Chrita-Sidi El Hani (MCSH) consists of three interconnected  

sub-systems: Mechertate, Chrita and Sidi El Hani (Figure 1). The sebkha of Mechertate is located in the 

upstream of the system. Neither satellite images nor field works allowed researchers [38,53] to find 

spring mounds. The Chrita saline lake is located in a mid-way between Mechertate playa and Sidi El 

Hani discharge playa. Satellite images show spring mounds on its surface (Figure 9). The sebkha Sidi El 

Hani may be considered as the terminal area of the system since it collects all the exceeding water and 

sediment. Though it has historically been treated as a single unit (e.g., [56]), the sebkha Sidi El Hani as 

such is actually made up of three communicated playas (Figure 1): from north to south, the playas ofSidi 

El Hani (sensu stricto),Souassi,and Dkhila. The three components of the sebkha Sidi El Hani have 

different orientations. Sidi El Hani (sensu stricto) andDkhila playasare oriented N170; the playa of 

Souassiis orientedN90. These shapes were inherited from the tectonic phases that controlled the genesis 

and formation of saline depressions in eastern Tunisia [56].  
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Hydrologically and hydrogeologically, the Sidi El Hani discharge playa represents the basal part of 

the endorheic system [38–40,53], in which the Kairouan, Souassi and Zarmdine aquifers converge after 

leaching subsurface domes of salt and/or transporting salty water also located in the subsurface of the 

system [38,39,50]. This convergence explains the existence of huge quantities of salt (halite) and brine 

within the discharge playa [38,50,57]. Being the downstream of the system, this discharge playa is rich 

with spring mounds, which were noticed by satellite images and during field works [38,53]. Small islets 

also occur within Chrita and Sidi El Hani depressions (Figure 4b); they radically differ from their 

surroundings. They are covered with a thick layer of eolian sediment and their internal sediment tends to 

be more muddy [38]. They may be originally initiated as spring mounds. Then, the intensive eolian 

sedimentation increases their sizes toward their current forms as distinctive bodies within depressions.  

2.2. Vernal Crater: A Typical Martian Site for Mounds Formation  

Vernal Crater is a 55 km diameter located at 6°N, 355.5°E, in southwestern Arabia Terra. It is one of 

the few equatorial regions on Mars with high abundance of near-surface hydrogen [25]. This abundance 

argued the presence of shallow ice or hydrated minerals [58,59]. Vernal Crater is, a Noachian impact 

structure that exhibits layered sediments, potential remnants of fluvio-lacustrine activity, and 

indications of eolian processes (e.g., [25,41]).  

At Vernal Crater, we focus on the outcrop of putative spring mounds [25]. These features are the 

result of subsurface fluid migration. The outcrop fills at Vernal Crater slopes uniformly from the 

northwest rim down to the level of the springs and provides a potential hydraulic head advocating hence 

the hydraulic origin of spring mounds. Such migration is likely to occur along bedding planes, 

faults/fractures, or porous units in Vernal Crater’s fill. Faults, fractures, and porous carrier beds perhaps 

played a role in the subsurface movement of fluids at Vernal Crater and that flow could be artesian 

and/or thermal.  

3. Methods 

Due to the complexity of the geologic context of the MCSH system [38,53], we have performed a 

multidisciplinary and multi-scale approach. The scale of our study varied from a few meters to a few 

kilometers: correlations between vibrocore drills (drilled for hydrogeologic purposes) and geodynamic 

interpretations stretched over kilometers, while spring mound examinations stretched on the scale of few 

meters. This study consists of tectonic and hydrogeologic investigations of the system as a whole. The 

focus was meant to be on a multi-disciplinary investigation of spring mounds present in the Chrita saline 

lake and the Sidi El Hani discharge playa. Subsequently, collecting the dispersed jigsaw puzzle of 

different approaches, we propose models of spring mound formation and activity in the system  

and on Mars. 

3.1. Tectonic Framework of the MCSH System  

The tectonic study was based on a correlation between the sedimentary contents of two vibrocore 

drills (raw data from the Ministry of Agriculture, Tunisia) obtained from the vicinity of the Sidi El Hani 

discharge playa (Figure 2; DC1: Drills Correlation between D79 and D75). This correlation showed a 
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syn-sedimentary fault at the level of Ouled Chamekh. Similar faults such as the fault of Sidi El Hani 

(Figure 2) might have given birth to spring mounds within the system. This work also combined the 

geodynamic map previously discussed by Ben Ayed and Zargouni [60] and recently modified by 

Zouaghi et al. [61] and the tectonic alignment of islets at the Sidi El Hani discharge playa [35] to show 

the setting of these islets within the geodynamic context of African and Eurasian plates convergence.  

Figure 2. Tectonic map of the Sahel area showing the past tectonic activity of the region: 

relation between extensional and compressional structures and the compressional phase 

originated from Africa and Eurasia plate movement. Mechertate-Chrita-Sidi El Hani: site of 

drills correlation (DC1) (modified and reinterpreted from Ghribi [62]): NW-SE is  

the major tectonic alignment, whereas NE-SW to E-W orientation represents the minor 

tectonic alignment. 

 

3.2. Hydrogeologic Framework of the MCSH System  

For the hydrogeological study, the hydrogeological mapping of the system (Figure 5) was carried out 

based on 50 vibrocore drills within the hydrogeological watershed of the system (raw data from the 

Ministry of Agriculture, Tunisia), four cores within the Chrita saline lake, and 9 cores within the Sidi El 

Hani discharge playa. Combined with the hydrodynamics of the hydrogeological system within the 

Kairouan aquifer-Sidi El Hani discharge playa recently discussed by Essefi [38], this map allowed the 

elaboration of a model relating depressions of the system (Mechertate and Chrita saline lakes and Sidi El 

Hani discharge playa) and the Kairouan aquifer. The model may give an explanation to the springs of 

water and spring mounds in the system.  
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3.3. Spring Mound Investigations 

For the study of the spring mounds senso stricto, we also followed a multi-disciplinary approach  

to understand the mechanism of their formation and activity. This approach encompassed  

tectono-topographic, sedimentological, hydrogeological, mineralogical, and magnetic studies.  

3.3.1. Tectono-Topographic Study: Spring Mound Morphology 

In the tectono-topographic investigation, Google Earth images (2011) (Figure 9) were investigated at 

different scales (132 m, Figure 6a; 267 m, Figure 6b; 79 m, Figure 9c) to identify spring mounds in the 

Chrita saline lake. At the Sidi El Hani discharge playa, spring mounds wffigurere also identified  

(Figure 10) at metric scales (213 m, Figure 7a; 282 m, Figure 7b; and 85 m, Figure 10c). Tectonically, 

alignments of spring mounds along preferential orientations were interpreted to infer the tectonic 

activity within both depressions and to link them with the global geodynamics of the region. 

3.3.2. Spring Mound Sedimentology  

Previous sedimentologic investigations of spring mounds focused on field investigations and the 

study of the descriptive grain size distribution [63]. Field investigations were organized to explore these 

structures on the ground. Spring mounds were photographed and their dimensions were measured by a 

folding rule. For the sedimentological study, we cored within the sedimentary content of these spring 

mounds in order to identify the sedimentary facies along cores and to correlate between different levels. 

Coring is an efficient tool for spring mounds investigation on earth as well as on Mars (e.g., [26]). In this 

study, coring was carried out by the penetration of an empty tube (6.3 cm diameter). Penetration was by 

rotation and slight push on sediment in order to avoid the compression of sediment. In laboratory, the 

tube was divided into two equal halves in order to visualize the sedimentary facies (Figures 12a, 14a, 16a). 

