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Growing evidences have indicated that microRNAs (miRNAs) play a significant role

relating to many important bioprocesses; their mutations and disorders will cause the

occurrence of various complex diseases. The prediction of miRNAs associated with

underlying diseases via computational approaches is beneficial to identify biomarkers

and discover specific medicine, which can greatly reduce the cost of diagnosis, cure,

prognosis, and prevention of human diseases. However, how to further achieve a more

reliable prediction of potential miRNA–disease associations with effective integration of

different biological data is a challenge for researchers. In this study, we proposed a

computational model by using a federated method of combined multiple-similarities

fusion and space projection (MSFSP). MSFSP firstly fused the integrated disease

similarity (composed of disease semantic similarity, disease functional similarity, and

disease Hamming similarity) with the integrated miRNA similarity (composed of miRNA

functional similarity, miRNA sequence similarity, and miRNA Hamming similarity).

Secondly, it constructed the weighted network of miRNA–disease associations from

the experimentally verified Boolean network of miRNA–disease associations by using

similarity networks. Finally, it calculated the prediction results by weighting miRNA

space projection scores and the disease space projection scores. Leave-one-out

cross-validation demonstrated that MSFSP has the distinguished predictive accuracy

with area under the receiver operating characteristics curve (AUC) of 0.9613 better than

that of five other existing models. In case studies, the predictive ability of MSFSP was

further confirmed as 96 and 98% of the top 50 predictions for prostatic neoplasms and

lung neoplasms were successfully validated by experimental evidences and supporting

experimental evidences were also found for 100% of the top 50 predictions for

isolated diseases.

Keywords: disease similarity, miRNA similarity, multiple-similarities fusion, space projection, computational

prediction model
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INTRODUCTION

The microRNAs (miRNAs) widely found in eukaryotes are those
non-coding RNAs of about 20–25 nucleotides (Iorio et al., 2005).
Life processes such as cell growth (Fernando et al., 2012; Zhu
et al., 2016), differentiation (Miska, 2005), proliferation (Cheng
et al., 2005), aging (Xu et al., 2004), signal transduction (Carthew
and Sontheimer, 2009), etc. have been found to be associated with
miRNAs. Increasing evidences continually confirm that complex
diseases in humans including cancers, Alzheimer, diabetes, and
lymphoma are closely related to miRNAs. In addition, some
former researches proved that miRNAs can be considered as
tumor genes or tumor suppressor genes. Therefore, inferring
novel miRNA–disease associations have clinical significance for
various human diseases due to miRNAs’ potential roles in
diagnosis biomarkers and treatment targets. Massive associations
have been obtained via traditional biotic experiments and stored
in some public databases. The traditional bio-experimental
methods have high precision, but whose process is complex
and time-consuming (Liang et al., 2019). Predicting and ranking
potential miRNA–disease associations effectively and rapidly
via computational identification methods are extremely vital to
speed up the bio-experimental validation processes as well as
reduce the blindness and time consumption of bio-experiments
(Chen et al., 2015c, 2019c; Zeng et al., 2016b; Peng et al., 2017a,
2020).

On the basic assumption that functionally related miRNAs

tend to be associated with phenotypically similar diseases and
vice versa (Lu et al., 2008; Bandyopadhyay et al., 2010; Wang
et al., 2010), various computational identification methods have

been proposed continuously (Chen et al., 2017d, 2018c; Chen
and Qu, 2018). Jiang et al. (2010a) proposed a miRNA–disease
association prediction model that first used the hypergeometric
distribution and constructed the functionally related miRNA
network through the number of shared target genes to uncover
the associations between miRNAs and diseases, but it needs
to integrate other bioinformatics sources to improve model
performance. Jiang et al. (2010b) proposed an approach that
prioritized disease-relatedmiRNAs based on integrating genomic
data. Li et al. (2011) proposed a computational framework
with which to prioritize human cancer-related miRNAs; it
used the functional consistency score of miRNA-target genes
and cancer-related genes to measure the associations between
cancer and miRNAs. Xu et al. (2014) systematically prioritized
disease-specific miRNAs by using the known disease genes
and context-dependent miRNA-target interactions derived from
the expression data of a matched miRNA–miRNA pair. Lack
of excellent predictive performance of the above-mentioned
methods may be attributed to the high false positive rate of the
target genes.

Li J. et al. (2014) utilized recommendation systems to predict
the associations between environmental factors, miRNAs, and
diseases, but these cannot predict isolated diseases (without
any known associated miRNAs) and new miRNAs (without
any known associated diseases). Zhang Y. et al. (2019) used
bipartite network projection (LSGSP) with known associations to
reconstruct the family information, miRNA similarity network,

and disease similarity network for predicting the potential
miRNA–disease associations. Although LSGSP does not need
negative samples, it cannot achieve good performance only with
limited number of known associations. Chen et al. (2018h)
proposed a bipartite recommendation algorithm to predict
miRNA–disease associations (BNPMDA) that improved the
prediction accuracy distinctly with the utilization of bias ratings.
Chen et al. (2018b) proposed a novel information diffusion
method based on network consistency (IDNC) for uncovering
disease-related miRNAs. Despite not needing negative samples
and simple algorithm design, too many parameters in different
databases make IDNC take a long time to find the optimal values.

In recent years, some researchers have attempted to use
the topological similarity of graph to predict a miRNA–disease
association (Nalluri et al., 2015; Chen et al., 2016b, 2017c,
2018e; Sun et al., 2016; You et al., 2017; Zeng et al., 2018).
Chen et al. (2017b) proposed the super-disease and miRNA
concepts to design a novel computational model with which
to infer miRNA–disease associations. Bipartite heterogeneous
network method based on co-neighbor (Chen et al., 2019a),
ELLPMDA of ensemble learning and link prediction (Chen et al.,
2018j), and label propagation model with linear neighborhood
(Li et al., 2018) were used for various types of miRNA–disease
association prediction, but those did not figure out the easy
way for parameter optimization. Randomwalk on heterogeneous
network (Chen et al., 2012, 2016a, 2018a; Xuan et al., 2015; Liu
et al., 2017; Luo and Xiao, 2017; Mugunga et al., 2017; Peng
et al., 2018) used for inferring miRNA–disease associations has
achieved excellent prediction results with global attributes, but
all of their results were partial to such miRNAs that have more
known associations with diseases.

Inspired by the successful application of machine learning
methods in the field of bioinformatics, many researchers used
supervised machine learning methods to predict a miRNA–
disease association (Chen et al., 2015a,b, 2017a, 2018d,f,
2019a,b,d; Luo et al., 2017a; Xuan et al., 2018, 2019b; Wang
C.-C. et al., 2019; Wang L. et al., 2019; Zhang L. et al.,
2019; Zhao et al., 2019), but which need negative samples
for training. Because it is hard to obtain the experimentally
verified less-known miRNA–disease associations and negative
samples, some semi-supervised learning approaches (such as
regularized least squares) with remarkable prediction results were
proposed (Chen and Huang, 2017; Chen et al., 2017c, 2018k;
Peng et al., 2017b; Xu et al., 2019). Chen and Huang (2017)
used Laplacian regularized sparse subspace learning for miRNA–
disease association prediction (LRSSLMDA); it projected diverse
statistical feature profiles into a common subspace and selected
important diverse features with a L1-norm constraint. Jiang
et al. (2018) proposed a novel similarity kernel fusion (SKF)
method that integrated multiple-similarity kernels to construct
the accurate network similarity on which to utilize Laplacian
regularized least squares for potential associations inference. It
can avoid to lose the initial information during the process
and can eliminate some noises in integrated similarity kernels.
Luo et al. (2017b) presented a semi-supervised method with
Kronecker regularized least squares to predict the potential
(or missing) miRNA–disease associations. However, the above
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semi-supervised solutions without the need for negative samples
still have the limitation in initial values setting and optimal
parameters of iteration selecting. Zeng et al. (2016a), Li et al.
(2017), Chen et al. (2018g), Xiao et al. (2018), Xuan et al. (2019a),
Xuan et al. (2019c), and Peng et al. (2017b) utilized the matrix
completion to infer the potential miRNA–disease associations.
Chen et al. (2018i) uncovered the potential miRNA–disease
associations through integrating low-rank matrix decomposition
and the sparse learning method. Qu et al. (2019) utilized matrix
decomposition and label propagation to infer potential miRNA–
disease associations. Tang et al. (2019) made full use of the
miRNA functional similarity, the disease semantic similarity,
and a dual Laplacian regularization term to work for the
matrix completion of miRNA–disease associations. Chen et al.
(2020) proposed a new computational model (NCMCMDA)
that innovatively integrated neighborhood constraint withmatrix
completion to find out the absent miRNA–disease associations.
Even though all of the abovemethods only needed experimentally
validated miRNA–disease associations to make prediction with
a good prediction effect, the optimal parameters selection still
cannot be solved very well. Although computational prediction
models have attracted a lot of interests in recent years and
many distinguished research progresses have been achieved, the
identification of the potential associations between miRNAs and
diseases still remains to involve a large number of unclear and
incomplete works that need to be further improved:

(1) The prediction accuracy still needs to be enhanced further;
(2) Isolated diseases and new miRNAs cannot be

handled directly;
(3) Similarity construction processes are not accurate enough.

