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Abstract

Objective: The study aims to present an active learning approach that automatically extracts clinical concepts from unstruc-
tured data and classifies them into explicit categories such as Problem, Treatment, and Test while preserving high precision
and recall and demonstrating the approach through experiments using i2b2 public datasets.

Methods: Initially labeled data are acquired from a lexical-based approach in sufficient amounts to perform an active
learning process. A contextual word embedding similarity approach is adopted using BERT base variant models such
as ClinicalBERT, DistilBERT, and SCIBERT to automatically classify the unlabeled clinical concept into explicit categories.
Additionally, deep learning and large language model (LLM) are trained on acquiring label data through active
learning.

Results: Using i2b2 datasets (426 clinical notes), the lexical-based method achieved precision, recall, and F1-scores of 76%,
70%, and 73%. SCIBERT excelled in active transfer learning, yielding precision of 70.84%, recall of 77.40%, F1-score of
73.97%, and accuracy of 69.30%, surpassing counterpart models. Among deep learning models, convolutional neural net-
works (CNNs) trained with embeddings (BERTBase, DistilBERT, SCIBERT, ClinicalBERT) achieved training accuracies of 92-
95% and testing accuracies of 89-93%. These results were higher compared to other deep learning models. Additionally, we
individually evaluated these LLMs; among them, ClinicalBERT achieved the highest performance, with a training accuracy of
98.4% and a testing accuracy of 96%, outperforming the others.

Conclusions: The proposed methodology enhances clinical concept extraction by integrating active learning and models like
SCIBERT and CNN. It improves annotation efficiency while maintaining high accuracy, showcasing potential for clinical
applications.
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inferencing. However, extracting information from unstruc-
tured data is a challenging task due to data heterogeneity,
variability, and ambiguity. To achieve the goal of meaning-
ful use, transforming routinely generated clinical reports,
scientific research, and EHR data into actionable knowl-
edge requires systematic approaches.”

Researchers have proposed and utilized different
techniques and methodologies to extract hidden infor-
mation and convert it into actionable knowledge by per-
forming autonomous computational extraction.® In the
clinical domain, Information Extraction (IE), a sub-field
of natural language processing (NLP), pertains to the
automated extraction of predefined clinical concepts
from unstructured clinical text. This process, known as
clinical concept extraction, encompasses both concept
mention detection and concept encoding. The named
entity recognition (NER) techniques as referenced in
Navarro et al.* are usually employed for detecting
concept mentions within the broader domain. The NER
approach effectively identifies concept mentions in clinical
textual data, encompassing categories such as “problem”
(signs or symptoms, findings, disease or syndrome, etc.),
“treatment” (organic chemicals, diagnostic procedures,
and/or pharmacological substances), and “test” (laboratory
procedures and clinical attributes).” Concept encoding
aims to map the mentions to concepts in standard termin-
ologies or those defined by downstream applications.®’
Concept extraction has been adopted to extract clinical
information from text for a wide range of applications,
ranging from supporting clinical decision-making to
improving the quality of care, achieving better clinical out-
comes, and providing time and budget-constrained services
to the community.®

Methods for developing clinical concept extraction and
classification applications have been largely adopted from
the general NLP domain® and can typically be distinguished
into rule-based approaches and statistical approaches with
four categories: rule-based, traditional machine learning
(ML) (non-deep-learning variants), deep learning (DL), or
hybrid approaches. The main ingredient of a rule-based
system is knowledge-based, relying on rules created by
domain experts, and is considered highly efficient in
exploiting language-related knowledge characteristics.'®
Similarly, rule-based approaches play an important role in
preparing the initial level of annotated data for data-driven
approaches. For this purpose, a lexical-based approach is
extensively used to identify relevant semantic information
for explicit terminology such as “cancer,” whose semantic
type is “Neoplastic Process” in Unified Medical Language
System (UMLS). Furthermore, rules can be applied to
explicitly categorize the biomedical term “cancer” as a clin-
ical concept under “Problem” based on semantic types.
Likewise, rule-based methods are effective in clinical
settings due to their specialized language properties.
However, it can be laborious developing a system that

requires both technical NLP experts and clinical specialists
to work together. Moreover, the final applications may have
limitations in terms of portability and generalization beyond
the scenario for which they were intended.''