Along all the cores, we used the Visual Core Description (VCD) (e.g., [64]) to identify facies based on 

their colors and visual characteristics. From every spring mound, one core was investigated in terms of 

genetic grain size distribution. Wet process analyses were carried out by the FRITSCH laser grain size 

analyzer. This investigation distinguished between the eolian, the geochemical, and the hydraulic 

sedimentations based on modes of the grain size distribution [54,64–66]. Sun et al. [65] considered the 

fraction centered around 6 μm as fine eolian component and the fraction centered around 60 μm as 

coarse eolian component. Whereas the coarse hydraulic component is centered around 380 μm and the 

fine hydraulic fraction is centered around 1 μm. Based on their cumulative curves, Cailleux and  

Tricart [66] distinguished between 23 types of sedimentation: six estuary and deltaic, seven marine, two 

glacial, three eolian, and five fluvial types. More significance has long been attributed to the shapes of 

the cumulative grain-size curves rather than distribution curves of sediments (e.g., [66,67]). However, in 

the details of their form, grain-size distribution curves are more telling than cumulative curves [68]. The 

shape of the distribution curve displays various “features” (F) characteristic of the dispersed sediment. 

Features are classified according to their frequencies. The primary (M) and secondary (m) modes have 

the highest frequencies. Shoulder-like segments (S) are of a lower strength than the primary and 

secondary modes. Particular features are absent (A) from some samples and unrealized (occluded, O) in 

others. Added to the traditional sand/silt/clay subdivision used in the literature, Manté et al. [69] coined 
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the term colloids as the fraction between 0.063 µm and 1 µm. This fraction is of a geochemical origin. 

Grain-size components of eolian deposits depend on the nature of winds (i.e., high- and low-altitude air 

flows and near-ground winds) and transport distances (long or short distance) [65,70,71]. Based on the 

method of features of Allen and Haslett [68], the descriptive classification of Flemming [72], and the 

three reference cumulative curves of eolian types (their transformation toward frequency curves) 

discussed by Cailleux and Tricart [66], Essefi et al. [54] distinguished between three types of eolian 

sediments. First, the eolian sand could be transported by strong wind. Its most important features are the 

mode at 500 µm and the two shoulders at 250 µm and 1600 µm. Consequently, this eolian sediment is 

classified according to sand/silt/clay diagram of Flemming [72] as sand. Second, the slightly silty eolian 

sand [72] could be transported by a moderate wind. The most important features are the mode at 315 µm 

and the two shoulders at 200 µm and 800 µm. Third, the silty eolian sand [72] could be transported by 

calm wind. The most apparent futures are the mode at 160 µm and the two shoulders at 250 µm and  

1000 µm. To conclude, the fractions centered around 6 and 60 µm [65]; 160, 315, 500 µm [54] mark the 

eolian component. The hydraulic component is marked by the fractions 1 µm and 380 µm [65]. The 

geochemical fraction is marked by colloids, which are smaller than 1 µm [69]. 

3.3.3. Spring Mound Hydrogeology 

For the hydrogeologic study of the spring mounds, aquifer levels encountered during coring allowed 

the elaboration of hydrogeologic maps. The knowledge of water table allows the identification of water 

flows within active and inactive spring mounds. 

3.3.4. Spring Mound Magnetic Properties  

During the last few years, magnetic susceptibility mapping has become in terrestrial geology an 

established method to study the spatial distribution of different soils. It has been used for investigations 

around power plants [73,74], iron industry and mining areas [75–78], urban environments [78] and  

roads [79]. It has also proved to be useful for studying the influence of atmospheric processes on 

distribution and deposition of air pollutants [80,81] and for discriminating different soil-contamination 

sources [82]. The laboratory experiment results [83] showed a variation of measured magnetic 

susceptibility under different degrees of moisture, indicating mainly the influence from the diamagnetic 

contribution of the water volume. The magnetic susceptibility could be used to identify areas of 

deposition or detachment. The magnetic susceptibility would be increased or reduced depending on 

whether deposition or detachment occurs [84]. To distinguish the sedimentary content of these spring 

mounds from their surroundings, magnetic properties of sediment of a spring mound surface  

(Figure 16b; MS11, MS12, MS13, MS14) and its surrounding (Figure 16b; MS21, MS22, MS23, MS24) 

in the Sidi El Hani discharge playa were investigated. The low and high frequency magnetic 

susceptibility (MS) were measured by the Bartington MS2B probe in the laboratory of Sedimentary 

Dynamics and Environment, National engineering School of Sfax, at frequencies of 0.47 kHz and  

4.7 kHz. Samples were packed into 10 cm3 cylindrical perspex pots for MS analysis. The results were 

expressed as mass susceptibility XLF and XHF, and the corresponding frequency-dependent susceptibility 

was calculated as difference percentage: XFD = XLF − XHF/XLF × 100%. 
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3.3.5. Spring Mound Mineralogy  

Because all minerals diffract X-rays in a distinguishable pattern, scientists use the information from 

X-ray diffraction to identify the crystalline structure of materials on earth (e.g., [85–87] and on Mars 

(e.g., The Chemistry and Mineralogy instrument (CheMin) on Curiosity). Analogically to our 

investigations in ancient (rich with organic matter) [87] and relatively recent (with groundwater 

influence) [85] terrestrial sites, using CheMin, scientists will be able to further study the role of water in 

Martian mineralogy and the potential organo-mineral complex originating from primitive life on Mars. 

In addition, combined with magnetic investigation [88], the study of Martian mineralogy may explain 

the link between the self magnetization of Martian crust [89] and magnetic motifs [90] The 

mineralogical study of spring mounds also provides with models of formation and functioning [63]. Two 

samples (Figure 18; H2-4; H48-50) were selected from the top and the bottom of a core from an active 

spring mound (Figure 16; G1). The mineralogical composition of the bulk rock of the two samples was 

determined by X-Ray Diffraction (XRD). The used diffractometer is Philips X-PERT with a Cu 

anticathode (Ka). The recording and the digital processing of the data are carried out using the software 

X’ PERT HighScore Plus®.  

The models of formation and activity of spring mounds in the MCSH system and on Mars was 

hypothesized based on a cross interpretation of results of the tectonic and hydrogeologic studies of the 

system on one hand, and the tectono-topographic, sedimentological, and hydrogeological results of 

spring mound investigations on the other.  

4. Results 

Spring mound formation and activity are controlled both by past and current tectonic and geodynamic 

settings [91], and by the current hydrogeological context [35]. The evolution of spring mounds is 

controlled by a wet aeolian sedimentation.  

4.1. Past and Current Tectonics and the Geodynamic Context of the MCSH System 

Though structures of the previous tectonic activities in the Sahel area are covered by a thick  

Plio-Quaternary series, geologic and geophysical studies (e.g., [56,61,62,92–95]) provided a wealth of 

data about the deep tectonic structures and the salt tectonics that were enhanced by the intrusion of 

Triassic domes (e.g., [93,94]). The geodynamic inheritance in the subsurface of this region is still 

controlling the geology of its surface until today [91]. For instance, the genesis and evolution of saline 

depressions in the Tunisian Sahel were strongly determined by its subsurface, which controlled their 

tectonic formation and evolution [56] during the Quaternary and is currently feeding them by huge 

quantities of salt through aquifers convergence toward their surfaces [38,39,56]. Being in the core of the 

Sahel area, the MCSH system shows signs of a past tectonic activity (Figure 2) [56,61,62,92,94,96]. Based 

on geophysical and tectonic studies, the tectonized surface and deep subsurface were recently discussed 

by Ghribi [62]. Previous works [91,97] linked the tectonic structures in the Sahel area to the 

compressional phase originating from the convergence of the African and Eurasian plates. As it is shown 

in Figure 2, there are two orientations of the extensional structures: (i) the NW-SE major orientation 

(alignment) of Ktitir, Ouled Chamekh, and Sidi El Hani faults extends on a larger scale along the 
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western side of the MCSH system; and (ii) the NE-SW to E-W minor orientation of Oued Mélames, 

Zarmdine and El Aryem faults extends on a smaller scale along the eastern side.  

The shallow subsurface seems also affected by these tectonic processes. Figure 3 shows a  

syn-sedimentary fault affecting the Pliocene series, which coincides with Segui Formation [56,61,62,92]. 