Around the above limitations, a global prediction method
(MSFSP) that combined with multiple-similarities fusion (MSF)
attribute was proposed, which could predict the associations
between all diseases (including isolated diseases) and miRNAs
(including new miRNAs) without needing negative samples.
MSFSP mainly consisted of the following steps:

(1) Reconstructed disease similarity network (fused by disease
semantic similarity, disease functional similarity, and disease
Hamming similarity) and miRNA similarity network (fused
bymiRNA functional similarity, miRNA sequence similarity,
and miRNA Hamming similarity);

(2) Reconstructed miRNA–disease network via integrated
disease similarity, miRNA similarity, and verified Boolean
network of miRNA–disease associations;

(3) Obtained the final prediction scores of miRNA–disease
associations by using the space projections of reconstructed
miRNA–disease network on similarities spaces.

MATERIALS AND METHODS

Known MiRNA–Disease Associations
The experimentally verified miRNA–disease associations
downloaded from HMDD v2.0 (Li Y. et al., 2014) with pre-
treatment were composed of 495 processed miRNAs (formed
a collection of miRNAs M = {m1,m2, . . . ,mi, . . . ,mnm},

nm= 495), 383 diseases (formed a collection of diseases
D = {d1, d2, . . . dj, . . . dnd }, nd = 383), and 5,430 known
miRNA–disease associations (formed a matrix MDnm×nd ). The
element value of MD(i, j) in MDnm×nd is set to 1 if the miRNA
node mi (i = 1, 2, · · · nm) is associated with the disease node dj
(j = 1, 2, . . . nd); otherwise, it is set to 0.

Disease Semantic Similarity and Disease
Functional Similarity
According to the description in Wang et al. (2010), disease
similarities based on semantic information were denoted
by matrix DD

nd×nd
ss ; it can be calculated via utilizing the

arborescence attribute of disease in the MeSH database (Lowe
and Barnett, 1994) where every disease node was marked
in directed acyclic graph. Two diseases have more similar
phenotypes when they associate with the same genes, based on
which many researchers used the disease–gene associations to
calculate disease functional similarity (Luo et al., 2017b; Jiang
et al., 2018). As described in detail in Jiang et al. (2018), disease

functional similarities were denoted by the matrixDD
nd×nd
fs

.

MiRNA Functional Similarity and MiRNA
Sequence Similarity
miRNA–miRNA functional similarities were downloaded from
Wang et al. (2010), and the pairwise miRNA functional
similarities were denoted by the matrix MM

nm×nm
fs

. The miRNA

sequence similarities obtained from the miRBase database
(Kozomara and Griffiths-Jones, 2013) were denoted by the
matrixMM

nm×nm
ss .

Hamming Similarity
Hamming similarity for vectors is a function that measures
the number of equal components, divided by the length of
vectors (Charikar, 2002). It is known that diseases with similar
phenotypes are often related to similar miRNAs. Thereby, we
defined disease Hamming similarity (denoted by the matrix

DD
nd×nd
hs

), whose element value is shown as follows:

DDhs(i, j) = 1-

∑nm
k=1

IdSim(MD(k, i),MD(k, j))

nm
(1)

IdSim(MD(k, i),MD(k, j)) =

{

1, ifMD(k, i) 6= MD(k, j)
0, ifMD(k, i)=MD(k, j)

(2)

where DDhs(i, j) represents the Hamming similarity between
disease node di and dj.

Similarly, we used MDT that denoted the transposed matrix
ofMD to define miRNAHamming similarity (denoted by matrix
MM

nm×nm
hs

). The corresponding element value in MM
nm×nm
hs

is
shown as follows:

MMhs(i, j) = 1-

∑nd
k=1

IdSim(MDT(k, i),MDT(k, j))

nd
(3)

IdSim(MDT(k, i),MDT(k, j)) =

{

1, ifMDT(k, i) 6= MDT(k, j)

0, ifMDT(k, i)=MDT(k, j)
(4)
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where MMhs(i, j) represents the Hamming similarity between
miRNA nodesmi andmj.

Multiple-Similarities Fusion
In this section, we used similarity kernel fusion (Wang et al.,
2014; Jiang et al., 2018, 2019) to integrate three miRNA
similarities (miRNA functional similarities MM

nm×nm
fs

, miRNA

sequence similarities MM
nm×nm
ss , and miRNA Hamming

similarities MM
nm×nm
hs

) into one matrix MM
nm×nm
is∗ that

represented integrated miRNA similarities and three disease

similarities (disease functional similarities DD
nd×nd
fs

, disease

semantic similaritiesDD
nd×nd
ss , and disease Hamming similarities

DD
nd×nd
hs

) into one matrix DD
nd×nd
is∗ that represented integrated

disease similarities. Details on the integration are in the
following discussion.

Firstly, using similar methods mentioned in Jiang et al.
(2018, 2019), the corresponding sparse matrices for three miRNA
similarities denoted by MM

nm×nm
sfs

, MM
nm×nm
sss , and MM

nm×nm
shs

,

respectively, were constructed and the corresponding sparse

matrices for three disease similarities were denoted by DD
nd×nd
sfs

,

FIGURE 1 | Flowchart of the whole modeling procedure.
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DD
nd×nd
sss , andDD

nd×nd
shs

, respectively.

MMsfs(i, j) =

{

0, ifmj /∈ Nmi
MMfs(i,j)

∑

mk∈Nmi
MMfs(i,k)

, ifmj ∈ Nmi

(5)

where Nmi represents the collection of all neighbors of miRNA
node mi, including mi in the corresponding three miRNA
similarities matrices (MMsfs, MMsss, and MMshs), and the
number of Nmi was set to 36.

Similarly, MMsss(i, j), MMshs(i, j), DDsfs(i, j), DDsss(i, j), and
DDshs(i, j) were constructed by using the above representation.

Secondly, the integrated normalized matrices and sparse
matrices are as follows:

(MMfs)
t+1

= δ(MMsfs ×
(MMss)

t
+ (MMhs)

t

2
×MMT

sfs)

+(1− δ)
(MMss)

0
+ (MMhs)

0

2
(6)

where MMss and MMhs are the normalizations for MMss and
MMhs, respectively. MMT

sfs
denotes the transposed matrix of

MMsfs; (MMss)
t
and (MMhs)

t
are the tth iteration results ofMMss

andMMhs, respectively. t was set to 10 and δ was set to 0.1, which

are similar as those defined in Jiang et al. (2018, 2019). (MMss)
0

and (MMhs)
0
represented the initial status of MMss and MMhs,

respectively, with the detailed calculation shown as follows:

(MMss(i, j))
0
=

MMss(i, j)

MMfs(i, j)+MMss(i, j)+MMhs(i, j)
(7)

(MMhs(i, j))
0
=

MMhs(i, j)

MMfs(i, j)+MMss(i, j)+MMhs(i, j)
(8)

Furthermore, similar representations of (MMss)
t+1

and

(MMhs)
t+1

could be obtained as that of (MMfs)
t+1

. After t + 1
iterations, the temporarily integrated miRNA similarity denoted
by matrixMMis was calculated as follows:

MMis =
(MMfs)

t+1
+ (MMss)

t+1
+ (MMhs)

t+1

3
(9)

Thirdly, a weighted matrix W
nm×nm
m for eliminating noises

during the calculation process was constructed, as mentioned
in Jiang et al. (2019). Then, the finally integrated miRNA
similarity denoted by matrix MM

nm×nm
is∗ was obtained via taking

a dot product:

Wm(i, j) =







1, ifmi ∈ Nmj andmj ∈ Nmi

0, ifmi /∈ Nmj andmj /∈ Nmi

0.5, otherwise

(10)

MMis∗ = MMis ◦Wm (11)

The finally integrated disease similarity matrix DD
nd×nd
is∗ , the

weighted matrix W
nd×nd
d

, and the temporarily integrated disease

similarity matrix DD
nd×nd
is can be calculated by a similar

calculation process as that ofMMis∗ :

DDis∗ = DDis ◦Wd (12)

Weighted Network Construction
On account of the hypothesis that miRNAs with similar functions
are often related to the diseases with similar phenotypes,
many methods for miRNA–disease association prediction were
proposed. Though the network MD of known experimentally

FIGURE 2 | Influence of parameter variation on model predictive accuracy. (A)

Changing weighting parameters from 0 to 1 with step-size of 0.1. (B)

Changing weighting parameters from 0 to 0.2 with step-size of 0.01. (C)

Changing equilibrium parameter from 0 to 1 with step-size of 0.1. (D)

Changing equilibrium parameter from 0.2 to 0.4 with step-size of 0.01.

FIGURE 3 | Receiver operating characteristic curves and area under the curve

values via leave-one-out cross-validation in different situations.
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verified miRNA–disease association plays a very important role
in these prediction methods, network MD is only a Boolean
network which can indicate if the miRNA–disease association
exits or not, without any information of the extent of association.
Therefore, in order to enhance the predictive validity, we used
MD and similarities between miRNAs (diseases) to accurately
construct a weighted network with which to uncover potential
miRNA–disease associations.

FIGURE 4 | Receiver operating characteristic curves and area under the curve

values of MSFSP against GIPKS1SP and GIPKS2SP.

FIGURE 5 | Receiver operating characteristic curves and area under the curve

values of multiple-similarities fusion and space projection against other five

methods.

Weighted Network Construction Based on MiRNA

Similarities
The contribution value of the other miRNA nodemk(k 6= i) tomi

(denoted by Cmk
) was defined as follows:

Cmk
= MMis∗ (i, k)×MD(k, j) (13)

where MMis∗ (i, k) is the finally integrated miRNA similarity
between mi and mk, and MD(k, j) represents the Boolean value
of the association betweenmk and dj.

