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Although the ERK pathway has a central role in the response of cells to growth factors, its regulatory
structure and dynamics are incompletely understood. To investigate ERK activation in real time, we
expressed an ERK–GFP fusion protein in human mammary epithelial cells. On EGF stimulation, we
observed sustained oscillations of the ERK–GFP fusion protein between the nucleus and cytoplasm
with a periodicity of B15 min. The oscillations were persistent (445 cycles), independent of cell
cycle phase, and were highly dependent on cell density, essentially disappearing at confluency.
Oscillations occurred even at ligand doses that elicited very low levels of ERK phosphorylation, and
could be detected biochemically in both transfected and nontransfected cells. Mathematical
modeling revealed that negative feedback from phosphorylated ERK to the cascade input was
necessary to match the robustness of the oscillation characteristics observed over a broad range of
ligand concentrations. Our characterization of single-cell ERK dynamics provides a quantitative
foundation for understanding the regulatory structure of this signaling cascade.
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Introduction

Our increasingly detailed knowledge of cell signaling dyna-
mics is enabling us to construct well-constrained mathe-
matical models that can illuminate regulatory mechanisms
and lead to the in silico prediction of cellular responses (Wiley
et al, 2003; Di Ventura et al, 2006). A good example is the ERK/
MAPK pathway that exhibits complex and diverse dynamics
and has been extensively studied over the past several decades
(Seger and Krebs, 1995). Owing to its critical role in regulating
cell proliferation, understanding ERK regulation is central to
efforts to rationally design new antiproliferative drugs and
other therapies (Roberts and Der, 2007). A potent regulator of
ERK in epithelial cells is the epidermal growth factor (EGF)
receptor that is activated by the binding of one of several
cognate ligands (Citri and Yarden, 2006). Ligand binding
induces activation of the intrinsic tyrosine kinase activity of
the EGF receptor (EGFR), resulting in phosphorylation of both
specific substrates and adaptor proteins, such as Shc, Grb2 and
Sos. This then leads to the assembly of a membrane-associated

signaling complex that activates the ERK signaling cascade
(Schoeberl et al, 2002). Phosphorylation of ERK by MEK
results in its translocation to the nucleus where it phosphor-
ylates transcriptional factors that drive the early response of
cells to EGF (Lenormand et al, 1993).

The wealth of quantitative data on the MAPK activation
pathway, its central role in eukaryotic cell decision processes,
and the complexity of its regulatory network structure have led
to several mathematical models for this pathway (for review,
see Orton et al (2005)). These models have shown that the
cascade structure and known regulatory features, such as
positive and negative feedback loops and multisite enzyme
phosphorylations, can contribute to diverse system properties,
such as ultrasensitivity, bistability and oscillations. This
response diversity could potentially enable the MAPK pathway
to elicit distinct cellular responses depending on the cellular
context. The MAPK activation cascade was shown experimen-
tally to display strongly nonlinear or ultrasensitive responses
more than a decade ago (Huang and Ferrell, 1996). The
prediction of bistability has also been experimentally validated
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in studies that demonstrate its involvement in the generation
of sustained responses to transient stimuli and irreversible
cell-fate decisions (Bhalla et al, 2002; Xiong and Ferrell, 2003).

Theoretical studies on the MAPK cascade have long
predicted the existence of oscillations in the pathway. Negative
feedback oscillations can be generated when the ultrasensitive
MAPK cascade is coupled to a negative feedback loop wherein
phosphorylated ERK inhibits the input to the cascade
(Kholodenko, 2000). More recently, it has been shown that
sequestration of kinases and phosphatases in the MAPK
cascade by their substrates can potentially generate relaxation
oscillations even in the absence of explicit feedback inhibition
(Chickarmane et al, 2007; Qiao et al, 2007). However, despite
numerous biochemical and imaging-based investigations into
its dynamics, oscillatory behavior of the ERK pathway has
never been experimentally observed. Potential oscillatory
behavior of the ERK pathway is intriguing because it was
recently demonstrated that the NF-kB and p53–MDM2
signaling pathways can display oscillations under certain
conditions (Lahav et al, 2004; Nelson et al, 2004). Although
the physiological significance of oscillations in these systems is
not fully understood, it could be another regulatory layer in
which biological information can be encoded.

Many cell types that are used in signal transduction
research, such as HeLa cells, are used because they are easy
to manipulate, even though they have limited physiological
responses to growth factors such as EGF (Kinzel et al, 1990). In
contrast, human mammary epithelial cells (HMECs) are
similar to many epithelium-derived cell types in that they
require EGFR activation for proliferation and migration (Dong
et al, 1999). The 184A1 strain of HMECs retains the EGFR-
dependent regulatory machinery of the primary cell type from
which it was derived (Stampfer et al, 1993), and thus it is an
excellent system for developing physiologically relevant
models of the EGFR signaling pathway (Wiley et al, 2003;
Hendriks et al, 2005; Shankaran et al, 2006). As ERK is a
primary downstream effector pathway of the EGFR, we felt
that an investigation of its potential oscillatory behavior in
these cells was warranted. Here we show that the ERK cascade
in HMECs displays very robust oscillatory behavior and that
quantification of these oscillations can be used to help build
accurate and predictive models of this important signaling
pathway.

Results

EGF induces oscillation of an ERK–GFP fusion
protein between the nucleus and cytoplasm

After its activation by phosphorylation, ERK is rapidly
translocated into the cell nucleus (Lenormand et al, 1993).
Thus, we used the translocation of a fusion protein of ERK and
green fluorescent protein (ERK–GFP) to assay ERK activation
in individual cells. Cells were plated at a low density and
brought to quiescence by overnight withdrawal of serum and
EGF. After re-addition of EGF, we observed a rapid increase
of ERK–GFP fusion protein level in the cell nucleus (see
Figure 1A). In many cells the ERK–GFP fusion protein
oscillated between the nucleus and the cytoplasm with a
periodicity of B15 min (Figure 1B and C and Supplementary

Movies S1–S3). The oscillations were asynchronous between
neighboring cells, and mRFP fused to a nuclear-localization
signal to serve as a nuclear marker did not display any periodic
oscillation (Figure 1C).