This formation is composed in the Sahel area of several hundred meters of clays, marls, lignites, and 

sandstones alternating with some (3 to 5) carbonated levels [61]. The fault of Ouled Chamekh identified 

in this work has an orientation between the Sidi El Hani fault and the Ktitir fault (Figure 2). This 

extensional structure is originated from a Neogene compressional phase. In addition, this fault may also 

serve as a way of water seepage to enhance spring mound formation. Thus, we find a genetic link 

between spring mound organization within the discharge playa and faults’ orientations. It is worth 

stressing that the MCSH system recorded extensional as well as compressional tectonic structures 

(Figure 2). This coexistence has been explained by a succession of two tectonic phases in the Sahel  

area [56]: a Post-Villafranchian NW-SE compression followed by a Tyrrhenian NE-SW extension 

controlled the opening and evolution of playas in the region. However, recent studies [91,97] suggested that 

comrpessional and extensional structures were coeval and originated from the very same compressional 

phase, which originated from the Africa-Eurasia convergence. Thus, the system experienced a coeval 

formation of compressional and extensional structures (Figure 2) [56,61,92,94,96,98–103] giving birth 

to a folded and faulted surface and subsurface (Figure 2). 

Figure 3. NE-SW correlation between two vibrocore drills (Figure 2; DC1) showing a  

syn-sedimentary fault: an extensional structure within a compressional framework. 
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As for the recent and current tectonic activity, the system is still in the compressional phase of N–S 

convergence between Africa and Europe plates (Figure 4a). This convergence results in an active 

seismicity in the Sahel area [61,96] and in the formation of faults within depressions of Chrita and Sidi 

El Hani, enhancing the development of spring mounds (e.g., [35]). Figure 4b shows that the major 

alignment of islets in the Sidi El Hani discharge playa is compatible with alignment of recent tectonic 

structures recorded not only within the system but also within the Mediterranean Sea.  

Figure 4. Relation between islets alignments within the Sidi El Hani discharge playa and the 

tectonic network in Tunisia. (a) Recent and current tectonic and seismotectonic map [60], 

modified; Zouaghi et al. [61]): (1) principal faults with Plio-Quaternary rejuvenation or 

presenting seismic activity indices; (2) graben with Plio-Quaternary rejuvenation;  

(3) strike-slip fault; (4) overthrust; (5) Quaternary fold or Quaternary rejuvenation;  

(6) direction of the P axis of on seism focal mechanism; (7) direction of the P axis of 

composite focal mechanism; (8) direction of compression based on the surface deformations 

of recent seisms; (9) direction of compression based on the historical tectonic deformations; 

(10) direction of the maximum horizontal constraint; (11) direction of surface principal 

stresses with indication of their positive (σ1) and negative (σ3) values; (b) Major and minor 

alignments of islets. 

 

The study of spring mounds should take into account the tectonized zones. A tectonic influence may 

enhance the seepage of groundwater toward the surface of the system. This is important especially 

within the Chrita saline lake, where groundwater upwelling alone is not strong enough to create the 

springs, and therefore an exclusively hydraulic model of formation for this saline lake is unlikely. 

4.2. Groundwater Contribution to the MCSH System 

The hydrogeological map of the MCSH system elaborated in 2008 (Figure 5) shows that the 

surrounding aquifers converge toward the Sidi El Hani discharge playa. The saline lakes of Chrita and 

Mechertate represent bypass zones, through which water converges to reach the basal part of the system. 
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The map also shows that the convergence of the surrounding aquifers is more accentuated at the level of 

the northeastern side of the system, hence originating more springs of water within the Chrita saline 

lakes and the Sidi El Hani discharge playa. Recent studies [104,105] suggested an increase of deep 

groundwater reserves due the installation of dams in the Tunisian center, which increased the reserves of 

the Kairouan aquifer. Such increase accentuated water convergence and the overall salinization of the 

system. Aquifers within the Chrita and Sidi El Hani depressions are met at approximately 50 cm below 

the surface, and this near-surface water table proves vital in preserving the playa surface from wind 

deflation (Stokes surfaces) [106,107] and the deposition of eolian sediments, since the humidity of the 

surface of the playa inhibits the formation of dust by wind erosion (induration process). Thus, the 

permanent layer of water covering the surface of the depressions, even during the dry seasons and 

especially those of Chrita and Sidi El Hani, is maintained by the convergence of aquifers towards the 

surface, feeding the depressions with salty water.  

Figure 5. Hydrogeological map and groundwater contribution of the Mechertate-Chrita-Sidi 

El Hani system: water table and water flows dynamics in 2008. 

 

4.3. Definitions and Categories of Springs and Spring Mounds at the MCSH System  

After Fetter [108] and Essefi et al. [35] proposed a classification of springs at the MCSH system 

according to (1) their mode of genesis; (2) their geochemical content; (3) their activity; and  

(4) their stage of evolution. Mud volcanoes could have mound morphologies similar to spring mounds 

but they differ in the formation mechanisms. A mud volcano, also known as “hervidero” or “macaluba”, 

is a conical accumulation of variable admixtures of sediment resulting from eruption of wet mud and 

impelled upward by fluid or gas pressure. After its formation, a mud volcano may disappear or grow due 

to exogenous erosional or depositional factors, respectively. Conventionally, mud volcanism is linked to 

gas influx, especially the wrap of methane (but also of other gasses). Clear evidence of mud volcanism 

with gas emission is not observed at the MCSH system.  
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4.3.1. Mode of Genesis 

(1) Artesian springs are springs in which subsurface water ascends to the surface by means of 

internal pressure, generally through some fissure or other opening in the confining bed overlying 

the aquifer. At the core of the Sidi El Hani depression, hydraulic pressure produces emanation of 

water after the elimination of an impermeable clayey layer [38]. Accordingly, springs at this 

depression may be considered as artesian springs (Figure 6a).  

(2) Gravity springs are formed under the influence of gravity, rather than internal pressure. The 

Kairouan aquifer is generated from the “highlands” of the so-called N-S axis draining towards 

the “lowlands” of Chrita and Sidi El Hani, and therefore springs mounds generated from this 

aquifer may be considered as gravity springs.  

(3) Depression springs flow towards the surface because the surface slopes down to the water table. 

As the water table is located approximately at the surfaces of Chrita (this work) and  

Sidi El Hani [38] depressions, spring mounds at these depressions may be considered as 

depression springs.  

(4) Perched springs arise from a body of perched water. The hydrological model previously 

discussed by [38] relating the Kairouan and Sidi El Hani discharge playas (Figure 19) shows that 

springs at Chrita and Sidi El Hani are perched.  

(5) Fault springs (also known as fault-dam springs) are the result of free-flowing groundwater onto 

the land surface surging from a previously faulted area that brought a permeable bed into contact 

with a less-permeable layer. Due to the major role of faulting in enhancing formation and 

development of spring mounds at the Chrita (this work) and Sidi El Hani [35] depressions, these 

spring mounds may be considered as fault spring mounds (Figure 6).  

(6) Contact springs are formed due to the gravity flow of water from a groundwater source to the 

land surface, from permeable strata overlying impermeable strata that prevent or delay 

percolation. Spring mounds at the Chrita playa surface allow water seepage through springs and 

planar surfaces. They may be considered, hence, as contact springs.  

(7) Fracture springs are the result of the natural flow of groundwater surging from joints or other 

fractures in bedrock, and may be flowing at several different locations along the fracture. Due to 

the tectonic activity, fracture springs are obvious manifestation on both the Chrita and Sidi El 

Hani depressions (e.g., [35]) (Figure 7c).  

Figure 6. Tectonic alignment of child (b) and mature (a,c) spring mounds.  
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Figure 6. Cont. 

 

Figure 7. (a,b) Embryonic stage of spring mounds; (c) Tectonic alignment of embryos 

along fractures; (d) Transition from embryonic to child stage.  

 

4.3.2. Geochemical Content  

(1) Brine springs are salt-water springs. The geochemical analysis of the discharging water from a 

spring at Sidi El Hani (Figure 11c; W2) shows a salinity of 7.25 g/L. This spring may be 

considered as a brine spring.  