If there is an association between mk and dj, the more similar
mk and mi are, the higher the contribution value of mk to the
weight between mi and dj. Based on the discussion above, the
miRNA–disease weighted network based on miRNA similarities

(denoted byMD
nm×nd
m ) was defined as follows:

MDm(i, j) = MD(i, j)+ α
∑nm

k=1,k 6=i
Cmk

(14)

where MDm(i, j) is the weight between miRNA node mi and
disease node dj, the equilibrium parameter being α ∈ [ 0, 1].

Weighted Network Construction Based on Disease

Similarities
Similarly, the contribution value of the other disease nodes
dk(k 6= i) to di (denoted by Cdk ) was defined as follows:

Cdk = MD(i, k)×DDis∗(k, j) (15)

miRNA–disease weighted network based on disease similarities

(denoted byMD
nm×nd
d

) was defined as follows:

MDd(i, j) = MD(i, j)+ β
∑nd

k=1,k 6=j
Cdk (16)

where equilibrium parameter β ǫ [0,1].

FIGURE 6 | Predictions of new miRNAs and isolated diseases.
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Space Projection Scores Based on
Similarities
To enhance the predictive accuracy further, we integrated

MD
nm×nd
d

and MM
nm×nm
is∗ to construct miRNA space projection

scores denoted by matrix F
nd×nm
pm , shown as follows:

Fpm(i, j) =
MDT

d
(i, :)×MMis∗(:, j)
∥

∥MMis∗(:, j)
∥

∥

(17)

where MDT
d
is the transposed matrix of MDd, and

∥

∥MMis∗(:, j)
∥

∥

is the norm of vectorMMis∗(:, j).

Similarly, we integrated MD
nm×nd
m and DD

nd×nd
is∗ to construct

disease space projection scores denoted by matrix F
nm×nd
pd

, shown

as follows:

Fpd(i, j) =
MDm(i, :)×DDis∗ (:, j)

∥

∥DDis∗ (:, j)
∥

∥

(18)

where
∥

∥DDis∗ (:, j)
∥

∥ is the norm of vectorDDis∗ (:, j).
Finally, we integrated Fpm(i, j) and Fpd(i, j) to obtain the final

prediction score Fpf (i, j), shown as follows:

Fpf (i, j) = (1− γ )FTpm(i, j)+ γFpd(i, j) (19)

where FTpm is the transposed of matrix of Fpm, and the equilibrium
parameter γ ∈ [0, 1] represents the importance degree of Fpm(i, j)
and Fpd(i, j).

Therefore, we will integrate disease similarities, miRNA
similarities, and weighted networks to obtain the final

prediction scores F
nm×nd
pf

, whose higher value means a

higher probability that miRNA mi associates with disease
dj. The detailed calculation steps of Fpf are shown in Figure 1

for clarity.

RESULTS

Influence of Parameter Selection on
Performance
This section mainly discussed the influences of different types of
parameters (weighting parameter α, β and equilibrium parameter
γ ) on the predictive performance of MSFSP. For simplicity, we
set α and β to be of the same value.

Firstly, we fixed γ to 0.5 and changed α and β from 0 to 1 with
a step-size of 0.1. After performing LOOCV, the results showed
that AUC reached an optimal value of 0.9577 when α and β were
set to 0.1. Then, the AUC values decreased gradually when α

and β increased from 0.1 to 1, which caused the corresponding
curve to decline linearly (shown in Figure 2). Therefore, α and β

should range from 0 to 0.2 to get the optimal value.

TABLE 1 | Top 50 lung neoplasm-related miRNAs.

Rank MiRNA name Database of evidence Rank MiRNA name Database of evidence

1 hsa-mir-16 HMDD, dbDEMC, miR2Disease 26 hsa-mir-668 dbDEMC

2 hsa-mir-106b HMDD, dbDEMC 27 hsa-mir-208a HMDD

3 hsa-mir-15a HMDD, dbDEMC 28 hsa-mir-708 dbDEMC

4 hsa-mir-141 HMDD, dbDEMC, miR2Disease 29 hsa-mir-663b dbDEMC

5 hsa-mir-15b dbDEMC 30 hsa-mir-196b HMDD, dbDEMC

6 hsa-mir-194 HMDD, dbDEMC 31 hsa-mir-328 HMDD, dbDEMC

7 hsa-mir-130a HMDD, dbDEMC, miR2Disease 32 hsa-mir-342 HMDD, dbDEMC

8 hsa-mir-151a dbDEMC 33 hsa-mir-149 HMDD, dbDEMC

9 hsa-mir-429 dbDEMC, miR2Disease 34 hsa-mir-1236 dbDEMC

10 hsa-mir-99a HMDD, dbDEMC, miR2Disease 35 hsa-mir-320a dbDEMC

11 hsa-mir-122 HMDD, dbDEMC 36 hsa-mir-370 dbDEMC

12 hsa-mir-195 HMDD, dbDEMC, miR2Disease 37 hsa-mir-181d dbDEMC

13 hsa-mir-20b dbDEMC 38 hsa-mir-144 HMDD, dbDEMC

14 hsa-mir-193b dbDEMC 39 hsa-mir-302b dbDEMC

15 hsa-mir-378a dbDEMC 40 hsa-mir-363 dbDEMC

16 hsa-mir-129 HMDD, dbDEMC 41 hsa-mir-424 dbDEMC

17 hsa-mir-153 HMDD, dbDEMC 42 hsa-mir-130b HMDD, dbDEMC

18 hsa-mir-451a HMDD, dbDEMC 43 hsa-mir-373 HMDD, dbDEMC

19 hsa-mir-10a HMDD, dbDEMC 44 hsa-mir-204 dbDEMC, miR2Disease

20 hsa-mir-28 dbDEMC 45 hsa-mir-211 dbDEMC

21 hsa-mir-92b dbDEMC 46 hsa-mir-139 HMDD, dbDEMC, miR2Disease

22 hsa-mir-625 dbDEMC 47 hsa-mir-367 dbDEMC

23 hsa-mir-152 HMDD, dbDEMC 48 hsa-mir-384 Unconfirmed

24 hsa-mir-296 dbDEMC 49 hsa-mir-148b HMDD, dbDEMC

25 hsa-mir-23b dbDEMC 50 hsa-mir-423 HMDD, dbDEMC, miR2Disease
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Next, in order to get more accurate weighting parameters, we
fixed γ to 0.5 again and changed α and β from 0 to 0.2 with a
step-size of 0.01. The corresponding changing curve is shown in
Figure 2, where the optimal AUC of 0.9581 was obtained when α

and β were both 0.02.
Then, based on α = β = 0.02, we evaluated the influence of

γ on MSFSP in a similar way as detailed above. We increased γ

from 0 to 1 with a step-size of 0.1 to obtain the corresponding
results shown in Figure 2, where the optimal, suboptimal, and
third-best value of AUC were obtained when γ was 0.3, 0.2,
and 0.4, respectively. However, AUC decreased when γ increased
from 0.4. Therefore, γ should range from 0.2 to 0.4 to get the
optimal value. We increased γ from 0.2 to 0.4 with a step-size of
0.01 to get more accurate parameter values with α and β fixed to
0.02. The changing curve in Figure 2 shows the optimal value of
0.9613 when γ was 0.27.

In conclusion, our parameter selections were α = β = 0.02
and γ = 0.27.

Comparison of Predictive Performance
Under Different Situations
We performed LOOCV to evaluate the predictive performance
of MSFSP under the following different situations: (1) with all
relevant information (MSFSP with all), (2) only with miRNA
space projection (MSFSP with MSP), and (3) only with disease

space projection (MSFSP with DSP). The ROC curves for
the above different situations are shown in Figure 3, where
the AUC value of MSFSP withr all was 0.9613, the AUC
value of MSFSP with MSP was 0.9570, and the AUC value
of MSFSP with DSP was 0.8489. Therefore, MSFSP showed
reliable predictive performance for inferring miRNA–disease
associations effectively.

Comparison of Predictive Performance
With Different Integrated Similarity
Constructions
Concerning the limitations of the sparsity and incompleteness
existing in disease semantic similarity and miRNA functional
similarity, we used MSF in MSFSP to construct the integrated
disease similarity and the integrated miRNA similarity with
which to solve these limitations. Some other researchers
integrated disease semantic similarity (miRNA functional
similarity) with Gaussian interaction profile kernel similarity
to construct the integrated diseases similarity (the integrated
miRNA similarity) with which to solve the same limitations
(Chen et al., 2016c, 2017d; Chen and Huang, 2017; Zhao et al.,
2018, 2019). In order to compare which of the two ways wherein
integrated similarities were constructed has better predictive
result, we compared MSF used in MSFSP with Gaussian
interaction profile kernel similarity used in Chen and Huang

TABLE 2 | Top 50 prostatic neoplasm-related miRNAs.