The effect of EGF on nuclear translocation was specific to
ERK and was correlated with its phosphorylation. Cells
double-labeled with ERK–GFP fusion protein and an mRFP
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Figure 1 Periodic changes in distribution of ERK–GFP fusion protein in cells
after stimulation with EGF. (A) Confocal image of cells expressing ERK–GFP
both before and after adding 1 ng/ml EGF for 10 min. Images were taken on a
Leica DMRXE Confocal microscope using an HCX PL APO � 63/1.20 NA water
immersion lens. (B) Cells expressing both ERK–GFP and mRFPnuc were
imaged at 371C using a � 60 oil immersion objective, and wide-field images
were collected simultaneously from the green channel (upper panel) and the red
channel (lower panel) at 1-min time intervals. Images after the addition of 1 ng/ml
EGF at the times indicated in the upper-right corner are shown. (C) Fluorescence
intensities of ERK–GFP fusion protein localized in the nucleus of the images
shown in (B) are indicated by the green and blue symbols. Corresponding
fluorescence levels of mRFPnuc in the nucleus are indicated by the red and pink
symbols. Units are mean pixel intensity of uncorrected images. Arrows indicate
correspondence to images shown in panel A. The intensity shift at 11 min was
caused by a focus adjustment. Source data is available for this figure at
www.nature.com/msb.
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marker without a nuclear-localization signal showed relatively
lower ERK–GFP fusion protein/mRFP ratio in the nucleus
before EGF addition (Supplementary Figure S1). The addition
of EGF caused a specific elevation of the ERK–GFP fusion
protein/mRFP ratio in the nucleus and a simultaneous
decrease in the ERK–GFP fusion protein/mRFP ratio in the
cytoplasm with a periodicity of 12–15 min (Supplementary
Figure S1). Immunofluorescence of fixed cells using antibodies
against total ERK and phosphorylated ERK showed an increase
in the levels of both species in the cell nucleus after EGF
treatment, in agreement with previous studies (Supplemen-
tary Figure S2; Lenormand et al, 1993).

As shown in Figure 2A, oscillations required the continuous
presence of EGF. After removal of EGF and blocking the EGFR
with antagonistic mAb 225, cells underwent only a single
additional nuclear translocation cycle. We then monitored the
change in nuclear ERK–GFP fusion protein level over time in a
field of cells grown at low density (Figure 2B). Each cell
displayed a rapid oscillation pattern for the entire duration of
the experiment (Supplementary Movie S4), and this pattern
was sustained for more than 40 cycles (Figure 2C), at which
point the experiment was terminated. There did not seem to be
any relationship between the expression level of the ERK–GFP
fusion protein and the oscillation pattern, and there was a low
degree of synchrony between the cells in the population

(Supplementary Movie S4). During this long experiment
(410 h), several cells underwent mitosis, allowing us to
determine whether oscillations persisted throughout the cell
cycle. Although there was a brief interruption in oscillations
during mitosis itself when the nuclear membrane disappeared,
on reformation of the nuclei, oscillations could once again be
observed (Supplementary Figure S3). There was no obvious
synchrony between the oscillations of the daughter cells. As
we were following an asynchronous population of cells,
continuous oscillations in all the cells suggest that ERK
oscillations persist throughout the cell cycle.

Oscillations are independent of ERK–GFP
expression levels

It has been suggested that the oscillations of NFkB, which have
been observed after cell activation are a result of high
expression levels of the GFP–NFkB fusion protein (Barken
et al, 2005). To determine whether ERK oscillations could be
due to high expression levels of our ERK–GFP construct, we
used flow cytometry to sort out cells into ‘low’ and ‘high’
expression sets. The relative levels of ERK–GFP fusion protein
versus endogenous ERK expression was then estimated by
quantitative western blots (Figure 3A). This showed that the
average level of ERK–GFP fusion protein in the population

0

400

450

500

+EGF +225 mAb

0

400

600

Cell #1

Cell #2

Cell #3

Time (min)

N
uc

le
ar

 E
R

K
-G

F
P

N
uc

le
ar

 E
R

K
-G

F
P

Time (min)

300200100

600400200

#1

#3

#2

A

C

B

Figure 2 ERK oscillations are persistent and require the continuous presence of EGF. (A) Effect of termination of EGF binding on ERK–GFP dynamics. The nuclear
level of ERK–GFP fusion protein in a representative cell was followed as described in Figure 1C. EGF (1 ng/ml) was added at the indicated time (84 min). At 255 min, the
cells were rinsed twice with EGF-free medium, and 10 mg/ml of the antagonistic anti-EGFR mAb antibody 225 was added to prevent additional ligand binding. (B) Cells
expressing both ERK–GFP and mRFPnuc were imaged at 371C using a � 20 objective. The indicated cells were chosen for analysis because of their varying ERK–GFP
expression levels. (C) The fluorescence intensities of ERK–GFP co-localized in the nucleus of the cells indicated in (B) were measured at 1-min intervals continuously for
over 10 h. The uncorrected mean pixel intensity levels of nuclear ERK–GFP fusion protein are shown. Source data is available for this figure at www.nature.com/msb.
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of low-expressing cells was approximately two-fold the
endogenous level of ERK2. When the low-expressing cell
population was imaged after EGF addition, we observed
oscillations regardless of the specific level of ERK–GFP fusion
protein in individual cells (Figure 3B).

The translocation of ERK into the nucleus is postulated to be
a consequence of ERK phosphorylation (Lenormand et al,
1993). Thus, we should also be able to detect oscillations in
ERK phosphorylation states. We were unable to reliably image
phosphorylated ERK in individual wild-type cells over time
using anti-phosphoERK antibodies because of the low level of
ERK expression (data not shown). However, we found that we
could detect evidence of oscillating ERK phosphorylation in
cell populations using either an ELISA (Figure 3C) or a western
blot analysis (Figure 3E). The pattern of peaks and troughs,
which we observed in the ERK–GFP-expressing cells was very
similar to that predicted from averaging their oscillating
translocation pattern measured individually in multiple fields
of cells (Figure 3D). We also measured the levels of phospho-
ERK in nontransfected HMECs after EGF treatment and
observed a similar pattern (Figure 3C and E). Interestingly,
we observed that the density at which the cells were grown had
a pronounced effect on the population-averaged oscillations
of the ERK–GFP fusion protein (Figure 3D). The higher the
cell density, the lower the fraction of oscillating cells. We
confirmed the density dependency of ERK oscillations in
nontransfected cells as well (Figure 3E and F). At densities of
1�104 cells per cm2, some degree of oscillation could be
observed in the average cell population (Figure 3E), but at high
cell densities, only an initial translocation could be detected
(Figure 3F).