(2) Mineral (gypsum, chloride, magnesium) springs are springs whose water has a definite taste 

due to the high concentration of a specific mineral. The spring may be named according to the 

geochemistry of its water. At spring mounds of the Sidi El Hani discharge playa, the weight of 

chloride represents more than 50% of the total ions. Hence, they are chloride springs.  

(3) Carbonate spring is a spring containing dissolved carbon dioxide gas.  

(4) Sulfur spring is a spring containing sulfur compounds such as hydrogen sulfide content.  
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(5) Mud pot (also known as painted pot, sulfur-mud pool) is a type of hot spring, which contains 

boiling mud, typically sulfurous and often multicolored. They tend to be associated with 

geysers and other hot springs in volcanic zones. The latest three types were not identified at 

depressions of the MCSH system. 

4.3.3. Activity 

(1) Perennial springs flow continuously, because of a hydrogeologic convergence of deep aquifers. 

At the MCSH system, deep aquifers convergence guarantees the activity of some springs [38]. 

(2) Intermittent springs cease flowing after a long dry spell and flow again after heavy rains.  

(3) Periodic springs flow periodically, apparently due to natural siphon action. Though mentioned in 

the literature (e.g., [108]), the two last types were not identified in our system.  

(4) Seepage springs (also known as weeping springs) are characterized for showing small discharges. 

The activity of this type is influenced by the hydraulic pressure, the tectonic activity, and the 

lithology of the playa surface. The vegetation or chemical precipitates can provide clues as to the 

presence of springs and seeps. Vegetation includes salt-tolerant phreatophytes (e.g., Figure 11) 

such as willow, cottonwood, mesquite, salt grass, and greasewood. At the mouth of the springs, 

travertine limestone concretionary deposits may be formed (e.g., sebkhas of Chrita and Sidi El 

Hani). Highly saline groundwater springs (brine, mineral or carbonate springs) can result in the 

formation of saline soils, playas, salinas, and salt precipitates (e.g., sebkhas of Sidi El Hani  

and Chrita). 

4.3.4. Stage of Evolution  

The size of a spring mound varies from few meters to few kilometers. These different sizes indicate 

different evolutionary stages. Essefi et al. [35] argued that the development of spring mounds playa is a 

slow and continuous process following successive stages, rather than a rapid construction. Spring 

mounds may be found in different stages, which were named, in chronological order, abortive, 

embryonic, child, mature (adult), and islet (old) stages. 

(1) At the abortive stage (Figure 6a), thousands of abortive spring mounds chaotically form. The 

majority of these spring mounds are aborted due to a weak hydraulic pressure and/or the 

absence of tectonic enhancement. The size of this type may be considered less than one meter. 

(2) At the embryonic stage (Figure 6b,c), the tectonic activity and hydraulic pressure result in the 

formation of spring mounds along a preferential orientation. The size of this type may be 

considered between 1 m and 2 m. 

At the child stage (Figure 8), eolian sedimentation and geochemical precipitation compete. 

Consequently, simultaneous deposition of evaporites and eolian sediment is observed. The size of this 

type may be considered between 2 m and 10 m. 

(3) At the mature stage (Figure 11), the spring mound is covered with eolian sediments, acting as an 

obstacle and collecting more eolian sediments. The size of this type may be considered between 

10 m and 80 m. 

(4) At the islet stage, eolian deposition dominates the system, and the salty soil is completely buried. 
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The size of this type may be considered more than 80 m. 

The occurrence of these types of spring mounds was identified at Sidi El Hani discharge playa [35]. 

In this paper, the terminology combines the mode of genesis (e.g., artesian or fault) and the stage of 

evolution (e.g., child or mature). 

Figure 8. (a) Accumulation of eolian sediment on a child spring mound; (b) Active child 

artesian spring mounds; (c) Accumulation of travertine on a fault child spring mound;  

(d) Continuous seep along a child spring mound. 

 

4.4. Spring Mounds Detected by Satellite Images 

Within the Chrita saline lake, mature, child, and islet spring mounds were identified at different 

scales (132 m, 267 m, 79 m; Figure 9). They seem to be organized according to NE-SW to N-S lines. 

This alignment is compatible with the NE-SW to N-S minor alignment of the tectonic map of Tunisia 

(Figure 4a). As it is shown in Figure 9, the alignment varies along Chrita depression between N73, N50, 

and N22. Further, the principal tectonic alignment may be divided into 2 or 3 sub-alignments. Such 

organization proves that these structures are genetically linked, and supports surface-subsurface 

connectivity. Water seepage and/or upwelling should have taken place through a NE-SW to N-S 

subsurface faults. Thus, these fault spring mounds identified on the surface of Chrita saline lake are 

originated from past and present tectonic activities. Past activities, which were mainly due to the 

convergence of African and Eurasian plates, were responsible for the folding of the Sahel and the 

opening of these saline environments in eastern Tunisia [38,56,97]. Current tectonic activity originated 

from Europe and Africa convergence causes an active seismicity [61,96] and an obvious tectonic 

faulting noticed on depressions’ surfaces (e.g., [35]). Hydrogeologically, since Chrita saline lake 

represents a bypass zone of water flows (Figure 5), the hydraulic pressure is far from being strong to 

impose the occurrence of artesian or at least artesian-fault spring mounds. Instead, inactive faults spring 

mounds occur on the surface of Chrita saline lake. This inactivity is expressed by the absence of an 

intense vegetative cover. It is worth mentioning that spring mound activity may be inferred from satellite 
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images. On active spring mounds, vegetation flourishes and gives a dark coloration to satellite images; 

while inactive spring mounds are covered by eolian sediment giving a clear tinge to satellite images. We 

notice also that a minor alignment is set along an inactive islet fault spring mounds (Figure 9b). This islet 

may be the result of a fusion of small spring mounds, which might have started as isolated fault spring 

mounds; then, their evolution through eolian accumulation resulted in their merging in one islet.  

Figure 9. Child, mature, and islet fault spring mounds in the Chrita saline lake oriented 

according to the minor tectonic alignment of the Sahel area. Google Earth images, major axis 

(a) 132 m; (b) 267 m; (c) 79 m. 
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Figure 10. Spring mounds in the Sidi El Hani discharge playa. Google Earth images, major 

axis 213 m (a); 282 m (b); 85 m (c). 

 

Within the Sidi El Hani discharge playa, active artesian-fault and inactive fault (mature and child) 

spring mounds were also identified at scales of 213 m, 282 m, and 85 m (Figure 10). These spring 

mounds seem organized along the NE-SW to E-W minor alignment (Figure 10a,b) and according to the 

NW-SE major orientation (Figure 10c) of the tectonic map of Tunisia (Figure 4a). Figure 10a shows that 

the sub-alignment of active mature artesian-fault spring mounds is parallel to the minor alignment N41. 

While the sub-alignment of the inactive child fault spring mounds is N54. The inactive mature fault 

spring mounds are oriented N22. Some E-W active and inactive mature fault spring mounds accumulate 

eolian sedimentation around them. Figure 10b shows that inactive child fault and active mature 

artesian-fault spring mounds follow a minor alignment of N74, which is approximately equal to the 
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mean of sub-alignments N75, N57, N50 and N90 (E-W). The major alignment of inactive child and 

mature fault spring mounds is N134 (Figure 10c). 

On the other hand, other child artesian spring mounds (currently inactive) seem to have a chaotic 

distribution (Figure 10b). Such organization proves that these structures have been originated from a 

weak hydraulic pressure, which was not enough to impose water emanation. Furthermore, the size of 

these spring mounds would not increase and they may be blocked at an initial stage of development of a 

spring mound [35]. 

The tectonic activity identified on a macro-scale by satellite images has been also detected during our 

field work along depression surfaces (see Section 4.5). The tectonic activity enhances spring mound 

formation by increasing the permeability of the sebkha material. The occurrence of spring mounds in 

both Chrita and Sidi El Hani depressions is also promoted by the low viscosity of the material, which is 

composed of 40% water. 