Rank MiRNA name Database of evidence Rank MiRNA name Database of evidence

1 hsa-mir-29c HMDD, dbDEMC 26 hsa-mir-1229 dbDEMC

2 hsa-mir-10b dbDEMC, miR2Disease 27 hsa-mir-944 dbDEMC

3 hsa-mir-429 HMDD 28 hsa-mir-1227 HMDD, dbDEMC

4 hsa-mir-19a HMDD, dbDEMC 29 hsa-mir-451a dbDEMC

5 hsa-mir-155 HMDD, dbDEMC 30 hsa-mir-139 HMDD, dbDEMC

6 hsa-mir-181a HMDD, dbDEMC, miR2Disease 31 hsa-mir-625 dbDEMC

7 hsa-mir-210 HMDD, dbDEMC, miR2Disease 32 hsa-mir-150 HMDD, dbDEMC

8 hsa-mir-199b HMDD, dbDEMC, miR2Disease 33 hsa-mir-128 HMDD, dbDEMC

9 hsa-mir-19b HMDD, dbDEMC, miR2Disease 34 hsa-mir-370 HMDD, dbDEMC, miR2Disease

10 hsa-mir-18a HMDD, dbDEMC 35 hsa-mir-18b dbDEMC

11 hsa-mir-142 dbDEMC 36 hsa-mir-28 dbDEMC

12 hsa-mir-9 HMDD, dbDEMC 37 hsa-mir-135a HMDD, dbDEMC

13 hsa-mir-192 HMDD, dbDEMC 38 hsa-mir-10a HMDD, dbDEMC, miR2Disease

14 hsa-mir-125a dbDEMC, miR2Disease 39 hsa-mir-149 HMDD, dbDEMC, miR2Disease

15 hsa-let-7f dbDEMC, miR2Disease 40 hsa-mir-140 dbDEMC

16 hsa-mir-24 HMDD, dbDEMC, miR2Disease 41 hsa-mir-20b HMDD, dbDEMC

17 hsa-let-7i dbDEMC 42 hsa-mir-302b dbDEMC

18 hsa-let-7e dbDEMC 43 hsa-mir-328 dbDEMC

19 hsa-let-7g HMDD, dbDEMC, miR2Disease 44 hsa-mir-30e dbDEMC

20 hsa-mir-7 HMDD, dbDEMC 45 hsa-mir-103b dbDEMC

21 hsa-mir-196a HMDD, dbDEMC 46 hsa-mir-633 Unconfirmed

22 hsa-mir-206 HMDD, dbDEMC 47 hsa-mir-300 Unconfirmed

23 hsa-mir-138 HMDD 48 hsa-mir-30b dbDEMC, miR2Disease

24 hsa-mir-30a HMDD, dbDEMC, miR2Disease 49 hsa-mir-497 HMDD, dbDEMC, miR2Disease

25 hsa-mir-103a dbDEMC 50 hsa-mir-663b dbDEMC
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(2017) and Zhao et al. (2019). We used the Gaussian interaction
profile kernel similarity coming from Chen and Huang (2017)
to replace MSF in MSFSP, and we got a new prediction model
called GIPKS1SP as one object to be compared. Similarly, we
used Gaussian interaction profile kernel similarity coming from
Zhao et al. (2019) to replace MSF in MSFSP, and we got another
new prediction model called GIPKS2SP as another object to be
compared. After performing LOOCV, the AUCs of GIPKS1SP,
GIPKS2SP, and MSFSP were 0.9179, 0.9212, and 0.9613,
respectively (shown in Figure 4). The more reliable predictive
performance obtained viaMSFSP proved that MSF is better than
the Gaussian interaction profile kernel similarity to construct the
integrated similarities.

Comparison to Other Methods
To our knowledge, BNPMDA (Chen et al., 2018h), MDHGI
(Chen et al., 2018i), NSEMDA (Wang C.-C. et al., 2019),
RFMDA (Chen et al., 2018f), and SNMFMDA (Zhao et al.,
2018) are the most advanced prediction methods in inferring
miRNA–disease associations so far. Due to the fact that the
databases used by these five methods are similar with that
of MSFSP, we compared MSFSP with these five methods on
the predictive performance. The LOOCV results in Figure 5

show that the AUC values of BNPMDA, MDHGI, NSEMDA,
RFMDA, SNMFMDA, and MSFSP were 0.9028, 0.8945,

0.8899,0.8891, 0.9007, and 0.9613, respectively. MSFSP achieved
the superior prediction effect, at 6.09, 6.94, 7.42, 7.51, and 6.30%
higher than BNPMDA, MDHGI, NSEMDA, RFMDA, and
SNMFMDA, respectively.

Prediction of New MiRNAs and Isolated
Diseases
With the continuously developing miRNA recognition
technology, more and more miRNAs are being discovered, but
whose associations with diseases are unknown. The prediction
for isolated diseases and new miRNAs will definitely accelerate
the scientists’ understanding of the molecular mechanisms of
diseases as well as how diseases occur. Therefore, the prediction
for isolated diseases and new miRNAs has become a hot research
topic in recent years.

For each miRNA, we removed all related associations with
diseases to simulate the new miRNA. For each disease, we
removed all related associations with miRNAs to simulate
the isolated disease. Through LOOCV, the prediction results
shown as AUC of 0.9493 and 0.8412, respectively, were
obtained, where the ROC curve demonstrated the excellent
predictive performance of MSFSP on inferring new miRNA-
related diseases, as well as isolated diseases related with miRNAs
(as can be seen in Figure 6).

TABLE 3 | Top 50 isolated disease-related miRNAs (prostatic neoplasm as a case).

Rank MiRNA name Database of evidence Rank MiRNA name Database of evidence

1 hsa-mir-125b HMDD, dbDEMC, miR2Disease 26 hsa-let-7a HMDD, dbDEMC, miR2Disease

2 hsa-mir-21 HMDD, dbDEMC, miR2Disease 27 hsa-mir-92a HMDD

3 hsa-mir-145 HMDD, dbDEMC, miR2Disease 28 hsa-mir-143 HMDD, miR2Disease

4 hsa-mir-99a HMDD, dbDEMC, miR2Disease 29 hsa-mir-133b HMDD, dbDEMC

5 hsa-mir-200c HMDD, dbDEMC 30 hsa-mir-18a HMDD, dbDEMC

6 hsa-mir-155 HMDD, dbDEMC 31 hsa-mir-146b HMDD, dbDEMC

7 hsa-mir-141 HMDD, dbDEMC, miR2Disease 32 hsa-let-7g HMDD, dbDEMC, miR2Disease

8 hsa-mir-200a HMDD, dbDEMC 33 hsa-mir-218 HMDD, dbDEMC, miR2Disease

9 hsa-mir-183 HMDD, dbDEMC, miR2Disease 34 hsa-let-7c HMDD, dbDEMC, miR2Disease

10 hsa-mir-100 HMDD, dbDEMC, miR2Disease 35 hsa-let-7i dbDEMC

11 hsa-mir-9 dbDEMC 36 hsa-let-7f dbDEMC, miR2Disease

12 hsa-mir-199a HMDD, dbDEMC, miR2Disease 37 hsa-let-7d HMDD, dbDEMC, miR2Disease

13 hsa-mir-34c HMDD, dbDEMC 38 hsa-mir-7 HMDD, dbDEMC

14 hsa-mir-126 HMDD, dbDEMC, miR2Disease 39 hsa-mir-203 HMDD, dbDEMC

15 hsa-mir-29c HMDD, dbDEMC 40 hsa-mir-1 HMDD, dbDEMC

16 hsa-mir-20a HMDD, dbDEMC, miR2Disease 41 hsa-mir-574 HMDD, dbDEMC

17 hsa-mir-17 HMDD, dbDEMC, miR2Disease 42 hsa-let-7e dbDEMC

18 hsa-mir-19a HMDD, dbDEMC 43 hsa-mir-34b HMDD, dbDEMC

19 hsa-mir-146a HMDD, dbDEMC, miR2Disease 44 hsa-mir-101 HMDD, dbDEMC, miR2Disease

20 hsa-mir-200b HMDD, dbDEMC 45 hsa-mir-19b HMDD, dbDEMC, miR2Disease

21 hsa-mir-27a HMDD, dbDEMC, miR2Disease 46 hsa-mir-10b dbDEMC, miR2Disease

22 hsa-mir-34a HMDD, dbDEMC, miR2Disease 47 hsa-mir-375 HMDD, dbDEMC, miR2Disease

23 hsa-let-7b HMDD, dbDEMC, miR2Disease 48 hsa-mir-182 HMDD, dbDEMC, miR2Disease

24 hsa-mir-429 HMDD 49 hsa-mir-221 HMDD, dbDEMC, miR2Disease

25 hsa-mir-205 HMDD, miR2Disease 50 hsa-mir-142 dbDEMC
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CASE STUDIES

To further evaluate the predictive ability of MSFSP on inferring
diseases potentially related to miRNAs, we selected prostatic
neoplasms and lung neoplasms as the case studies with model
training and predicting on three independent databases HMDD
v3.2 (Huang et al., 2018), dbDEMC 2.0 (Yang et al., 2017), and
miR2Disease (Jiang et al., 2009).

Prediction of Potential MiRNA–Disease
Associations
The low detection rate of lung neoplasm, making it a common
lethal disease, poses a great threat to people’s lives especially in
developing countries (Torre et al., 2016; Temraz et al., 2017).
We used 132 known associations between lung neoplasms and
miRNAs as training samples to predict the remaining unknown
associations. We found the supporting evidences that 49 out of
all the first 50 miRNAs related to lung neoplasms predicted by
MSFSP were confirmed on the above-mentioned three databases
(HMDD v3.2, dbDEMC 2.0, and miR2Disease), except hsa-mir-
384 (as shown in Table 1). However, we found the association
between hsa-mir-384 and lung neoplasms by searching the latest
literature (Guo et al., 2019) whose publication date was after
the last update of HMDD v3.2, which further confirmed the

effectiveness of MSFSP for inferring diseases potentially related
to miRNAs.