Quantitative analysis of ERK oscillation
characteristics

To explore the apparent effect of context on ERK oscillations,
we quantified the characteristics of the oscillations as a
function of both cell density and EGF concentration. Using a
waveform classification scheme (see Materials and methods
and Supplementary information), we grouped oscillating cells
into one of two groups: continuous oscillations (clean) or
erratic oscillations (noisy). The difference between these two
groups appears to be due to the relative magnitude of the
oscillations, which allows them to be reliably detected by
Fourier analysis (see Supplementary information). As shown
in Figure 4A, cell density had a profound effect on the fraction
of clean oscillators, which ranged from nearly 100% at very
low densities to essentially none at confluence. The fraction of
oscillating cells also decreased with EGF concentration, being
maximal at 0.1 ng/ml and monotonically decreasing at higher
concentrations (Figure 4B). The percentage of clean oscillators
showed weak concentration dependence, decreasing from
54% at 0.1 ng/ml to 33% at 10 ng/ml. We found that the total
level of ERK phosphorylation measured by an ELISA increased
significantly with EGF concentration over the entire range
used for the imaging experiments (Supplementary Figure S5).
The ERK oscillations could be observed even at EGF
concentrations that elicited only low levels of ERK phosphor-
ylation (Supplementary Figure S5).
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Figure 3 Effects of ERK–GFP expression levels and cell density on ERK
phosphorylation and oscillations. (A) Populations of cells expressing ERK–GFP
by retroviral transduction were flow-sorted into groups on the basis of level of
expression. Quantification of a western blot of the parent cells and sorted
populations expressing the lowest (Low) and higher (High) level of ERK–GFP
using an anti-pan-ERK primary antibody is shown. Exposures were kept in the
linear range as assessed by serial sample dilution (data not shown) and numbers
correspond to the integrated density of the bands corresponding to ERK1,
ERK2 and ERK–GFP. (B) Relative levels of nuclear ERK–GFP fusion protein of
three cells corresponding to the ‘low’ population after stimulation with 1 ng/ml of
EGF (at dotted line). The highest, lowest and intermediate ERK–GFP-expressing
cell from a single microscope field are shown. Images were taken at 1-min
intervals and analyzed as described in Figure 1. (C) Cells corresponding to the
‘low’ population and the parental, wild-type (WT) population were plated at a
density of B2� 104 cells per cm2 and stimulated with 1 ng/ml of EGF. At 2-min
intervals, plates of cells were collected and the level of phosphorylated ERK was
determined by ELISA. Error bars represent ±s.d. values of replicate
measurements. (D) Profiles were obtained by averaging the responses of
individual cells from triplicate fields of cells grown at the indicated cell density.
Both oscillating as well as nonoscillating cells were included in the average.
For each cell density, the mean nuclear ERK–GFP value before ligand addition
was subtracted from the profiles to place them on the same scale. (E) Parental,
non-transfected cells were plated at a density of 5� 104 cells per cm2 and
cells were collected at 3-min intervals after addition of 1 ng/ml EGF and
processed for western blot analysis. Equal amounts of protein were loaded in
each lane and parallel blots were probed for total ERK and phospho-ERK, which
were quantified using chemiluminescence. Upper panel is the average result
from three biological replicates ±s.e.m. Lower panel is a representative blot
from one of the experiments. (F) Same as (C), but using cells plated at a density
of 1.1� 105 cells per cm2. Source data is available for this figure at
www.nature.com/msb.
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The shape and frequency of ERK oscillations, did not seem
to be sensitive to cell density (Figure 4C, top panel) or EGF
concentration (Figure 4D, top panel). The oscillation wave-
forms were distinctly asymmetric, with a rapid rise time of
B6 min and a decay time of B9 min (Figure 4C and D, top
panels). The oscillation time periods, determined using time
domain analysis, varied between 11 and 23 min across the
entire spectrum of EGF concentrations (Figure 4E). We
estimated an average waveform periodicity of 15.9±4.3 min
using Fourier Transform (FT) analysis and of 14.9±2.2 min
using time domain analysis. Almost all individual oscillating
cells displayed a decay time that was greater than the rise time
irrespective of EGF dose (Figure 4F).

We also computed normalized oscillation amplitudes for the
clean oscillators by dividing their absolute pulse amplitude with
their nuclear ERK–GFP fusion protein level. The oscillation
amplitudes of individual cells varied in a broad range under any
given treatment (error bars in bottom panels of Figure 4C and D).
The mean oscillation amplitude decreased significantly with cell
density (Figure 4C) and showed a relatively weak proportional
relationship with EGF dose (Figure 4D).

Mathematical model for nuclear–cytoplasmic
ERK oscillations

To investigate the mechanism underlying ERK oscillations, we
constructed a mathematical model for ERK activation and

transport (Figure 5). Details of model construction are
presented in Materials and methods section. Briefly, we chose
the more general Huang–Ferrell formulation for the biochem-
ical reactions in the ERK activation cascade (Huang and
Ferrell, 1996; Qiao et al, 2007), in which each of the
phosphorylation and dephosphorylation steps is modeled
using explicit enzyme–substrate binding and catalysis reac-
tions. The robustness of the ERK oscillation time period to
changes in ligand concentration suggests that the underlying
system is a negative feedback oscillator (Tsai et al, 2008).
Hence, as in Kholodenko’s treatment (Kholodenko, 2000), we
included negative feedback from dually phosphorylated ERK
to the cascade input (dotted red line in Figure 5), and chose our
initial biochemical parameter values from that study.

In our preliminary analysis, we observed that our initial
model formulation was in disagreement with one of the key
features observed in our experiments. Our experimental data
indicate that the oscillation time period is largely insensitive to
the cellular ERK expression level (Figure 3B). To capture this
feature, we had to make the extent of ERK phosphorylation
insensitive to the ERK expression level. We achieved this by
modeling the complex formation reactions between ERK and
MEK species (reactions 7, 9 and 11; Figure 5) with rates that
saturated with the ERK level becoming essentially indepen-
dent of ERK concentration, rather than treating them as simple
second order reactions. Biochemically, this could be accom-
plished by requiring scaffold proteins for ERK phosphorylation
or simply making MEK rate limiting. We combined our
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Figure 4 Quantitative analysis of ERK oscillation characteristics of individual cells. (A) Cells were plated at densities ranging from 1–16� 104 cells per cm2 and
treated with 1 ng/ml EGF. Oscillations were followed for at least 10 h at 371C at 1-min sampling intervals. All individual cells in three random fields were classified as
clean, noisy or negative oscillators using waveform analysis (see Supplementary information). (B) Cells were plated at 2� 104 cells per cm2 and treated with the
indicated concentrations of EGF. Oscillations were followed for at least 10 h and classified as described in Supplementary information (see Supplementary Figure S4).
(C, D) Effect of (C) cell density and (D) EGF concentration on oscillation waveform characteristics. Top panels present characteristic oscillation times. The time periods
of all oscillators (open circles) or of the clean oscillators (closed circles) were determined by Fourier analysis or time domain analysis, respectively. The rise times (open
squares) and decay times (closed squares) of the oscillation pulses for the clean oscillators are also shown. Bottom panel presents the normalized oscillation amplitude
of the clean oscillators. Values represent mean±s.d. obtained from at least 30 cells. (E) Histogram distribution of time periods of individual cells measured across the
entire range of EGF concentrations. (F) Rise and decay times for individual cells measured at various EGF concentrations.
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biochemical model for the ERK cascade with the nuclear–
cytoplasmic shuttling model given by Fujioka et al (2006) to
model nuclear ERK dynamics (Figure 5). We modified
biochemical rates and phosphatase abundances to match the
nuclear ERK oscillation time period, rise and decay times
measured in our experiments, while keeping the transport
rates fixed. This constitutes our ‘base parameter set’ (Supple-
mentary Table S1).