4.5. Spring Mounds Identified during Field Campaigns 

The results of our field reconnaissance show that the fault spring mounds at the Chrita saline lake are 

inactive because the hydrogeologic pressure is low. However, in spite of the absence of an obvious 

activity of spring mounds, Oued Chrita (local name meaning “the belt”), which is connecting the Chrita 

saline lake and the Sidi El Hani discharge playa, drains permanently even in absence of any rain. This 

permanent activity of Oued Chrita is strong evidence of water coming up from subsurface. The 

emanation is materialized by a slow seepage along the total surface of the saline lake rather than a 

localized upwelling through spring mounds. Seepage is enhanced by the permeable sandy sediment.  

In the western side of the Sidi El Hani discharge playa, we identified some spring mounds  

(Figure 11). They have different lengths ranging from 3 m to 40 m, while their heights barely reach one 

meter. Sometimes, these spring mounds are occupied by central springs including water surges  

(Figure 11b,c). These active spring mounds dissipate the water through direct emanation from their 

centers and through seepage from their peripheries. Sometimes, the pressure of the water is not enough 

to generate emanation through a central spring. Hence, these inactive spring mounds dissipate the water 

through seepage from their peripheries. Accordingly, the nearby salty water creates a layer of 

precipitated travertine. Contrary to spring mound activity at Chrita, spring mound activity at the Sidi El 

Hani discharge playa is enhanced by the tectonic activity and hydraulic pressure. When a spring mound 

is enhanced by a fault, it may develop towards a mature and active spring mound [35]. Otherwise, it 

remains at younger, less-developed stages [35]. Thus, we can hypothesize that inactive spring mounds 

are artesian spring mounds originated by a weak hydraulic pressure. On the other hand, active artesian 

spring mounds enhanced by tectonic activity may be defined as artesian-fault spring mounds. 

As for the vegetation cover of the spring mounds (Figure 11), plants requiring relatively fresh water 

occupy the peripheries (Figure 11c,d). Closer to the discharge playa (Figure 11d), fresh water-requiring 

vegetation is substituted for vegetation that tolerates more salinity. 
  



Life 2014, 4 405 

 

 

Figure 11. Alignment (a) and morphology (b), of spring mounds located in the Sidi El Hani 

discharge playa; Sampling (c) and variability of the vegetation with an increasing 

salinization on an active spring mound from an active spring mound (d). 

 

4.6. Models of Spring Mound Activity and Evolution  

The stage of evolution (embryos, child, mature or islet), activity (active or inactive) and maturation 

(eolian accumulation and geochemical precipitation) of spring mounds are the result of their tectonic, 

hydrogeologic, and sedimentary contexts. The tectonic and hydraulic factors enhance their primary 

formation. Then, the eolian sedimentation leads their evolution toward distinctive islets.  

4.6.1. Inactive Child Spring Mound (Seep) in the Chrita Saline Lake 

This child spring mound is located in the Chrita saline lake. Though it is inactive (only seepage), it 

may be noticed by the naked eye. Its height is approximately 20 cm and its length reaches 18 m  

(Figure 14). Three drill cores were taken along an E-W profile. Based on the Visual Core Description 

(VCD), six different facies (Fx) were identified along the three cores (Figure 12). F1 is characterized by 

its red color, and is an eolian facies deposited after the formation of the child spring mound. The 

sediment comes from the system itself or from its vicinities [53]. F2 is characterized by its black color, 

which reflects a high content of organic matter and/or high degree of confinement. The organic matter 

may be autochthonous due bacterial activity and/or migrating fluid [109]. Hence, this facies is probably 

of endogenous origin or it is deposited under calm hydrodynamics allowing the conservation of the 

organic matter. F1 protects this organic matter from hard conditions that would impede bacterial activity 
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or destroy the conserved organic matter. F3 is similar to F1 with a slight difference in terms of redness, 

which reflects its richness with iron oxide. F4 is grey in the western and middle cores (C1, C2), while it 

is beige at the eastern core (C3). The differences are likely due to the eolian accumulation at the northern 

side of the system. F5 is darker than F4, reflecting a dominance of the endogenous factor at the expense 

of exogenous factor in the southern core. F5 is absent in the southern core (C3), where the eolian factor 

overcomes the endogenous factors. F6 is also detected only in the northern and middle cores, and is 

darker than the previous facies, indicating a decrease in eolian sedimentation. Our data suggest that the 

formation of the child spring mound located in the Chrita saline lake is controlled by the interplay of 

endogenous and exogenous factors. Sometimes one factor dominates over the other, and sometimes the 

two factors compete to produce a kind of mixture. The correlation between different facies allows a 2D 

modeling of this spring mound (Figure 12). 

Figure 12. Facies identification and correlation between cores of an inactive child spring 

mound located in the Chrita saline lake. 

 

The hydrogeological micro-map (Figure 13) shows that the water table varies between 63.3 m and 

63.1 m. Such gradient (0.2 m) allows mapping the water flows from the center to the periphery of the 

child spring mound. Nevertheless, these flows are not strong enough to force discharging of water at the 

level of the center of the spring mound. Instead, water saps toward the floor of the saline lake from the 

peripheries of the child spring mound.  

The facies identification and the micro-hydrogeological studies allow the convolution of a 

hydrodynamic model showing water circulation and facies extension (Figure 14): on one hand, water 

circulates from the bottom upward by upwelling and then, when it faces a strong obstacle, it laterally 

saps toward the periphery of the child spring mound; on the other hand, sedimentary facies stretch along 

the child spring mound with curved shapes. 
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Figure 13. Micro-hydrogeological map (water seepage) of an inactive child spring mound 

located in the Chrita saline lake. 

 

Figure 14. Conceptual model of an inactive child spring mound located in the Chrita saline 

lake: simplified activity model. 

 

The grain size distribution (Figure 15) of the drill core in the middle of the child spring mound 

(Figure 12; drill core C2) shows the interplay of eolian, hydraulic, and geochemical components. The 

grain size distribution of F1 shows a dominance of the coarse (Mean: 199.66 µm) eolian sedimentation 

(Figure 15a). F1 is characterized by a primary grain size (M: ca. 315 µm) as indication of the coarse 

eolian sedimentation. F1 also show a secondary grain size (m: ca. 7 µm), a shoulder (S: ca. 1.5 µm), an 

occluded (O: ca. 0.1–1 µm) as indication of an occlusion of hydraulic sedimentation, and an absent  

(A: ca. 20–100 µm). The geochemical fraction lower than 0.1 µm behaves as second shoulder. In this 

facies, the eolian sedimentation takes the dominance. The second (Figure 15b) and third (Figure 15c) 

facies show a finer grain size (Mean ≈ 5 µm). F2 and F3 are characterized by primary modes  

(M: ca. 7 µm) as indication of fine eolian sedimentation, an occluded (O: ca. 0.1–1 µm) as indication of 
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occlusion of hydraulic sedimentation, and an absent (A: ca. 20–1000 µm) as indication of absence of 

coarse eolian sedimentation; the geochemical fraction lower than 0.1 µm behaves as secondary mode. In 

these facies, the geochemical sedimentation overcomes the coarse eolian sedimentation and balances the 

fine eolian one. The grain size fining continues with F4 (Figure 15d), F5 (Figure 15e) and F6 (Figure 15f) 

(Mean ≈ 2.5 µm). Comparably with the previous facies, they are characterized by the occlusion (F4) and 

the absence (F5 and F6) of the geochemical precipitation. We note also the appearance of the fine 

hydraulic sedimentation as shoulder (S: ca. 0.1–1 µm) in the three facies. These facies belong to the 

filling of the Chrita saline lake, where the deposition is controlled by the interplay between the eolian 

and the hydraulic sedimentation.  

Figure 15. Grain size distribution along a drill core from a spring mound located in the 

Chrita saline lake. 

 

4.6.2. Inactive child Spring Mound in the Sidi El Hani Discharge Playa 

This child spring mound is located in the western side of the Sidi El Hani discharge playa, and can be 

noticed by the naked eye and on satellite images. Its height is approximately 25 cm and its length reaches 

6 m. The extraction and examination of three cores allows the identification of six different facies 
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(Figure 16), but they do not all appear in the three cores. Due to their eolian origin, F1 and F2 are 

characterized by their red color. F3 and F4 are beige, showing hence a tendency toward their origin as 

autochthonous sediments. F5 and F6 represent the filling of the discharge in itself. Thus, the formation 

of this child spring mound involves the interplay of the two factors: autochthonous sediments  

and eolian deposition.  