Prostatic neoplasm is a disease occurring in the male
reproductive system, especially common in countries with
severely aging population, but in recent years, more and more
prostatic neoplasms occur in young people (Siegel et al., 2016).
We used 118 known associations between prostatic neoplasms
and miRNAs as training samples to predict the remaining
unknown associations. A total of 48 out of the first 50
miRNAs related to prostatic neoplasms predicted byMSFSP were
confirmed on relevant databases (HMDD v3.2, dbDEMC 2.0,
and miR2Disease), except hsa-mir-633 and hsa-mir-300 (ranked
46th and 47th, respectively) (as shown in Table 2). Although
there is no evidence that shows the association between these two
miRNAs and prostatic neoplasms by now, we believe that some
evidences will be found by scientists in the near future.

Prediction of Isolated Disease-Related
MiRNAs
To further evaluate the predictive performance of MSFSP
for isolated diseases which are those without any known
associations, we removed all 118 known associations related to
prostatic neoplasms to simulate the isolated disease condition.
The supporting evidences for the top 50 prostatic neoplasm-
related miRNAs predicted were all found from the relevant

TABLE 4 | Top 50 isolated disease-related miRNAs (lung neoplasm as a case).

Rank MiRNA name Database of evidence Rank MiRNA name Database of evidence

1 hsa-mir-21 HMDD, dbDEMC, miR2Disease 26 hsa-let-7g HMDD, dbDEMC, miR2Disease

2 hsa-mir-125b HMDD, dbDEMC, miR2Disease 27 hsa-mir-148a HMDD, dbDEMC, miR2Disease

3 hsa-mir-155 HMDD, dbDEMC, miR2Disease 28 hsa-let-7d HMDD, dbDEMC, miR2Disease

4 hsa-mir-34a HMDD, dbDEMC 29 hsa-mir-101 HMDD, dbDEMC, miR2Disease

5 hsa-mir-375 HMDD, dbDEMC 30 hsa-mir-205 HMDD, dbDEMC, miR2Disease

6 hsa-mir-146a HMDD, dbDEMC, miR2Disease 31 hsa-let-7e HMDD, dbDEMC, miR2Disease

7 hsa-mir-1 HMDD, dbDEMC 32 hsa-mir-93 HMDD, dbDEMC, miR2Disease

8 hsa-mir-31 HMDD, dbDEMC, miR2Disease 33 hsa-mir-143 HMDD, dbDEMC, miR2Disease

9 hsa-mir-34c HMDD, dbDEMC 34 hsa-mir-17 HMDD, dbDEMC, miR2Disease

10 hsa-mir-145 HMDD, dbDEMC, miR2Disease 35 hsa-mir-183 HMDD, dbDEMC, miR2Disease

11 hsa-let-7a HMDD, dbDEMC, miR2Disease 36 hsa-mir-20a HMDD, dbDEMC, miR2Disease

12 hsa-mir-221 HMDD, dbDEMC, miR2Disease 37 hsa-mir-200b HMDD, dbDEMC, miR2Disease

13 hsa-mir-486 HMDD, dbDEMC 38 hsa-mir-133a HMDD, dbDEMC

14 hsa-mir-100 HMDD, dbDEMC 39 hsa-mir-193b dbDEMC

15 hsa-mir-16 HMDD, dbDEMC, miR2Disease 40 hsa-mir-27a HMDD, dbDEMC

16 hsa-mir-126 HMDD, dbDEMC, miR2Disease 41 hsa-let-7c HMDD, dbDEMC, miR2Disease

17 hsa-let-7b HMDD, dbDEMC, miR2Disease 42 hsa-mir-196a HMDD, dbDEMC

18 hsa-mir-200c HMDD, dbDEMC, miR2Disease 43 hsa-mir-9 HMDD, dbDEMC, miR2Disease

19 hsa-mir-34b HMDD, dbDEMC 44 hsa-mir-29c HMDD, dbDEMC, miR2Disease

20 hsa-mir-7 HMDD, dbDEMC, miR2Disease 45 hsa-mir-218 HMDD, dbDEMC, miR2Disease

21 hsa-mir-146b HMDD, dbDEMC, miR2Disease 46 hsa-mir-130a HMDD, dbDEMC, miR2Disease

22 hsa-mir-133b HMDD, dbDEMC, miR2Disease 47 hsa-mir-222 HMDD, dbDEMC

23 hsa-mir-223 HMDD, dbDEMC 48 hsa-mir-15a HMDD, dbDEMC

24 hsa-mir-199a HMDD, dbDEMC, miR2Disease 49 hsa-mir-19a HMDD, dbDEMC, miR2Disease

25 hsa-mir-499a HMDD, dbDEMC 50 hsa-mir-141 HMDD, dbDEMC, miR2Disease
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databases (HMDD v3.2, dbDEMC 2.0, and miR2Disease) (as
shown in Table 3). Similarly, we removed all 132 known
associations related to lung neoplasms to simulate the isolated
disease condition. The supporting evidences on the top 50 lung
neoplasm-related miRNAs predicted were all found from the
above-mentioned three relevant databases (as shown in Table 4).
The supporting evidences confirmed that the predictive accuracy
for the above two simulated objects were both 100%, which
further showed the excellent predictive performance of MSFSP
on inferring diseases potentially related to miRNAs and isolated
diseases related to miRNAs.

DISCUSSION AND CONCLUSION

Considering that the identification of complex disease-related
miRNAs is still a key research topic in the bio-medical field,
we proposed a computational model called MSFSP that made
the following contributions for the identification of miRNA–
disease associations: (1) Compared to other methods, MSFSP
can enhance the predictive accuracy effectively with an AUC
value of 0.9613, which is higher than those of the other
current classical computational models; (2) MSFSP implements
prediction without needing negative samples; (3) MSFSP solved
the inherent limitations of sparsity and incompleteness existing
in current datasets viamultiple similarities fusion; (4)MSFSP can
be used to infer new miRNAs and isolated diseases, with AUC
values of 0.9493 and 0.8412, respectively; (5) The predicted top
50 results for prostatic neoplasms and lung neoplasms as two
cases agree well with the supporting evidences found in HMDD
v3.2, dbDEMC 2.0, and miR2Disease, with the consistency of
98 and 96% respectively; (6) The predicted top 50 results for
the isolated diseases simulated agree well with the supporting
evidences found in HMDD v3.2, dbDEMC 2.0, andmiR2Disease,
with the consistency of 100% for both.

The reliable performance ofMSFSP achieved can be attributed
to the following factors: (1) Different biological information
data were fused in MSFSP to construct the integrated miRNA
similarity network and the integrated disease similarity network;
(2) More accurate miRNA–disease correlations were described
by weighted networks that were integrated with the disease
similarity network, the miRNA similarity network, and the
experimentally verified Boolean network of miRNA–disease

associations; (3) MiRNA space projection scores and disease
space projection scores were combined to obtain the final

prediction scores, which avoided the invalid inference for new
miRNAs only with disease space projection scores and the
invalid inference for isolated diseases only with miRNA space
projection scores.

MSFSP still has some limitations which need to be improved
in the future besides its excellent prediction results. Firstly,
during miRNA similarity and disease similarity calculation, the
known miRNA–disease associations demand extra increase in
some amount of overhead because the similarity calculation
needs to be redone in LOOCV. Secondly, the construction of
miRNA similarity network and disease similarity network is
not accurate enough, although the accuracy has been somewhat
enhanced by integrating various information. Furthermore,
MSFSP can only predict if an association between miRNA and
a disease exists or not, but not the specific regulatory mechanism.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

YZ and MC conceived the concept of the work and designed
the experiments and wrote the paper. MC, YZ, XC, and HW
performed the literature search. MC, YZ, and XC collected and
analyzed the data. All authors have approved the manuscript.

FUNDING

The research of this paper has been sponsored by the
National Nature Science Foundation of China (Grant Nos.
61772192, 61672223, 61662017, and 61762031), the Nature
Science Foundation of Hunan Province, China (Grant Nos.
2018JJ2085 and 2018JJ40064), the Scientific Research Project of
the Education Department of Hunan Province, China (19A125),
major cultivation projects of Hunan Institute of Technology
(Grant No. 2017HGPY001), and Guangxi Key Laboratory
Fund of Embedded Technology and Intelligent System (Guilin
University of Technology).

REFERENCES

Bandyopadhyay, S., Mitra, R., Maulik, U., and Zhang, M. Q. (2010).

Development of the human cancer microRNA network. Silence 1:6.

doi: 10.1186/1758-907X-1-6

Carthew, R. W., and Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs

and siRNAs. Cell 136:642–655. doi: 10.1016/j.cell.2009.01.035

Charikar, M. S. (2002). “Similarity estimation techniques from rounding

algorithms,” in Proceedings of the Proceedings of the thiry-fourth annual

ACM symposium on Theory of computing. (Montreal, QC: ACM).

doi: 10.1145/509907.509965

Chen, M., He, X., Duan, S., and Deng, Y. (2017a). A Novel Gene Selection

Method Based on Sparse Representation and Max-Relevance and

Min-Redundancy. Comb. Chem. High Throughput Screen 20, 158–163.

doi: 10.2174/1386207320666170126114051

Chen, M., Li, Z., Zhang, Y., Chen, X., and Li, A. (2015a). A multiple platform

based method for data integration. J. Comput. Theor. Nanosci. 12, 4890–4894.

doi: 10.1166/jctn.2015.4457

Chen, M., Liao, B., and Li, Z. (2018a). Global similarity method based on a two-

tier random walk for the prediction of microRNA–disease association. Sci Rep.