Oscillation characteristics predicted by the model for the
base parameter set are presented in Figure 6. At an input
strength E1tot¼0.02mM, oscillations of total nuclear ERK occur
with a time period of 15 min, a rise time of 6 min and a decay
time of 9 min. Oscillations in phospho-ERK in the nucleus, the
species relevant for transcription, are of an amplitude higher
than that of total nuclear ERK (Figure 6A). The input strength
E1tot can be interpreted as the total concentration of active
MKKKK (Ras) available for stimulating the ERK cascade, and is
expected to be proportional to the ligand concentration used
(Tian et al, 2007). To examine the robustness of the oscillations
to changes in the input, we determined the nature of the ERK
response, and the maximum nuclear ERK-PP levels for various
values of E1tot (Figure 6B). We observed that the system
exhibits two Hopf bifurcations, and that oscillations occur over
a range of two orders of magnitude of input strengths from

E1tot¼2.5�10�3 to 2.7�10�1 mM. This large oscillatory regime
is consistent with our experimental results for the effect of EGF
concentrations on ERK oscillations. For E1tot o2.5�10�3 mM,
the system stays in an ‘off’ state with negligible ERK activation.
The lower Hopf bifurcation coincides with the threshold input
strength beyond which ERK activation occurs. We observe a
roughly linear dose response in the oscillatory regime (red
dotted line, Figure 6B). For E1tot 42.7�10�1 mM, oscillations
cease and we observe sustained ERK activation at a level that is
relatively insensitive to the input strength. The graded dose
response predicted for the oscillatory regime is consistent with
our biochemical measurements of ERK phosphorylation under
oscillatory conditions (Supplementary Figure S5). In the
oscillatory regime the time period is predicted to vary from
B7 to 19 min and the decay time is greater than the rise time
for E1tot 4B8�10�3 mM (Figure 6C).

We also examined the effect of altering the total ERK
expression levels in a six-fold range on the oscillation
characteristics at a fixed input strength E1tot¼0.02mM
(Figure 6D). For constructing our base parameter set, we
assumed that the total ERK concentration in wild-type HMEC
is 1.2 mM (expressed in terms of the cytoplasmic volume), a
number that is based on estimates in other cell types (Huang
and Ferrell, 1996; Brightman and Fell, 2000; Schoeberl et al,
2002; Fujioka et al, 2006). As the model is constructed as a
means to explain the oscillatory behavior in ERK—GFP-
expressing cells, we set the ERK concentration in the base
parameter set to 4.8 mM (Supplementary Table S1) four times
higher than the assumed wild-type level. When we varied the
total ERK concentration from one to six times the assumed
wild-type level, oscillations were observed over the entire
range of ERK expression levels tested. Although at the wild-
type ERK level (black line), oscillations occurred with a time
period of B11 min, at two to six times the wild-type level the
oscillation time period was predicted to be B15 min. The
robustness of the time period to ERK expression levels is
consistent with our experimental observations (Figure 3B).

Qiao et al (2007) have recently shown that the MAPK
cascade is capable of generating oscillations even in the
absence of the explicit negative feedback loop. To examine
whether a negative feedback loop is necessary to match our
experimental observations, we removed the feedback and
randomly sampled the biochemical parameter space of our
model in a range of two orders of magnitude around the base
parameter set. From our analysis of 10 000 random samples,
we observed that B7% of the parameter sets exhibited Hopf
bifurcations characteristic of oscillating systems. However,
oscillations in the absence of feedback occurred over narrow
ranges of the input strength, and with a time period that was
extremely sensitive to the input. None of the oscillatory
parameter sets matched our experimental observations in
terms of the oscillation shape, time period robustness and
width of the oscillatory regime (Supplementary Figure S6).
This was true even when we sampled the parameter space in a
range of two orders of magnitude around the parameter values
listed in the study by Qiao et al (2007) (data not shown). In
contrast, when we sampled the parameter space around our
base set in the presence of negative feedback, we observed that
30% of the parameter sets were oscillatory, and were able to
identify four parameter sets that matched the following

Figure 5 Mathematical model for ERK activation and transport. Species and
reactions indicated in red occur only in the cytoplasm, whereas those in black are
allowed to occur in both the cytoplasm and the nucleus. Negative feedback from
dually phosphorylated ERK to the cascade input is shown as a red dotted line.
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stringent criteria: (i) oscillations over a range of two orders of
magnitude of inputs, (ii) time period in the range of 5–25 min
within the oscillatory regime, and (iii) decay time greater than
the rise time for the majority of the inputs within the
oscillatory regime. These additional parameter sets are listed
in Supplementary Table S1. Overall, the explicit negative
feedback loop was necessary to match our experimental
observations. In the following sections, we present a more
detailed analysis of our negative feedback model with the base
parameter set. Qualitatively similar results would be obtained
for any of the other four parameter sets listed in Supple-
mentary Table S1.

Model predictions for oscillations in a cell
population

We tested our model by evaluating its ability to predict the
oscillation characteristics in a population of cells with cell-to-
cell parameter variability. Our objective was to determine
whether the model could accurately match our experimental
results for the effect of EGF concentration on ERK oscillations
(Figure 4B and D–F). We simulated cell-to-cell variability by
sampling the inputs and parameters for each theoretical ‘cell’
from log-normal distributions with a coefficient of variation
(CV) of 0.2. This distribution is consistent with recently
reported experimental measurements of the variability in
protein expression between individual cells in a population
(Spencer et al, 2009). Although the input strength E1tot will
be proportional to the EGF concentration, the quantitative
relationship between the two is not known. In our simulations,

the total percentage of oscillating cells showed a biphasic
dependence on the input strength with E1tot peaking at
B0.01mM (data not shown). Thus, we set the input strength
of 0.01mM to be equivalent to 0.1 ng/ml of EGF, as that was the
concentration that induced maximal oscillations in our cells
(Supplementary Figure S5). To estimate the fraction of clean
oscillators, we defined a nuclear ERK oscillation amplitude
cutoff of 0.07 mM—oscillations with amplitude lower than this
value were deemed to be noisy. The amplitude cutoff was
chosen so as to match the minimum oscillation time period
determined in our experimental analysis of the clean
oscillators (Figure 4E). In our simulations, the lowest observed
time period was B6 min, but oscillations with time period
lower than 10 min were of amplitude o0.07mM.