Figure 16. Inactive spring mound located in the Sidi El Hani discharge playa: facies 

identification and correlation between cores. 

 

The detailed hydrogeological map (Figure 17) shows that the water table in the mound varies between 

32.11 m and 32.21 m. Such gradient (0.1 m) allows the displacement of water flows from the center to 

the periphery of the spring mound. However, these flows are not strong enough to force the emanation of 

water at the center of the spring mound.  

The facies identification, the sedimentary analyses, and the micro-hydrogeological studies allow the 

convolution of a hydrodynamic model showing water circulation and facies extension (Figure 18). 

Water moves from the bottom upwards by upwelling circulation. Then, when it faces a strong obstacle, it 

laterally saps toward the periphery of the spring mound. The center of the spring mounds shows the 

precipitation of powdery gypsum because of the increase of the water table and capillary fringe. 

Comparably to the active spring mound in the Sidi El Hani discharge playa, which is located by no more 

than 100 m distance, this inactive spring mound has the same hydrogeologic context, but the gradient 

within it is smaller than the active spring mound. This difference is probably due to a local tectonic 

condition, in which a fault under the active spring mound may increase its permeability and its 

hydrogeologic dynamics. The active spring mound is probably located on the active component of the 

Sidi El Hani deep fault [62], which may reach shallower levels (as it is shown in the tectonics study; see 

Figure 3). The dynamic evolution is controlled by sedimentary processes, because the water table, which 

enhances the evolution of the large (23 m) active spring mound toward an islet, is absent in the case of 

the small (6 m) inactive spring mound. Thus, islets in the Sidi El Hani discharge playa may be 

interpreted as the result of surface-breaking thrust and reverse faults. The faulting depths assumed from 

the lobate scarps of the MCSH system are between a few kilometers (e.g., [62]) to a few hundreds of 

meters (this study; Figure 3). 
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Figure 17. Inactive spring mound located in the Sidi El Hani discharge playa: 

hydrogeological map (water seepage). 

 

Figure 18. Conceptual model of an inactive child spring mound located in the Sidi El Hani 

discharge playa: simplified activity model.  

 

The grain size distribution of core 2 from the inactive spring mound at Sidi El Hani (Figure 19) shows 

the interplay of eolian, hydraulic, and geochemical components. The grain size distribution of the first 

facies (Figure 19a) shows the dominance of the fine (Mean: 5.93 µm) eolian sedimentation. F1 is 

characterized by a primary mode (M: ca. 10 µm) as indication of the fine eolian sedimentation, a 

secondary mode (m: ca. 0.1 µm) as indication of geochemical sedimentation, a shoulder (S: ca. 1.5 µm), 

an occluded (O: ca. 0.1–1 µm) as indication of the occlusion of hydraulic sedimentation, and an absent 

(A: ca. 25–250 µm). Comparably to F1, the grain size distribution of F2 (Figure 19b) shows the 

noticeable coarsening (Mean: 18.71 µm). However occluded, the coarse eolian sedimentation is present 

(O: ca. 315 µm). F3 and F4 (Figure 19c,d) show a grain size fining (Mean ≈ 2 µm). They are 
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characterized by primary modes (M: ca. 2 µm) as indication of fine hydraulic sedimentation. The 

secondary mode (m: ca. 0.1–1 µm) indicates an appearance of the hydraulic sedimentation, while an 

absent (A: ca. 20–1000 µm) indicates the absence of coarse eolian and hydraulic sedimentation. The 

geochemical fraction lower than 0.1 µm behaves as shoulder. In these facies, the geochemical 

sedimentation overcomes the eolian sedimentation, and competes with the hydraulic one. F5 and F6 

(Figure 19e,f) show a slight grain size coarsening (Mean ≈ 3 µm). They are characterized by primary 

modes (M: ca. 5 µm) as indication of fine eolian sedimentation, an occluded (O: ca. 0.1–1 µm) as 

indication of occlusion of hydraulic sedimentation, and an absent (A: ca. 20–1000 µm) as indication of 

absence of coarse eolian sedimentation; the geochemical fraction lower than 0.1 µm behaves as 

secondary mode. In these facies, the geochemical sedimentation overcomes the coarse eolian 

sedimentation and balances the fine eolian one. 

Figure 19. Grain size distribution along a drill core from an inactive spring mound located in 

the Sidi El Hani discharge playa. 

 

4.6.3. Active Spring Mound in the Sidi El Hani Discharge Playa 

This spring mound is located in the western side of the Sidi El Hani discharge playa, located at a 

distance of less than 100 m from the inactive spring mound. Its height is approximately 90 cm and its 

length reaches 23 m (Figure 22). The elaboration of seven drill cores allows the identification of five 
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different facies (Figure 20). F1 is characterized by its red color, probably due to its eolian origin. As it is 

case in the Chrita saline lake, this eolian facies was deposited after the formation of the spring mound. 

Though slightly different from F1, F2 seems to have the same eolian origin. Both facies hence are the 

result of dominance of the allochthonous sedimentation at the expense of autochthonous processes.  

F3 shows signs of endogenous origin, or it is deposited under calm hydrodynamics allowing the 

conservation of the organic matter. In F4 the endogenous factors are dominant, as can be observed in the 

grey sediment. F5 further increases the tendency toward the dominance of the endogenous factor at the 

expense of exogenous factor, showing a total absence of the eolian sedimentation.  

Figure 20. Active spring mound located in the Sidi El Hani discharge playa: facies 

identification and correlation between cores. 

 

Figure 21. Active spring mound located in the Sidi El Hani discharge playa: hydrogeological 

map (water flow and seepage). 
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The hydrogeological micro-map (Figure 21) shows that the water table varies between 32.6 m and 

32.2 m. Such gradient (0.4 m) allows the flow of water from the center to the periphery of the spring 

mound. Further, these flows are strong enough to force discharging of water at the level of the center of 

the spring mound.  

The facies identification and the sedimentologic and the micro-hydrogeological studies allow the 

convolution of a hydrodynamic model showing water circulation and facies extension (Figure 22c). 

Water circulates from the bottom upward by upwelling, and finally emanates and feeds the discharge 

playa by saline water.  

Figure 22. Active spring mound located in the Sidi El Hani discharge playa: simplified 

activity model. 

 

The grain size distribution of core 7 from the active spring mound (Figure 23) shows the interplay of 

the eolian, the hydraulic, and the geochemical components. The grain size distribution of the first facies 

(Figure 23a) shows the dominance of the fine (Mean: 10.93 µm) eolian sedimentation. F1 is 

characterized by a primary mode (M: ca. 7 µm) as indication of the fine eolian sedimentation, a 

secondary mode (m: ca. 0.1 µm) as indication of geochemical sedimentation, a shoulder (S: ca. 1.5 µm), 

an occluded (O: ca. 0.1–1 µm) as indication of the occlusion of hydraulic sedimentation, and an absent 

(A: ca. 10–250 µm). However present, the coarse eolian sedimentation is occluded (O: ca. 315 µm).  

In this facies, the fine eolian sedimentation is dominant. The fourth remaining facies (Figure 23b–e) 

show finer grain sizes (Mean ≈ 2.8 µm). They are characterized by primary modes (M: ca. 7 µm) as 

indication of fine eolian sedimentation, an occluded (O: ca. 0.1–1 µm) as indication of occlusion of 

hydraulic sedimentation, and an absent (A: ca. 20–1000 µm) as indication of absence of coarse eolian 

sedimentation. The geochemical fraction lower than 0.1 µm behaves as a secondary mode. In these 

facies, the geochemical sedimentation overcomes the coarse eolian sedimentation and balances the fine 

eolian one. 
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Figure 23. Grain size distribution along a drill core from an active spring mound located in 

the Sidi El Hani discharge playa. 