To overcome the rule-based clinical information extrac-
tion system, ML and DL have been proven to be efficient in
the clinical practice setting for clinical information extrac-
tion and classification. However, an effective supervised
ML or DL model needs human involvement to annotate a
huge set of training data. Furthermore, annotating data
manually needs a domain expert that requires significant
time to do so, which is tedious and expensive. The annota-
tion problem is the primary focus in the medical domain,
and expert knowledge is needed for accurate annotation.
The other popular methods, such as crowd sourcing, are
not suitable for creating labeled clinical training data
because of the sensitive nature of the domain and expert
requirements. Also, findings of a systematic review'?
show that most datasets used in training ML models for
text classification consist of mere hundreds or thousands
of records because of annotation blockades.

The manual annotation process issues have been
resolved by modern orthogonal approaches such as active
learning (AL) and transfer learning (TL), which are utilized
as machine-assisted pre-annotations.'*> AL provides a
subset of high-value training samples by reducing the
huge amount of data required for labor-intensive data anno-
tation without losing quality.'* The selection of samples is
iterative, starting with a high-quality manually annotated
subset of samples to automatically generate another
subset of annotations, thus increasing the subset to anno-
tated text to use in the subsequent iterations of the
process.?

A hybrid learning (unsupervised and supervised)
approach is followed to perform an active learning
process. A hybrid learning approach potentially offers the
advantages of both supervised and unsupervised learning
while minimizing their respective weaknesses. An unsuper-
vised approach comprises a rule-based system with a
domain-specific lexicon or knowledge base such as
UMLS.'? Such a system aids in the preparation of clinical
concept extraction and annotation with a certain level of
accuracy at the initial stage.'® In other words, rule-based
systems are used for feature extraction, where the outputs
become features used as input for the machine learning
system. While developing machine learning methods,
required label data that can be generally acquired from a
rule-based approach. The applications of hybrid systems
include automatic de-identification of psychiatric notes'’
and detection of clinical note sections.'®

In addition, employing a hybrid learning approach for
automatic data annotation can be performed on unannotated
or unstructured data. Considering this, one of the popular
approaches for active learning is embedding similarity in
a high-dimensional space, while keeping a domain expert
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in loop. A word or sentence embedding similarity can be
measured within some threshold value among annotated
data and unannotated data. A DL and transformer-based
architecture models such as ELMO'® and BERT® can be
leverage to generate contextual word embedding for anno-
tated and unannotated data in the same domain.
Subsequently, similarity between these embeddings is
then measured, and a domain expert is involved to validate
the classification of information based on the embedding
similarity. Notably, identifying prominent embedding simi-
larity threshold value is main ingredient that leads to proper
data classification and annotation. Though, various similar-
ity indexes can be used, such as cosine similarity, Euclidean
Distance, etc. This approach facilitates the automatic classi-
fication of similar concept into explicit categories such as
Problem, Treatment, and Test. The similarity process and
indexes used are discussed in detail in the section
“Proposed methodology”. We believe that implementing
this approach in a clinical practice setting can enable
domain experts and machine learning specialists to auto-
matically generate annotated data without requiring
human intervention, thereby saving time and effort. Also,
it allows clinical domain and machine learning experts to
perform NLP operations such as finding similarity
between two concepts that indicate the same disease from
two different clinical results documents, searching similar
concepts in a clinical document, recommending similar
treatments for similar diseases, etc.

Our research involves analyzing previous approaches
and methodologies for automating information extraction
and classification across diverse domains. We introduced
a new method tailored for clinical practice settings. This
method automatically extracts, classifies, and annotates
clinical concepts from unstructured clinical documents.
Similarly, we eliminate the need for domain expertise and
reduce the time required, thus accelerating the training of
downstream Al-based models.