Model predictions for the population response to different
input strengths are in strong agreement with our experimental
results (Figure 7). The total oscillating fraction and the percent
of clean oscillators decreased when E1tot was increased from
0.01 to 0.2 mM (Figure 7A). As in the experiments, the
oscillation time period, rise and decay times remained
essentially unchanged with input strength (Figure 7B). The
distribution of time periods was broader than in the experi-
ments with the time period varying from 10 to 32 min
(Figure 7C). It is possible that this is due to overestimation
of the parameter variability in our simulations. Although
protein abundances are expected to vary from cell to cell, it is
unclear whether the rates of enzyme–substrate binding and
catalysis would vary to the extent considered in our simula-
tions. The model predicts an asymmetric oscillation shape as
in the experiments with most of the cells displaying a decay
time that is greater than the rise time (Figure 7D). Overall, the

Figure 6 Oscillation characteristics for the base parameter set. (A) Total ERK (black) and phospho-ERK (red) profiles in the nucleus at input strength, E1tot¼0.02 mM.
(B) Maximum nuclear ERK-PP is plotted as a function of E1tot. The dose response in the oscillatory regime is depicted as a red dotted line. (C) Time period, rise and
decay time of oscillations are plotted as a function of E1tot. (D) Nuclear ERK profiles are shown for cells expressing different amounts of total cellular ERK at
E1tot¼0.02 mM. ERK concentrations reported in (B, D) are based on the cytoplasmic volume.
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model is able to quantitatively reproduce the robustness of the
oscillations and the degree of cell-to-cell variability seen in our
experiments.

Model predictions for oscillation sensitivity
to kinase and phosphatase levels

To examine the sensitivity of ERK oscillations to kinase and
phosphatase levels, we constructed altered parameter sets by
varying each of the three kinase and phosphatase abundances
one at a time from one-fifth to five times their value in the base
parameter set (Supplementary Figure S7). We then quantified
the fraction of oscillating cells in populations of 100 cells with
parameters log-normally distributed around each altered
parameter set and inputs distributed around E1tot¼0.02mM.
The fraction of oscillating cells showed the strongest depen-
dence on the abundances of Raf and P1 (the MEK phospha-
tase) dropping to 0 when the Raf level was decreased to one-
fifth or the P1 level was increased to five times their respective
base values. We observed modest sensitivity to the levels of
MEK and P2 (the ERK phosphatase), and very little sensitivity
to the levels of ERK and E2 (the Raf phosphatase) (Supple-
mentary Figure S7).

To generate testable predictions, we simulated the effect of
simultaneously inhibiting all of the phosphatases in the ERK
cascade in a manner that would be expected when using an
inhibitor such as sodium orthovanadate (Figure 8A). We
simulated phosphatase inhibition by reducing all of the
phosphatases in our model by the same fractional amount,
and considered the population response to simulated input

strengths of 0.02 and 0.001mM. The former is expected to
mimic the approximate effects of adding 1 ng/ml EGF. The
input strength of 0.001mM is 5% of the optimal value for the
base set and is set to mimic the endogenous EGFR autocrine
signaling that we observe in this cell type (Rodland et al, 2008).
At an input strength of 0.02mM, phosphatase inhibition is
predicted to have a roughly monotonic inhibitory effect on
ERK oscillations. Interestingly, at an input strength of
0.001 mM, ERK oscillations are predicted to show a biphasic
dependence on phosphatase inhibition levels, increasing with
phosphatase inhibition up to the 75% inhibition level and
decreasing sharply thereafter.

Model validation

We experimentally tested the model predictions for the effect
of phosphatase inhibition on ERK oscillations by pretreating
cells for 2 h with sodium orthovanadate before the addition of
0 or 1 ng/ml EGF (Figure 8B). We imaged ERK oscillations and
quantified the fraction of clean oscillators as described in
Materials and methods and Supplementary information.
Untreated cells did not exhibit oscillations. However, pretreat-
ment with 5 mM vanadate alone induced clean oscillations in
approximately 30% of the cells. A higher concentration of
vanadate (50 mM) resulted in a much smaller oscillating
fraction. In experiments in which we added 1 ng/ml exogenous
EGF, pretreatment with vanadate resulted in a dose-dependent
decrease in the oscillating fraction. These results are in
qualitative agreement with our model predictions.

In our mathematical model, we assume that net ERK
phosphorylation is not sensitive to increasing levels of ERK

Figure 7 Model predictions for oscillations in a cell population. (A) Percentage of total and clean oscillations in a simulated cell population as a function of the
input strength, E1tot. For each value of E1tot, we considered 100 theoretical ‘cells’ with inputs and parameters for each cell being sampled from log-normal distributions
with a coefficient of variation 0.2. Oscillations with absolute amplitude less than 0.07 mM were deemed to be noisy. (B) Time period (filled circles), rise time (open
squares) and decay time (filled squares) are presented as a function of E1tot. Results represent mean±s.d. calculated using the clean oscillators for each E1tot value.
(C, D) (C) Histogram distribution of oscillation time periods and rise, (D) decay times of individual cells calculated using all of the clean oscillators across the entire range
of E1tot values.
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expression above a base value. This assumption was necessary
to match the experimentally observed robustness of the
oscillation time period, particularly its insensitivity to different
levels of ERK–GFP expression. To test this assumption and to
further validate our model, we treated both parental cells and
ERK–GFP-expressing cells with increasing concentrations of
EGF and used western blot analysis to measure the levels of
phosphorylation of both the endogenous ERK and the
exogenous ERK–GFP fusion protein. As shown in Figure 8C
and D, we observed that ERK phosphorylation had a similar
EGF dose-dependency in both cell types. Significantly, the total
amount of phosphorylated ERK (ERKþ ERK–GFP) in the
transfected cells was similar to that observed in the parental
cell despite the four-fold level of ERK–GFP overexpression
(Figure 3A). The suppression of endogenous ERK phosphor-
ylation by ERK–GFP expression (Figure 8C) is probably due to
substrate competition and indicates that cells have a limited
capacity for ERK phosphorylation. This explains the relative
insensitivity of ERK oscillations to the level of ERK–GFP
expression, and serves as a further validation of our
mathematical model.