8:6481. doi: 10.1038/s41598-018-24532-7

Chen, M., Lu, X., Liao, B., Li, Z., Cai, L., and Gu, C. (2016a). Uncover miRNA-

Disease Association by Exploiting Global Network Similarity. PLoS ONE

11:e0166509. doi: 10.1371/journal.pone.0166509

Chen, M., Peng, Y., Li, A., Li, Z., Deng, Y., Liu, W., et al. (2018b).

A novel information diffusion method based on network consistency

Frontiers in Genetics | www.frontiersin.org 11 April 2020 | Volume 11 | Article 389

https://doi.org/10.1186/1758-907X-1-6
https://doi.org/10.1016/j.cell.2009.01.035
https://doi.org/10.1145/509907.509965
https://doi.org/10.2174/1386207320666170126114051
https://doi.org/10.1166/jctn.2015.4457
https://doi.org/10.1038/s41598-018-24532-7
https://doi.org/10.1371/journal.pone.0166509
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. MSFSP

for identifying disease related microRNAs. RSC Adv. 8, 36675–36690.

doi: 10.1039/C8RA07519K

Chen, M., Zhang, Y., Li, A., Li, Z., Liu, W., and Chen, Z. (2019a).

Bipartite heterogeneous network method based on Co-neighbour for MiRNA–

disease association prediction. Front. Genet. 10:385. doi: 10.3389/fgene.2019.

00385

Chen, M., Zhang, Y., Li, Z., Li, A., Liu, W., Liu, L., et al. (2019b). A novel gene

selection algorithm based on sparse representation and minimum-redundancy

maximum-relevancy of maximum compatibility center. Curr. Proteomics. 16,

374–382. doi: 10.2174/1570164616666190123144020

Chen, M., Zhong, M., Li, Z., Li, X., and Li, A. (2015b). A novel method based on

greedy algorithm for informative SNP selection. J. Comput. Theor. Nanosci. 12,

4036–4042. doi: 10.1166/jctn.2015.4316

Chen, X., Cheng, J.-Y., and Yin, J. (2018c). Predicting microRNA-disease

associations using bipartite local models and hubness-aware regression. RNA

Biol. 15, 1192–1205. doi: 10.1080/15476286.2018.1517010

Chen, X., Gong, Y., Zhang, D. H., You, Z. H., and Li, Z.W. (2018d). DRMDA: deep

representations-basedmiRNA–disease association prediction. J. Cell. Mol. Med.

22, 472–485. doi: 10.1111/jcmm.13336

Chen, X., Guan, N. N., Li, J. Q., and Yan, G. Y. (2018e). GIMDA: graphlet

interaction-based MiRNA-disease association prediction. J. Cell. Mol. Med. 22,

1548–1561. doi: 10.1111/jcmm.13429

Chen, X., and Huang, L. (2017). LRSSLMDA: laplacian regularized sparse

subspace learning for MiRNA-disease association prediction. PLoS Comput.

Biol. 13:e1005912. doi: 10.1371/journal.pcbi.1005912

Chen, X., Huang, L., Xie, D., and Zhao, Q. (2018k). EGBMMDA: extreme gradient

boosting machine for MiRNA-disease association prediction. Cell Death Dis.

9:3. doi: 10.1038/s41419-017-0003-x

Chen, X., Jiang, Z. C., Xie, D., Huang, D. S., Zhao, Q., Yan, G. Y., et al.

(2017b). A novel computational model based on super-disease and miRNA for

potential miRNA-disease association prediction. Mol. Biosyst. 13, 1202–1212.

doi: 10.1039/C6MB00853D

Chen, X., Liu, M.-X., and Yan, G.-Y. (2012). RWRMDA: predicting novel

human microRNA–disease associations. Mol. Biosyst. 8, 2792–2798.

doi: 10.1039/c2mb25180a

Chen, X., Niu, Y. W., Wang, G. H., and Yan, G. Y. (2017c). HAMDA: hybrid

approach for MiRNA-disease association prediction. J. Biomed. Inform. 76,

50–58. doi: 10.1016/j.jbi.2017.10.014

Chen, X., and Qu, J. (2018). TLHNMDA: triple layer heterogeneous network

based inference for MiRNA-disease association prediction. Front. Genet. 9:234.

doi: 10.3389/fgene.2018.00234

Chen, X., Sun, L.-G., and Zhao, Y. (2020). NCMCMDA: miRNA–

disease association prediction through neighborhood constraint

matrix completion. Brief. Bioinform. 12:bbz159. doi: 10.1093/bib/

bbz159

Chen, X., Wang, C.-C., Yin, J., and You, Z.-H. (2018f). Novel human miRNA-

disease association inference based on random forest. Mol Therapy-Nucleic

Acids. 13, 568–579. doi: 10.1016/j.omtn.2018.10.005

Chen, X., Wang, L., Qu, J., Guan, N.-N., and Li, J.-Q. (2018g). Predicting miRNA–

disease association based on inductive matrix completion. Bioinformatics 34,

4256–4265. doi: 10.1093/bioinformatics/bty503

Chen, X., Wu, Q.-F., and Yan, G.-Y. (2017d). RKNNMDA: ranking-based

KNN for MiRNA-disease association prediction. RNA Biol. 14, 952–962.

doi: 10.1080/15476286.2017.1312226

Chen, X., Xie, D., Wang, L., Zhao, Q., You, Z.-H., and Liu, H. (2018h).

BNPMDA: bipartite network projection for MiRNA–disease association

prediction. Bioinformatics 34, 3178–3186. doi: 10.1093/bioinformatics/

bty333

Chen, X., Xie, D., Zhao, Q., and You, Z.-H. (2019c). MicroRNAs and complex

diseases: from experimental results to computational models. Brief. Bioinform.

20, 515–539. doi: 10.1093/bib/bbx130

Chen, X., Yan, C. C., Xu, Z., You, Z. H., Yuan, H., and Yan, G. Y. (2016b).

HGIMDA: heterogeneous graph inference for miRNA-disease association

prediction. Oncotarget 7, 65257–65269. doi: 10.18632/oncotarget.11251

Chen, X., Yan, C. C., Zhang, X., Li, Z., Deng, L., Zhang, Y., et al. (2015c).

RBMMMDA: predicting multiple types of disease-microRNA associations. Sci.

Rep. 5:13877. doi: 10.1038/srep13877

Chen, X., Yan, C. C., Zhang, X., You, Z. H., Deng, L., Liu, Y., et al. (2016c).

WBSMDA: Within and Between Score for MiRNA-Disease Association

prediction. Sci. Rep. 6:21106. doi: 10.1038/srep21106

Chen, X., Yin, J., Qu, J., and Huang, L. (2018i). MDHGI: matrix decomposition

and heterogeneous graph inference for miRNA-disease association prediction.

PLoS Comput. Biol. 14:e1006418. doi: 10.1371/journal.pcbi.1006418

Chen, X., Zhou, Z., and Zhao, Y. (2018j). ELLPMDA: Ensemble learning and link

prediction for miRNA-disease association prediction. RNA Biol. 15, 807–818.

doi: 10.1080/15476286.2018.1460016

Chen, X., Zhu, C.-C., and Yin, J. (2019d). Ensemble of decision tree reveals

potential miRNA-disease associations. PLoS Comput. Biol. 15:e1007209.

doi: 10.1371/journal.pcbi.1007209

Cheng, A. M., Byrom, M. W., Shelton, J., and Ford, L. P. (2005). Antisense

inhibition of human miRNAs and indications for an involvement of

miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297.

doi: 10.1093/nar/gki200

Fernando, T. R., Rodriguez-Malave, N. I., and Rao, D. S. (2012). MicroRNAs

in B cell development and malignancy. J. Hematol. Oncol. 5:7.

doi: 10.1186/1756-8722-5-7

Guo, Q., Zheng, M., Xu, Y., Wang, N., and Zhao, W. (2019). MiR-384

induces apoptosis and autophagy of non-small cell lung cancer cells through

the negative regulation of Collagen α-1(X) chain gene. Biosci Reports.

39:BSR20181523. doi: 10.1042/BSR20181523

Huang, Z., Shi, J., Gao, Y., Cui, C., Zhang, S., Li, J., et al. (2018).

HMDD v3. 0: a database for experimentally supported human microRNA–

disease associations. Nucleic Acids Res. 47, D1013–D1017. doi: 10.1093/nar/

gky1010

Iorio, M. V., Ferracin, M., Liu, C.-G., Veronese, A., Spizzo, R., Sabbioni, S.,

et al. (2005). MicroRNA gene expression deregulation in human breast cancer.

Cancer Res. 65, 7065–7070. doi: 10.1158/0008-5472.CAN-05-1783

Jiang, L., Ding, Y., Tang, J., and Guo, F. J. (2018). MDA-SKF: similarity kernel

fusion for accurately discovering miRNA-disease association. Front. Genet.

9:618. doi: 10.3389/fgene.2018.00618

Jiang, L., Xiao, Y., Ding, Y., Tang, J., and Guo, F. (2019). Discovering cancer

subtypes via an accurate fusion strategy on multiple profile data. Front. Genet.

10:20. doi: 10.3389/fgene.2019.00020

Jiang, Q., Hao, Y., Wang, G., Juan, L., Zhang, T., Teng, M., et al.