 

X-ray Diffraction Data 

To the naked eye, the sedimentary content of these spring mounds appears to be different from their 

surroundings, an observation reinforced by the different values of the magnetic susceptibility (Table 1) 

of the sediment of the spring mound (Figure 21, Table 1, MS11, MS12, MS13 and MS14) and its 

surroundings (Figure 21, Table 1, MS21, MS22, MS23 and MS24). Hence, we suggest that the surface 

of the spring mound having high values of magnetic susceptibility is a site of eolian sedimentation. The 

continuity of this sedimentation, which is itself a result of the capillary fringe and the induration process, 

will result in the development of this spring toward an islet.  

The XRD patterns of bulk rock of two specimens (H2-4 and H48-50) indicated that they are mainly 

composed of gypsum, calcite, quartz, feldspars, and all clay minerals. Their strong reflections appear at 

7.55 Å, 3.03 Å, 3.33 Å, (3.18 Å, 3.24 Å, and 3.31 Å), and 4.44 Å respectively (Figure 24). The feldspar 

minerals are a mixture of anorthite, orthose, and sanidine their strong reflections, are observed for the 

H2-4 and H48-50 bulk samples (Figure 24), at 3.18 Å, 3.24 Å and 3.31 Å, respectively. For bulk rock 

samples, the quartz, sanidine and orthose are the main minerals of the sample H2-4, but the gypsum 

mineral is the major phase of the sample H48-50 associated to anorthite and sanidine minerals.  
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Table 1. Low Frequency susceptibility, High Frequency susceptibility and 

Frequency-dependent susceptibility of sediments from the active spring mound in the Sidi El 

Hani discharge playa and from its surroundings. 

Sample 
LF Susceptibility  

10−6 (SI) 
HF Susceptibility 

10−6 (SI) 
Frequency-Dependent  

Susceptibility 

MS11 3.9 40.1 −0.90 
MS12 5.2 42.6 −0.87 
MS13 4.45 45.2 −0.88 
MS14 2.34 48.91 −0.95 
MS21 398.16 164.03 0.78 
MS22 324.25 136.45 0.58 
MS23 270.3 106.2 0.61 
MS24 360.5 112.6 0.69 

Figure 24. X-ray diffraction patterns (CoKα radiation) of H2-4 (a) and H48-50 (b) bulk rock 

samples. (G: Gypsum; Acm: All clay minerals; Q: Quartz; Or: Orthose; An: Anorthite;  

Sa: Sanidine; Ca: Calcite). 
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5. Models of Spring Mound Formation: Implications for Mars 

The occurrence of spring mounds within the Sidi El Hani discharge playa and the Chrita saline lake 

may be compared to the occurrences of putative spring mounds at several locations on the Martian 

surface, such as those in Arabia Terra [35,41]. The formation of spring mounds both in eastern Tunisia 

and in some provinces on Mars follows common tectonic and/or hydraulic pathways combined with 

eolian sedimentation covering the migrating fluids.  

5.1. Tectonic Model 

From a geodynamic point of view, the MCSH system experiences a compressive tectonic process. 

This tectonic activity is due to the N–S convergence of the Africa and Eurasia plates [38,61,97]. Albeit 

compressive, this phase results in extensional as well as compressional structures. Similarly, due to 

thermal cooling, Mars may have experienced a pulse of large-scale global contraction, which originated 

the contractional structures observed on the surface, such as wrinkle ridges, lobate scarps and thrusts, 

and reverse faults [110]. Combined with modeling efforts, observations of these structures at the surface 

provide significant insights on the thermal and geodynamic evolution of Mars subsurface. As it is the 

case at the MCSH system, compressional phases on Mars have the potentiality to result in extensional 

structures, which may in turn enhance the formation of fault spring mounds.  

All this activity reinforces the notion that tectonic forces were operating during the formation of 

spring mounds within the system (Figure 25b), as faulted zones would have created perfect paths for 

seepage through fractured areas. On Mars, though Smith et al. [111] suggested that the development of 

fractures might be insufficient to permit the required outburst rates, these fractures seem enough to 

guarantee at least fluids seepage. Previous studies (e.g., [112–118]) suggested that brecciation and 

faulting of near-surface of fault zone materials are possible mechanisms for development of values of 

permeability in the range of 10−22 to 10−12 m2. In addition, although processes such as cataclasis  

(e.g., [119]) and mineralization (e.g., [120,121]) reduce the permeability along fractures, development 

of fractures may only facilitate water flow (e.g., [122–124]), and even deformation bands that are 

precursor to faults can increase fluid flows in some cases (e.g., [125]). This possibility is reinforced by 

the fact that dramatic increases in permeability could conceivably have arisen as a result of the 

dewatering of hydrous salts [126,127] or the melting of large volumes of relict or segregated  

ice [128,129].  

After all the above considerations, we suggest that the tectonic model for the origin of fault spring 

mounds in eastern Tunisia may be also applied to Mars. Since we can equally find a genetic link between 

the organization of the fault spring mounds within the discharge playa and the orientation of faults 

(Figure 25b), the orientation of the tectonic structures in the subsurface of Mars may be inferred 

following the organization of fault spring mounds on the surface. The location of fault spring mounds on 

the edge of an islet according to a NW-SE orientation is yet another argument to propose their tectonic 

origin within this depression.  

The block diagrams presented in Figure 25 show the tectonic model of formation of these features on 

Mars and at the MCSH system. In this model, we consider a tectonic extension, which may have 

originated these features on Mars (Figure 25a) [130] and terrestrial systems (Figure 25b) (this study). 
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Compressive as well as extensional faulting are both probably able to provide efficient pathways for 

fluid seepage. Lobate scarps on Mars have been interpreted to be the result of surface-breaking thrust 

faults (e.g., [131]). The faulting depths of these lobate scarps on Mars were estimated to 30 km  

(e.g., [132]). It should be noted that, on Mars, fracturing and development of fault systems due to impact 

cratering (e.g., [133,134]) could particularly be important for increasing permeability and consequent 

fluid migration along the faults. Rodriguez et al. [135], for example, envisioned a complex network of 

radial and concentric faults of multiple impact craters on Mars, inducing active groundwater storage and 

movement. This type of fault networks likely facilitates spring mound formation on the surface. 

Figure 25. (a) Tectonic model of fault spring mounds and mud volcanoes formation on Mars 

(modified from Kangi [130]); (b) Model of the Mechertate-Chrita-Sidi El Hani system: 

water seepage towards playa surfaces. 
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5.2. Hydraulic Model  

The watershed feeds depressions with water and sediments. The Sidi El Hani discharge playa, as the 

basal part of the system, collects the exceeding water from the Mechertate and Chrita depressions. At the 

Sidi El Hani discharge playa, being the basal part of the endorheic system, aquifers converge after 

leaching domes of salt and/or transporting salty water located in the subsurface of the system. 

Groundwater seepage is another hydrogeological active mechanism in the Tunisian system, also identified to 

be operating from the Martian subsurface toward its surface [136]. As indicated by many paleo-crater lakes 

and cataclysmic flood channels studied on the Martian surface (e.g., [14,31,33,137–142]), various 

water-related processes appeared to have operated on the planet, indicating a hydraulic model  

(Figure 26) as a plausible mechanism for artesian spring mounds formation on Mars. Previous studies 

showed that similar spring mounds at the Chotts Djerid and Fedjadj in southern Tunisia are fed by point 

sources of artesian water rising from aquifers in the Continental Intercalaire and Complexe Terminal 

aquifer series [143]. 

Figure 26. Hydraulic model of spring mound formation in the Mechertate-Chrita-Sidi El 

Hani system: possible Mars analog (Essefi [38], modified). 