Discussion

Our study is, to the best of our knowledge, the first to
experimentally demonstrate that ERK can oscillate between

the nucleus and cytoplasm after cell activation. As illustrated
by our analysis of ERK-mediated negative feedback, ERK
oscillatory dynamics can provide extremely useful information
for constraining models of this important signaling pathway.
In this study, we have used EGF activation of human epithelial
cells as our model system. We have also observed that
hepatocyte growth factor will induce oscillations in our cell
type (our own unpublished observations) and have seen rapid
oscillations of ERK–GFP fusion protein in mouse JB6 cells in
response to fibroblast growth factor, but not EGF (T Weber and
W Chrisler, unpublished observations). Interestingly, ERK
oscillations in the JB6 cells occurred even at high cell densities.
Thus, oscillations are likely to be a general property of the ERK
pathway in many different cell types, although their char-
acteristics will probably vary depending on the cell type and
primary stimulus.

The observation that ERK oscillations have previously
escaped detection might seem remarkable except for their
characteristics. They are far more rapid than the sampling
periods of most biochemical assays used to detect ERK activity.
They are strongly inhibited by cell contact, at least in our cells,
which would lower their chance of being detected using
common protocols. The asynchronous nature of the oscilla-
tions would also tend to obscure their presence. Averaging
nuclear ERK–GFP levels from even a small population of cells
obscured oscillations beyond the first two cycles (Figure 3D).
Finally, the use of transformed cells to investigate the ERK
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pathway might be a contributing factor because the dysregula-
tion of signaling pathways that occurs during cell transforma-
tion could move the parameters of the ERK pathway out of the
oscillatory regime.

Although ERK oscillations are remarkable for their persis-
tence and regularity, whether they contain information that
can cause differential cell responses is unclear. Extracellular
signal-regulated kinase is a potent activator of many nuclear
transcription factors, and oscillations could be a means to
selectively activate a subset of ERK-responsive genes, ana-
logous to oscillatory calcium signaling. In the case of calcium
oscillations, information about stimulus dose can be encoded
both in the amplitude and frequency of oscillations, which in
turn have been proposed to control the level and specificity of
gene expression (Dolmetsch et al, 1998). Unlike calcium
oscillations, however, ERK oscillations do not display strong
frequency or amplitude modulation in response to ligand dose.
However, the strong dependence of the oscillation on cell
density is consistent with it being a highly regulated process
that could encode contextual information. It has been reported
that different primary stimuli in PC12 cells can induce either
transient or sustained activation of ERK and that these induce
different cellular fates (Sasagawa et al, 2005; Santos et al,
2007). Conditions giving rise to oscillations are associated with
an apparent sustained activation of ERK, whereas conditions
that suppress oscillations give rise to transient ERK activation
(Figure 3E and F). Thus, oscillation could be a mechanism
underlying different cellular responses to persistent versus
transient ERK activation. Although a direct role for ERK
oscillations in controlling gene expression is intriguing, the
oscillation could also simply be a consequence of the feedback
control and the regulatory structure of the ERK pathway
without directly encoding information. Experiments are
underway to explore these different possibilities.

The existence of oscillatory behavior represents a valuable
constraint that can be used to understand the regulatory
structure of a biochemical system. Mathematical modeling
becomes a particularly effective tool in this scenario. Our
mathematical analysis of ERK activation and transport showed
that an explicit negative feedback loop was necessary to match
our experimental results. Although oscillations were possible
in the absence of explicit feedback (Supplementary Figure S6),
they only occurred over a narrow range of input strengths and
had a periodicity that was strongly dependent on the strength
of the input. For our base parameter set, the ERK cascade
was extremely ultrasensitive (Hill coefficient, nH¼393) in the
absence of feedback. Introduction of negative feedback
resulted in robust oscillations that occurred with a narrow
range of time periods over a broad range of input strengths.
This system is a pure negative feedback oscillator as shown in
the study by Kholodenko (2000). We found 4 other parameter
sets (Supplementary Table S1) that in the presence of negative
feedback yielded similarly robust oscillations. Two of these
involved ultrasensitive cascades (nH ¼5 and 17) that were
rendered oscillatory due to the negative feedback (negative
feedback oscillators). The remaining two solutions were more
complex in that they exhibited relaxation oscillations as shown
in the study by Qiao et al (2007) in the absence of feedback, but
in a less than 1.3-fold range of input strengths. The negative
feedback loop was necessary to make these solutions robust

oscillators, and hence observable under normal experimental
conditions.

Whether oscillations occur in other cell types would depend
on the inherent properties of their ERK cascades and the
existence of the negative feedback loop modeled here. To
further characterize the source of oscillations in our model and
determine whether oscillations would be possible in other cell
types, we compared the parameters of our ERK cascade model
with the parameters in other published models for this reaction
system (summarized in the Excel file in the Supplementary
information). We observed that our kinase and phosphatase
abundances are within the range reported in other models.
However, for the negative feedback oscillators in our study
(parameter sets P0, P3 and P4 in Supplementary Table S1) and
in the study by Kholodenko (2000), the enzymatic reaction
parameters are such that the kinases and phosphatases rapidly
switch from an unsaturated state to a fully substrate-saturated
state during cascade activation and deactivation. Specifically,
Km/S values—the ratios of the enzymes’ Km values to their
substrate concentrations—are smaller in the oscillatory
models compared with other published models. As noted in
the study by Kholodenko (2000), this type of partial enzyme
saturation contributes to strong cascade ultrasensitivity, and
the possibility of oscillations in the presence of negative
feedback. Although existing ERK models in the literature in
general had higher Km/S values, we observed that most of these
models were also ultrasensitive with Hill coefficients in the
range 1.5–10. These ERK cascade models were constructed and
parameterized to explain nonoscillatory, transient ERK activa-
tion in response to ligand stimulation. Hence, in these models
the ERK cascade is couched within regulatory mechanisms that
turn off the input to the cascade. It is possible that the
nonlinearity of the ERK cascade is underestimated in this
scenario, and that the true cascade parameters can only be
determined in the absence of such regulatory mechanisms.
Further, the negative feedback loop modeled in our study could
also be present in other cell types, but only be evident when
stronger regulatory mechanisms are absent. Thus, we suggest
that oscillations may occur in many cell types, but might only
be revealed using single-cell observations under appropriate
stimulus and cell culture conditions.

Our negative feedback model was able to correctly predict
the effect of phosphatase inhibition on ERK oscillations (Figure
8A and B). Further, the model was able to quantitatively
predict the oscillation characteristics in a population of cells in
response to different ligand concentrations (Figure 7). We did
not, however, attempt to model the effect of cell density on the
oscillations, as the exact mechanisms by which density affects
the ERK cascade remain to be established. At higher cell
densities, we observed both a smaller ERK activation response
and a transient response (Figure 3D). It is possible that
intercellular interactions result in a sequestration or redis-
tribution of the adaptor molecules required for ERK activation,
thereby decreasing the input to the cascade. Additional
regulatory mechanisms, such as an increase in the relative
abundance of Dok to Shc in the model given by Sasagawa et al
(2005), might be necessary to explain the transient nature of
the ERK response at high cell densities.