(2010a). Prioritization of disease microRNAs through a human

phenome-microRNAome network. BMC Syst. Biol. 28(4 Suppl. 1):S2.

doi: 10.1186/1752-0509-4-S1-S2

Jiang, Q., Wang, G., and Wang, Y. (2010b). “An approach for prioritizing disease-

related microRNAs based on genomic data integration,” in Proceedings of the

International Conference on Biomedical Engineering and Informatics, (Yantai:

IEEE) (2010). doi: 10.1109/BMEI.2010.5639313

Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., et al. (2009).

miR2Disease: a manually curated database for microRNA deregulation

in human disease. Nucleic Acids Res. 37, D98–D104. doi: 10.1093/nar/

gkn714

Kozomara, A., and Griffiths-Jones, S. (2013). miRBase: annotating high confidence

microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73.

doi: 10.1093/nar/gkt1181

Li, G., Luo, J., Xiao, Q., Liang, C., and Ding, P. (2018). Predicting microRNA-

disease associations using label propagation based on linear neighborhood

similarity. J. Biomed. Inform. 82, 169–177. doi: 10.1016/j.jbi.2018.05.005

Li, J., Wu, Z., Cheng, F., Li, W., Liu, G., and Tang, Y. (2014). Computational

prediction of microRNA networks incorporating environmental toxicity and

disease etiology. Sci. Rep. 4:5576. doi: 10.1038/srep05576

Li, J. Q., Rong, Z. H., Chen, X., Yan, G. Y., and You, Z. H. (2017). MCMDA:

Matrix Completion for MiRNA-Disease Association prediction. Oncotarget 8,

21187–21199. doi: 10.18632/oncotarget.15061

Li, X., Wang, Q., Zheng, Y., Lv, S., Ning, S., Sun, J., et al. (2011). Prioritizing human

cancer microRNAs based on genes’ functional consistency between microRNA

and cancer. Nucleic Acids Res. 39:e153. doi: 10.1093/nar/gkr770

Li, Y., Qiu, C., Tu, J., Geng, B., Yang, J., Jiang, T., et al. (2014).

HMDD v2.0: a database for experimentally supported human microRNA

and disease associations. Nucleic Acids Res. 42:D1070. doi: 10.1093/nar/

gkt1023

Frontiers in Genetics | www.frontiersin.org 12 April 2020 | Volume 11 | Article 389

https://doi.org/10.1039/C8RA07519K
https://doi.org/10.3389/fgene.2019.00385
https://doi.org/10.2174/1570164616666190123144020
https://doi.org/10.1166/jctn.2015.4316
https://doi.org/10.1080/15476286.2018.1517010
https://doi.org/10.1111/jcmm.13336
https://doi.org/10.1111/jcmm.13429
https://doi.org/10.1371/journal.pcbi.1005912
https://doi.org/10.1038/s41419-017-0003-x
https://doi.org/10.1039/C6MB00853D
https://doi.org/10.1039/c2mb25180a
https://doi.org/10.1016/j.jbi.2017.10.014
https://doi.org/10.3389/fgene.2018.00234
https://doi.org/10.1093/bib/bbz159
https://doi.org/10.1016/j.omtn.2018.10.005
https://doi.org/10.1093/bioinformatics/bty503
https://doi.org/10.1080/15476286.2017.1312226
https://doi.org/10.1093/bioinformatics/bty333
https://doi.org/10.1093/bib/bbx130
https://doi.org/10.18632/oncotarget.11251
https://doi.org/10.1038/srep13877
https://doi.org/10.1038/srep21106
https://doi.org/10.1371/journal.pcbi.1006418
https://doi.org/10.1080/15476286.2018.1460016
https://doi.org/10.1371/journal.pcbi.1007209
https://doi.org/10.1093/nar/gki200
https://doi.org/10.1186/1756-8722-5-7
https://doi.org/10.1042/BSR20181523
https://doi.org/10.1093/nar/gky1010
https://doi.org/10.1158/0008-5472.CAN-05-1783
https://doi.org/10.3389/fgene.2018.00618
https://doi.org/10.3389/fgene.2019.00020
https://doi.org/10.1186/1752-0509-4-S1-S2
https://doi.org/10.1109/BMEI.2010.5639313
https://doi.org/10.1093/nar/gkn714
https://doi.org/10.1093/nar/gkt1181
https://doi.org/10.1016/j.jbi.2018.05.005
https://doi.org/10.1038/srep05576
https://doi.org/10.18632/oncotarget.15061
https://doi.org/10.1093/nar/gkr770
https://doi.org/10.1093/nar/gkt1023
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. MSFSP

Liang, C., Yu, S., and Luo, J. (2019). Adaptive multi-view multi-label learning

for identifying disease-associated candidate miRNAs. PLoS Comput. Biol.

15:e1006931. doi: 10.1371/journal.pcbi.1006931

Liu, Y., Zeng, X., He, Z., and Zou, Q. (2017). “Inferring microRNA-disease

associations by random walk on a heterogeneous network with multiple

data sources,” in IEEE/ACM Transactions on Computational Biology and

Bioinformatics. (IEEE), 14, 905–915. doi: 10.1109/TCBB.2016.2550432

Lowe, H. J., and Barnett, G. O. (1994). Understanding and using the medical

subject headings (MeSH) vocabulary to perform literature searches. Jama

271:1103. doi: 10.1001/jama.1994.03510380059038

Lu, M., Zhang, Q., Deng, M., Miao, J., Guo, Y., Gao, W., et al. (2008). An

Analysis of Human MicroRNA and Disease Associations. PLoS ONE 3:e3420.

doi: 10.1371/journal.pone.0003420

Luo, J., Ding, P., Cheng, L., Cao, B., and Chen, X. (2017a). “Collective

Prediction of Disease-Associated miRNAs Based on Transduction Learning,”

in IEEE/ACMTransactions on Computational Biology & Bioinformatics. (IEEE),

14:7. doi: 10.1109/TCBB.2016.2599866

Luo, J., and Xiao, Q. (2017). A novel approach for predicting microRNA-disease

associations by unbalanced bi-random walk on heterogeneous network. J.

Biomed. Inform. 66, 194–203. doi: 10.1016/j.jbi.2017.01.008

Luo, J., Xiao, Q., Liang, C., and Ding, P. (2017b). Predicting MicroRNA-Disease

associations using kronecker regularized least squares based on heterogeneous

omics data. IEEE Access. 5, 2503–2513. doi: 10.1109/ACCESS.2017.2672600

Miska, E. A. (2005). How microRNAs control cell division, differentiation and

death. Curr. Opin. Genet. Dev.15:563–568. doi: 10.1016/j.gde.2005.08.005

Mugunga, I., Ju, Y., Liu, X., and Huang, X. (2017). Computational prediction of

human disease-related microRNAs by path-based random walk. Oncotarget 8,

58526–58535. doi: 10.18632/oncotarget.17226

Nalluri, J. J., Kamapantula, B. K., Barh, D., Jain, N., Bhattacharya, A.,

de Almeida, S. S., et al. (2015). DISMIRA: Prioritization of disease

candidates in miRNA-disease associations based on maximum weighted

matching inference model and motif-based analysis. BMC Genomics 16:S12.

doi: 10.1186/1471-2164-16-S5-S12

Peng, L., Chen, Y., Ma, N., and Chen, X. (2017a). NARRMDA: negative-aware

and rating-based recommendation algorithm for miRNA-disease association

prediction.Mol. Biosyst.2650–2659. doi: 10.1039/C7MB00499K

Peng, L., Peng, M., Liao, B., Huang, G., Liang, W., and Li, K. (2017b). Improved

low-rank matrix recovery method for predicting miRNA-disease association.

Sci. Rep. 7:6007. doi: 10.1038/s41598-017-06201-3

Peng, L.-H., Sun, C.-N., Guan, N.-N., Li, J.-Q., and Chen, X. (2018). HNMDA:

heterogeneous network-based miRNA–disease association prediction. Mol

Genet. Genomics. 293, 983–995. doi: 10.1007/s00438-018-1438-1

Peng, L-H., Zhou, L-Q., Chen, X., and Piao, X. (2020). A computational

study of potential miRNA-disease association inference based on ensemble

learning and kernel ridge regression. Front. Bioeng. Biotechnol. 8:40.

doi: 10.3389/fbioe.2020.00040

Qu, J., Chen, X., Yin, J., Zhao, Y., and Li, Z.-W. (2019). Prediction of

potential miRNA-disease associations using matrix decomposition and label

propagation. Knowl. Based Syst. 186:104963. doi: 10.1016/j.knosys.2019.104963

Siegel, R. L., Miller, K. D., and Jemal, A. (2016). Cancer statistics, (2016).CACancer

J. Clin. 66:7–30. doi: 10.3322/caac.21332

Sun, D., Li, A., Feng, H., and Wang, M. (2016). NTSMDA: prediction of miRNA-

disease associations by integrating network topological similarity.Mol. Biosyst.

12:2224. doi: 10.1039/C6MB00049E

Tang, C., Zhou, H., Zheng, X., Zhang, Y., and Sha, X. (2019). Dual Laplacian

regularized matrix completion for microRNA-disease associations prediction.

RNA Biol. 16:601–611. doi: 10.1080/15476286.2019.1570811

Temraz, S., Charafeddine, M., Mukherji, D., and Shamseddine, A. (2017).

Trends in lung cancer incidence in Lebanon by gender and histological

type over the period 2005–2008. J. Epidemiol. Glob. Health.7:161–167.

doi: 10.1016/j.jegh.2017.04.003

Torre, L. A., Siegel, R. L., and Jemal, A. (2016). “Lung cancer statistics,”

in Lung Cancer and Personalized Medicine. (Springer). 1–19.

doi: 10.1007/978-3-319-24223-1_1

Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., et al. (2014).

Similarity network fusion for aggregating data types on a genomic scale. Nat.