 

5.3. Hydro-Tectonic Model 

The tectonic and hydraulic models described here compete to explain the origin of spring mounds in 

eastern Tunisia and Mars. On one hand, the tectonic model suggests that the faulted subsurface may have 

originated these features. This model was recently discussed for the Martian case by Kangi [130]  

(Figure 25a), relating the occurrence of sedimentary mud volcanoes to the internal geodynamics of 

Mars. On the other hand, other authors advocate the hydraulic model, which may satisfy the emanation 

of fluids (fresh and/or salty water, CH4 and CO2) on Mars (e.g., [44]) and groundwater upwelling toward 

discharge playa surfaces. The co-existence of strong arguments for both models, as we have analyzed 

and discussed in this paper, allows us to suggest a hydro-tectonic model (Figure 27b), which combines 

the tectonic and hydraulic scenarios. This hybrid model may offer a consistent explanation of these 

features both on terrestrial environments and Martian systems. 
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Figure 27. (a) Hydro-tectonic model explaining the sedimentary processes related to the 

groundwater flow from the Mesozoic Carbonate Aquifer of the Iberian Chain in the Tertiary 

Ebro Basin, northeast Spain (Sánchez et al. [144], reinterpreted); (b) Hydro-tectonic model of 

spring mounds formation on Mars and the Mechertate-Chrita-Sidi El Hani system: water 

upwelling towards playa surfaces. 

 

5.4. Eolian Sedimentation 

At the MCSH system, once a spring mound is formed due to tectonic and hydrologic conditions, 

eolian sedimentation dominates the area and promotes the evolution of the spring mound to form an islet 

(Guattaya). For example, the islet of Ouled Moussa (Figure 4b) shows an increasing accumulation of 

eolian sediment [38]. Eolian sediments come from Pleistocene to Holocene eolian landforms 

outcropping in the system [53] or from arid and desert regions located in southern Tunisia. Due to 

groundwater coming up and salt precipitation, these indurated obstacles further accumulate eolian 

sediment to set a mixture of eolian and geochemical sedimentation identified as travertine [145] or  

tufa [146]. Consequently, the sedimentologic investigation of these islets shows their eolian content, 

which is thicker on bigger islets. In a similar way, we predict eolian sedimentation along an alignment of 

indurated dunes or mounds on Mars. The induration process involves the presence of ice and/or salt 

(e.g., [147]). In both cases, groundwater plays a central role in this accumulation.  

5.5. Inferring Past Hydraulic and Geodynamic Conditions on Mars 

One of the major aims of this study is inferring the past internal conditions of Mars during the periods 

of water availability and the putative tectonic activity through the study of its current surface. As shown 

in Figure 28, Arabia Terra shows putative springs [41] and/or spring mounds [35]. These features may 

give clues to infer the geodynamic and hydraulic conditions prevailing at the Martian subsurface. For 

example, the obvious alignment of fault spring mounds along major and minor orientations in Arabia 



Life 2014, 4 420 

 

 

Terra (Figure 28a) is a clear indication of faulting activity, which in turn appears to be due to an 

extensional phase and/or an effect of global contraction, or reflections of fault system developed due to 

impact cratering. It is worth mentioning that our study cannot straightforwardly decide whether it is a 

normal or a reverse fault. However, since our study about these spring mounds in many terrestrial 

analogs in Tunisia advocates the possibility of normal fault enhancement, we suggest that the 

extensional hypothesis is the more probable on Mars. On the other hand, the chaotic distribution of 

spring mounds is likely associated with an overpressured subsurface (Figure 28b). 

Figure 28. Inference of the geodynamic and hydraulic conditions in the Martian subsurface 

through spring alignments. Tectonic alignments (a–c) and chaotic distributions (d) of 

putative spring mounds on Terra Arabia, Mars (after Allen and Oehler [41]). 
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5.6. Magnetic Properties and Remote Sensing Identification of Spring Mounds on Mars  

In terrestrial geology, magnetic susceptibility is primarily dominated by iron oxides such as the 

titanomagnetite series (e.g., [148]). Magnetism on Mars is also believed to be dominated by iron oxides 

and sulfides (e.g., [149]). Recent Mars exploration argued the surprising detection of strongly 

magnetized ancient crust on Mars (REFs). Our investigation of spring mounds at the MCSH obviously 

shows that they are magnetically distinguished from their surroundings. This notice proves vital to 

distinguish and identify the conversely called spring mounds on Mars. This evidence does not give new 

findings in terms of instrumentation because the instruments already exist, but it will guide their use. For 

instance, MIMOS II instrument operating on the Mars Exploration Rover (MER) vehicles is capable of 

detecting magnetite and hematite at the 1%–2% level [150]. Newer generations of the instrument (e.g., 

MIMOS-IIa) also show a significant improvement in sensitivity of magnetic susceptibility measurements. 

Studying these putative spring mounds in situ is of intrinsic value to understanding the weathering 

process, and useful for providing supporting data for interpreting remotely sensed mineralogy. 

5.7. Implications for Life 

Spring mounds on earth (e.g., [16]) and on Mars (e.g., [41,151]) would represent optimal niches of 

life development. At the MCSH system, depressions contain briny (≈300 g/L) and slightly acid (5.8) 

water, while springs mounds inject relatively fresh water (7.25 g/L) with neutral pH (6.8). On early 

Mars, both aqueous systems could have been appropriate for life. First, cold brines with a similar salts 

concentration to that measured at the MCSH depressions have been proposed to have existed on a “cold 

and wet” Early Mars [2], potentially adequate for biological development [152]. Second, fresher water 

associated with springs might have not been as briny or acidic as water in terrestrial evaporating pools [41], 

and this may have provided a long-term habitable environment on a “warm and wet” early Mars [153].  

If life ever developed on Mars, ancient spring deposits would be excellent localities in which to search 

for morphological or chemical remnants of that life [41], with proper drilling into the accumulated 

materials [154,155]. These favorable conditions for life, which are exceptionally shown at the surface 

through spring mounds, may have been more frequent in the Martian subsurface, indicating that 

geodynamic and hydraulic conditions within the Martian subsurface could have been favorable for 

biological development.  

The mechanisms (tectonic and/or hydraulic) of formation and evolution of spring mounds at the 

MCSH system are suitable for the proliferation and protection of life respectively. On the one hand, their 

formation through the upwelling of water [40] and organic-rich material [109] provides with the 

necessary elements for life development. On the other hand, the protecting layers formed due to the wet 

eolian sedimentation provide with a safe site for the protected life or remains of the life  

(e.g., biomarkers). Similarly, life or biomarkers on Mars may have been protected or preserved under the 

spring mounds.  

6. Conclusions 

We have analyzed here the characteristics of the spring mounds distributed along the  

Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We propose that the genesis of these 
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child spring mounds is directly caused by groundwater coming up, which is due to hydraulic (artesian 

spring mound) overpressure and/or tectonic fractures (fault spring mound). Then, eolian deposition 

intervenes with the water table to control their evolution towards distinctive islets spring mounds. This 

hypothesized sequence is supported by the fact that the internal core of the spring mounds consists of 

endogenous mud mixed with groundwater, whereas the external wrap is covered by eolian deposition 

enhanced by the water table. Some of these spring mounds are in continuous activity due to a constant 

supply of salty water. Others are in a seeping stage, because water pressure is not enough to induce 

aqueous upwelling and therefore water seeps laterally and causes the deposition of a travertine at the 

mouth of the spring. These artesian springs appear to be the result of the hydraulic pressure generated by 

the convergence of aquifers towards the surface of the system. Therefore, a hydraulic model ought to be 

considered in the analysis of the formation of the spring mounds. However, the fault spring mounds are 

organized along preferential orientations probably inherited from current or past tectonic activity. This 

observation advocates for a tectonic model of spring mounds formation. Thus, both models merit 

consideration to fully understand the formation and evolution of the spring mounds at the MCSH 

system. We propose here to adopt a combined hydro-tectonic model to describe Tunisian spring 

mounds, a model that can also be useful for the analysis of Mars’ purported spring mounds. The study 

presented here of the MCSH terrestrial analog may be valuable to test different models of Mars’ spring 

mound origin. The Martian subsurface may be similarly over-pressured and fractured, and therefore our 

combined hydro-tectonic model may be adequate to describe the formation and evolution of spring 

mounds on Mars. Spring mounds are safe zones for the setting and development of life. The feeding 

from the subsurface ensures the coming up of water and organic-rich material. The wet eolian 

sedimentology covers the safe site protecting life or biomarkers. 
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