Our investigation of the characteristics of the oscillatory
behavior of the ERK pathway was greatly facilitated by our
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automated imaging method because it can generate a very
detailed ERK waveform. It can also follow hundreds of cells
simultaneously at a time resolution of o1 min and provide
data on associated behaviors, such as gene expression, cell
migration and cell division. Furthermore, the effects of
introducing genes and siRNA into individual cells on ERK
oscillations can be quantitatively evaluated and used to refine
current models of ERK signaling. This should greatly facilitate
the productive coupling of experiments to mathematical
theory and help delineate the full regulatory structure of the
MAPK cascade.

Materials and methods

General

Unless specified, all chemicals were purchased from Sigma. Anti-
bodies against phosphoproteins were obtained from Cell Signaling
Technology and secondary antibodies were from Jackson Immuno-
research Laboratories. Monomeric RFP was kindly provided by R
Campbell (Department of Pharmacology, University of California at
San Diego). Human mammary epithelial cell (HMEC) line 184A1 was
obtained from M Stampfer (Lawrence Berkeley National Laboratory).
The HMECs were maintained in DFCI-1 medium (Band and Sager,
1989) as previously described (Wiley et al, 1998). Genes were
introduced into these cells by retroviral transduction using virus
from the medium of transiently transfected Phoenix cells (Kitamura
et al, 1995).

Monitoring ERK translocation

The ERK1–GFP and mRFPnuc were subcloned into the retroviral
vectors pBM-IRESpuro (Garton et al, 2002) and pBM-IRESblasticidin
(the pBM-IRES vector with blasticidin resistance substituted for
puromycin resistance), respectively. The ERK1 was fused to GFP at
its amino terminus, whereas monomeric RFP (Campbell et al, 2002)
was fused to three copies of the nuclear-localization sequence of
Simian Virus 40 large T-antigen at its carboxyl terminus by PCR using
the EYFP-Nuc vector as a template (Clontech). Cells expressing both
markers were selected by antibiotic resistance and were found to grow
at a rate indistinguishable from the parent cells.

Double-labeled cells were seeded at varying densities onto a 24-well
Sensoplate coverlip (Greiner Bio-One) and allowed to attach for 4 h at
371C under 5% CO2. After 4 h, cells were washed and then incubated
overnight with DFCI-1 lacking EGF. Before imaging, the medium was
replaced with 2 ml DFHB lacking EGF and bicarbonate, but containing
20 mM HEPES (pH 7.4). The cells were then placed onto a Nikon
Eclipse TE300 inverted microscope equipped with an environment
chamber (In Vivio Scientific, LLC) maintained at 371C and allowed to
equilibrate 1 h before imaging. Three random fields in each well were
selected for imaging of both GFP (488 nm Ex; 508 nm Em) and mRFP
(579 nm Ex; 604 nm Em) every 60 s with a Nikon Plan APO � 20/0.75
objective using a Retiga 1300 cooled CCD camera (QImaging)
controlled by Volocity Acquisition (Improvision) software. EGF
(Peprotech) was added in a 20-ml volume to achieve the desired final
concentration.

Epifluorescence images of mRFP-tagged nuclei (red channel) were
analyzed using the tracking utility in the Volocity software to track the
locations of individual cell nuclei during the time course of the
experiment. Nuclei were identified in the red channel using the SD
Intensity function (2–100 limits), a medium noise filter, separating
touching objects (size 0.1mm2) and a pixel count of 4100. Cell nuclei
tracks starting from time t¼0 and containing at least 150 continuous
frames (total tracking time B150 min) were used for subsequent
analysis. The mean ERK–GFP (green channel) intensity was measured
in the regions occupied by the selected cell nuclei in each of the time
frames. These measurements resulted in continuous nuclear ERK
fluorescence versus time curves for individual cells.

Analysis of ERK phosphorylation

Cells were seeded in 100-mm dishes in DFCI-1 medium and allowed to
attach for 4 h. The medium was then replaced with DFCI-1 lacking EGF
and cells were incubated overnight at 371C. Before the experiment, the
medium was replaced with DFHB lacking EGF and placed in a 371C air
incubator for 3 h. EGF was then added for the specified time and the
reaction was terminated by a quick rinse with ice-cold PBS containing
2 mM sodium orthovanadate (Na3VO4). Approximately 750ml PBS
containing 2 mM Na3VO4 and protease inhibitor cocktail set III
(Calbiochem) was added to each dish and placed on ice. The cells
were scraped into 2-ml microcentrifuge tubes and centrifuged at
1500 r.p.m. for 3 min at 41C using a swinging-bucket rotor. The
supernatant was aspirated and 20 ml of MT-G lysis buffer (20 mM
HEPES (pH 8.0), 1% Triton X-100, 10% glycerol, 150 mM NaCl, 2 mM
Na3OV4, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1% aprotinin
and protease inhibitor cocktail) was added to each tube and incubated
on ice for 15 min. The cell lysates were cleared by centrifuging at
14 000 r.p.m. for 10 min at 41C.

For western blot analysis, approximately 20mg total protein of
each sample was loaded onto a 10% Bis–Tris gel (Invitrogen),
transferred to PVDF membrane and probed for phospho-ERK. The
p42/44 ERK phosphorylation was detected by immunoblotting with a
1:2000 dilution of mouse monoclonal phospho-specific p42/44 ERK
antibody with HRP-conjugated goat anti-mouse secondary antibody
(Jackson Immunoresearch Laboratories) at 1:5000 dilution. Total p42/
44 ERK was detected by immunoblotting with a 1:1000 dilution of
rabbit polyclonal p42/44 antibody with HRP-conjugated goat anti-
rabbit secondary antibody at a 1:5000 dilution. Quantification of p42/
44 ERK phosphorylation and total ERK was performed using a
Boehringer–Mannheim LumiImager and associated image analysis
software.

For ELISA analysis, the phospho-ERK1 (T202/Y204) sandwich
ELISA kit from R&D Systems was used in a 96-well format with slight
modifications. Briefly, after cell lysis in MT-G lysis buffer, approxi-
mately 40 mg of total protein was diluted to a 1:1 ratio with a lysis buffer
supplemented with 8 M urea. The samples were vortexed and
incubated at room temperature for 1 h and then centrifuged at
2000� g for 5 min, and the supernatant was collected in a fresh tube.
The samples were diluted to a final urea concentration of 1 M. Protein
concentrations were measured in each sample using the BCA assay kit
(Pierce). The ELISA assays were typically performed in triplicate for
each sample and the results corrected for protein concentration, using
40 mg as the per-sample standard.