Methods 11:333. doi: 10.1038/nmeth.2810

Wang, C.-C., Chen, X., Yin, J., and Qu, J. (2019). An integrated framework

for the identification of potential miRNA-disease association based

on novel negative samples extraction strategy. RNA Biol. 16, 257–269.

doi: 10.1080/15476286.2019.1568820

Wang, D., Wang, J., Lu, M., Song, F., and Cui, Q. (2010). Inferring

the human microRNA functional similarity and functional network

based on microRNA-associated diseases. Bioinformatics26, 1644–1650.

doi: 10.1093/bioinformatics/btq241

Wang, L., You, Z.-H., Chen, X., Li, Y.-M., Dong, Y.-N., Li, L.-P., et al. (2019).

LMTRDA: using logistic model tree to predict MiRNA-disease associations by

fusing multi-source information of sequences and similarities. PLoS Comput.

Biol. 15:e1006865. doi: 10.1371/journal.pcbi.1006865

Xiao, Q., Luo, J., Liang, C., Cai, J., and Ding, P. (2018). A graph regularized

non-negative matrix factorization method for identifying microRNA-disease

associations. Bioinformatics 34, 239–248. doi: 10.1093/bioinformatics/btx545

Xu, C., Ping, Y., Li, X., Zhao, H., Wang, L., Fan, H., et al. (2014). Prioritizing

candidate disease miRNAs by integrating phenotype associations of multiple

diseases with matched miRNA and mRNA expression profiles.Mol. Biosyst. 10,

2800–2809. doi: 10.1039/C4MB00353E

Xu, J., Cai, L., Liao, B., Zhu, W., Wang, P., Meng, Y., et al. (2019). Identifying

Potential miRNAs -Disease AssociationsWith ProbabilityMatrix Factorization.

Front. Genet. 10.

Xu, P., Guo,M., andHay, B. A. (2004). MicroRNAs and the regulation of cell death.

Trends Genet. 20, 617–624. doi: 10.1016/j.tig.2004.09.010

Xuan, P., Dong, Y., Guo, Y., Zhang, T., and Liu, Y. (2018). Dual convolutional

neural network based method for predicting disease-related miRNAs. Int. J.

Mol. Sci. 19:3732. doi: 10.3390/ijms19123732

Xuan, P., Han, K., Guo, Y., Li, J., Li, X., Zhong, Y., et al. (2015). Prediction of

potential disease-associated microRNAs based on random walk. Bioinformatics

31, 1805–1815. doi: 10.1093/bioinformatics/btv039

Xuan, P., Li, L., Zhang, T., Zhang, Y., and Song, Y. (2019a). Prediction of

Disease-related microRNAs through integrating attributes of microRNA

Nodes and multiple kinds of connecting edges. Molecules 24:3099.

doi: 10.3390/molecules24173099

Xuan, P., Sun, H., Wang, X., Zhang, T., and Pan, S. (2019b). Inferring

the Disease-Associated miRNAs Based on Network Representation

Learning and Convolutional Neural Networks. Int. J. Mol. Sci. 20:3648.

doi: 10.3390/ijms20153648

Xuan, P., Zhang, Y., Zhang, T., Li, L., and Zhao, L. (2019c). Predicting

miRNA-disease associations by incorporating projections in low-dimensional

space and local topological information. Genes 10:685. doi: 10.3390/genes

10090685

Yang, Z., Wu, L., Wang, A., Tang, W., Zhao, Y., Zhao, H., et al. (2017). dbDEMC

2.0: updated database of differentially expressed miRNAs in human cancers.

Nucleic Acids Res 45, D812–D818. doi: 10.1093/nar/gkw1079

You, Z. H., Huang, Z. A., Zhu, Z., Yan, G. Y., Li, Z. W., Wen, Z., et al.

(2017). PBMDA: A novel and effective path-based computational model

for miRNA-disease association prediction. PLoS Comput. Biol. 13:e1005455.

doi: 10.1371/journal.pcbi.1005455

Zeng, X., Ding, N., Rodríguez-Patón, A., Lin, Z., and Ju, Y. (2016a). Prediction

of MicroRNA–disease associations by matrix completion. Curr. Proteomics 13,

151–157. doi: 10.2174/157016461302160514005711

Zeng, X., Liu, L., Lü, L., and Zou, Q. (2018). Prediction of potential disease-

associated microRNAs using structural perturbation method. Bioinformatics

34, 2425–2432. doi: 10.1093/bioinformatics/bty112

Zeng, X., Zhang, X., and Zou, Q. (2016b). Integrative approaches for

predicting microRNA function and prioritizing disease-related microRNA

using biological interaction networks. Brief. Bioinform. 17, 193–203.

doi: 10.1093/bib/bbv033

Zhang, L., Chen, X., and Yin, J. (2019). Prediction of Potential miRNA–

disease associations through a novel unsupervised deep learning

framework with variational autoencoder. Cells 8:1040. doi: 10.3390/cells

8091040

Zhang, Y., Chen, M., Cheng, X., and Chen, Z. (2019). LSGSP: a novel

miRNA–disease association prediction model using a Laplacian score of the

graphs and space projection federated method. RSC Adv. 9, 29747–29759.

doi: 10.1039/C9RA05554A

Frontiers in Genetics | www.frontiersin.org 13 April 2020 | Volume 11 | Article 389

https://doi.org/10.1371/journal.pcbi.1006931
https://doi.org/10.1109/TCBB.2016.2550432
https://doi.org/10.1001/jama.1994.03510380059038
https://doi.org/10.1371/journal.pone.0003420
https://doi.org/10.1109/TCBB.2016.2599866
https://doi.org/10.1016/j.jbi.2017.01.008
https://doi.org/10.1109/ACCESS.2017.2672600
https://doi.org/10.1016/j.gde.2005.08.005
https://doi.org/10.18632/oncotarget.17226
https://doi.org/10.1186/1471-2164-16-S5-S12
https://doi.org/10.1039/C7MB00499K
https://doi.org/10.1038/s41598-017-06201-3
https://doi.org/10.1007/s00438-018-1438-1
https://doi.org/10.3389/fbioe.2020.00040
https://doi.org/10.1016/j.knosys.2019.104963
https://doi.org/10.3322/caac.21332
https://doi.org/10.1039/C6MB00049E
https://doi.org/10.1080/15476286.2019.1570811
https://doi.org/10.1016/j.jegh.2017.04.003
https://doi.org/10.1007/978-3-319-24223-1_1
https://doi.org/10.1038/nmeth.2810
https://doi.org/10.1080/15476286.2019.1568820
https://doi.org/10.1093/bioinformatics/btq241
https://doi.org/10.1371/journal.pcbi.1006865
https://doi.org/10.1093/bioinformatics/btx545
https://doi.org/10.1039/C4MB00353E
https://doi.org/10.1016/j.tig.2004.09.010
https://doi.org/10.3390/ijms19123732
https://doi.org/10.1093/bioinformatics/btv039
https://doi.org/10.3390/molecules24173099
https://doi.org/10.3390/ijms20153648
https://doi.org/10.3390/genes10090685
https://doi.org/10.1093/nar/gkw1079
https://doi.org/10.1371/journal.pcbi.1005455
https://doi.org/10.2174/157016461302160514005711
https://doi.org/10.1093/bioinformatics/bty112
https://doi.org/10.1093/bib/bbv033
https://doi.org/10.3390/cells8091040
https://doi.org/10.1039/C9RA05554A
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhang et al. MSFSP

Zhao, Y., Chen, X., and Yin, J. (2018). A novel computational method for the

identification of potential miRNA-disease association based on symmetric non-

negative matrix factorization and Kronecker regularized least square. Front.

Genet. 9:324. doi: 10.3389/fgene.2018.00324

Zhao, Y., Chen, X., and Yin, J. (2019). Adaptive boosting-based computational

model for predicting potential miRNA-disease associations. Bioinformatics 35,

4730–4738. doi: 10.1093/bioinformatics/btz297

Zhu, L., Zhao, J., Wang, J., Hu, C., Peng, J., Luo, R., et al. (2016).

MicroRNAs are involved in the regulation of ovary development in the

pathogenic blood fluke Schistosoma japonicum. PLoS Pathog. 12:e1005423.

doi: 10.1371/journal.ppat.1005423

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Zhang, Chen, Cheng and Wei. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 14 April 2020 | Volume 11 | Article 389

https://doi.org/10.3389/fgene.2018.00324
https://doi.org/10.1093/bioinformatics/btz297
https://doi.org/10.1371/journal.ppat.1005423
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	MSFSP: A Novel miRNA–Disease Association Prediction Model by Federating Multiple-Similarities Fusion and Space Projection
	Introduction
	Materials and Methods
	Known MiRNA–Disease Associations
	Disease Semantic Similarity and Disease Functional Similarity
	MiRNA Functional Similarity and MiRNA Sequence Similarity
	Hamming Similarity
	Multiple-Similarities Fusion
	Weighted Network Construction
	Weighted Network Construction Based on MiRNA Similarities
	Weighted Network Construction Based on Disease Similarities

	Space Projection Scores Based on Similarities

	Results
	Influence of Parameter Selection on Performance
	Comparison of Predictive Performance Under Different Situations
	Comparison of Predictive Performance With Different Integrated Similarity Constructions
	Comparison to Other Methods
	Prediction of New MiRNAs and Isolated Diseases

	Case Studies
	Prediction of Potential MiRNA–Disease Associations
	Prediction of Isolated Disease-Related MiRNAs

	Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