Analysis of ERK oscillation characteristics

We used FT to estimate the frequency component of the oscillations
associated with each cell. We also used a curve-fitting approach to
characterize the oscillatory waveforms in the time domain (see
Supplementary information). We observed that most cells displayed a
single oscillation frequency, although this could vary between
different cells in a given field. By inspecting the waveforms in the
time and frequency domain, we could classify cells as ‘clean’
oscillators, with a single, strong frequency component and a
continuous train of at least 10 oscillations in the time domain
(Supplementary Figure S4A); ‘noisy’ oscillators that display inter-
mittent or very low amplitude oscillations, but with the FT spectrum
showing a peak in the 10�3–2�10�3 Hz range (Supplementary Figure
S4B); and nonoscillators with no dominant peak in the FT spectrum
(Supplementary Figure S4C). Time domain analysis of the clean
oscillators enabled us to quantify the time period, rise time, decay time
and the oscillation amplitude (See Supplementary information).

Mathematical modeling of ERK oscillations

There are several existing models for the MAPK pathway, which vary
widely with regards to model formulation, network structure and
parameter sets (Orton et al, 2005). Further, two distinct mechanisms
have been proposed for MAPK oscillations. The first prediction of
oscillations in the MAPK cascade was made by Kholodenko (2000),
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who showed that cascade ultrasensitivity when combined with an
explicit negative feedback loop from phosphorylated MAPK to the
cascade input can lead to sustained oscillations. This model uses
Michaelis–Menten rate expressions for the phosphorylation steps in
the cascade. The negative feedback can arise either through the ERK-
mediated inhibitory phosphorylation of Sos (Langlois et al, 1995), or
through the inactivation of Raf by ERK-mediated hyperphosphoryla-
tion (Dougherty et al, 2005). Shvartsman and colleagues (Qiao et al,
2007) have recently shown that the MAPK cascade is capable of
generating oscillations even in the absence of this explicit feedback, as
kinase and phosphatase sequestration by their substrates can create
implicit positive and negative feedback within the cascade. We
constructed a mathematical model that would enable us to distinguish
between these two possibilities.

For our analysis, we chose the more general Huang–Ferrell
formulation for the ERK activation cascade (Huang and Ferrell, 1996;
Qiao et al, 2007), in which each of the phosphorylation and
dephosphorylation steps (reactions 1–10; Figure 6A) is modeled using
explicit enzyme–substrate binding and catalysis reactions as opposed
to Michaelis–Menten kinetics. This is the reaction system analyzed in
the study by Qiao et al (2007), and is capable of oscillatory behavior in
the absence of feedback. We modeled the complex formation reactions
between ERK and MEK species (reactions 7, 9 and 11) with rates that
saturated out with the ERK level, rather than treating them as simple
second order reactions. We found that in the absence of this
modification the ERK oscillation time period was extremely sensitive
to the ERK expression level.

We set the total protein abundances for MKKK (Raf), MKK (MEK)
and ERK for our model on the basis of previous estimates (Huang and
Ferrell, 1996; Brightman and Fell, 2000; Schoeberl et al, 2002; Fujioka
et al, 2006) and the assumption that ERK–GFP-expressing cells have a
four times higher ERK level than wild-type cells. We included negative
feedback from dually phosphorylated ERK to the cascade input (dotted
red line in Figure 6A), and chose our remaining parameter values from
the study by Kholodenko (Kholodenko, 2000) to form our initial
parameter set for the ERK cascade. The negative feedback was
modeled as an ERK-PP-induced reduction in the level of freely
available active Ras (variable E1 in Figure 6A).

We combined our biochemical model for the ERK cascade with the
nuclear–cytoplasmic shuttling model given by Fujioka et al (2006) to
model nuclear ERK dynamics (Figure 6A). To make the biochemical
and transport portions of the model compatible, we included the
formation of complexes between unphosphorylated ERK and MEK
(reaction 11, Figure 6A). The negative-feedback model with the initial
parameter set was capable of generating robust oscillations in nuclear
ERK levels within specific ranges of the input strength (E1 in
Figure 6A). We modified the biochemical rates and phosphatase
abundances to match the oscillation time period, rise and decay times
measured in our experiments, while keeping the transport rates fixed.
This constitutes our ‘base parameter set’ (Supplementary Table S1).

Our negative-feedback model consists of a single input, E1tot, which
corresponds to the total level of externally imposed Ras activity. In
addition to this, we have 42 biochemical parameters and 13 nuclear–
cytoplasmic transport parameters, which together determine the
dynamics of the 31 model variables. To examine the oscillation
characteristics for the base parameter set (Figure 6), we chose a single
value for the input strength E1tot and kept all of the parameters fixed as
in the base set. We then varied either the input strength alone or the
total ERK expression level as indicated in Figure 6. To identify other
oscillatory parameter sets that matched our experimental observa-
tions, we randomly varied the biochemical parameters in a range of
two orders of magnitude around the base parameter set, either in the
presence or in the absence of the negative feedback loop. We fixed the
MKKtot and ERKtot levels during this sampling, whereas MKKKtot was
sampled randomly from one-third to three times its value in the base
parameter set. Finally, to examine the effect of cell-to-cell parameter
variability on the oscillation characteristics, we sampled the input for
each theoretical ‘cell’ from a log-normal distribution with mean given
by a specified value of E1tot and a CV of 0.2. The 42 biochemical
parameters for each cell were sampled from a log-normal distribution
with mean given by the base parameter set and a CVof 0.2. Throughout
our analysis, we only consider variations in the biochemical reactions
of the cascade both for the sake of simplicity, and owing to the fact that

the transport rates have experimentally determined values (Fujioka
et al, 2006).

For any given set of biochemical parameters, we determined the
existence of Hopf bifurcations by varying the input strength E1tot from
0 to 10mM in the bifurcation analysis software AUTO (http://
indy.cs.concordia.ca/auto/). AUTO reports the input strength values,
if any, under which oscillations occur, and hence for a chosen input,
we can immediately determine whether a cell would oscillate. To
compute the oscillation profiles for a particular value of the input, we
numerically integrated the model equations using MATLAB (Math-
works, Natick, MA) to determine the time period, rise and decay times.
The total nuclear ERK concentration was used as the readout of the
model to be compared with experimental observations. Detailed
descriptions of the mathematical model and solution methodology are
provided in the Supplementary information.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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