The proposed methodology is composed of three
modules: (a) label data preparation module (M1); (b)
active transfer learning (ATL) module (M2); and (c) DL
and LLM models for automatic concept classification and
annotations (M3). Similarly, an 12b2 2010 challenge
dataset is used to evaluate the proposed methodology, con-
sisting of discharge summaries from Beth Israel Deaconess
Medical Center, i2b2 Test data, and Partners Healthcare
(which consists of discharge summaries).'®

1. Label data preparation module (M-1): The module (M1)
served for preparing label data required in the active
learning process at the initial stage. Initially, we
applied preprocessing to clean the data. The syntax
and morphological-based approach are introduced to
identify the biomedical term boundaries. Further,
word-to-lexicon matching is applied to annotate the
clinical terminologies with semantic information

leveraging UMLS Metathesaurus. Finally, handcrafted
rules are applied to classify the semantic annotated clin-
ical terms into Problem, Treatment, and Test categories
with an acceptable accuracy as shown in Figure 1
(module 1).

2. ATL module (M-2): In this module (M-2), we acquired
only true label instances or clinical concepts from (M-1)
of explicit concept categories. Leveraging variant
BERT base models like BERTBase, DistilledBERT,
SCIBERT, and ClinicalBERT, we construct word
embedding models for known or reference concept cat-
egories such as Problem Model, Treatment Model, and
Test Model, as illustrated in Figure 1 (M-2).
Furthermore, BERT base variant models are utilized
to generate candidate embeddings for tests or unlabeled
concepts. A cosine similarity index is employed to
assess embedding similarities between candidate and
reference concepts. Subsequently, a candidate concept
is assigned to a specific concept category if it exhibits
a high similarity score with the known concept category
models. This categorization process iterates until all
candidate concepts have been categorized. Thereafter,
we utilized a domain expert to manually assess the pre-
dicted concepts based on embedding similarity.
Ultimately, we acquired sufficient labeled concepts
through the ATL process (M-2).

3. DL and LLM models (M-3): Concurrently, we trained DL
models over contextual word embeddings generated by
various BERT-based variants LLMs. The aim of incorp-
orating DL models is to streamline and enhance the clin-
ical concept annotation process, as depicted in Figure 1
(M-3). The DL models utilized in our study include recur-
rent neural networks (RNNs), long short-term memory
(LSTM) networks, bidirectional LSTM (BiLSTM) net-
works, gated recurrent units (GRUs), and convolutional
neural networks (CNNs). Additionally, we compared
the performance of these DL models with that of large lan-
guage model (LLM) in clinical concept classification.
Moreover, we conducted parameter tuning for both DL
and LLM models during training to improve accuracy
and minimize training loss.

The rest of the article is structured as follows: In the
second section, related work is presented related to clinical
concept extraction and classification and various approaches
are discussed in this section. Thereafter, we discussed the
proposed methodology in the third section, depicting scen-
arios and workflows towards clinical concept extraction
and classification. Afterward, evaluation matrices and data-
sets are illustrated in the fourth section. In the fifth section,
experimental setup design, results and analysis of proposed
methodology for clinical concept extraction and classifica-
tion are illustrated. Furthermore, in the sixth section, we
provide a detailed discussion that offers a complete over-
view of the proposed work and its impact on the clinical
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Initial Level Label Data Preparation Module (M1)

Active Transfer Learning Module for Concept Classification (M2)

Deep Learning Models and LLM Models Module (M3)
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Figure 1. The proposed system workflow towards clinical concept classification consists of three modules: (a) label data preparation;
(b) active transfer learning; (c) deep learning and large language model (LLM).

domain. Finally, in the seventh section, we conclude the
study by addressing a few limitations and suggesting
future work to guide readers and researchers in this field.

Literature review

In the previous section, we discussed four types of
approaches that are utilized for clinical concept extraction.
In this section, we will further discuss the effort that is made
toward the clinical concept extraction while employing the
following approaches: such as Rule Based, ML, DL, LLM,
TL, and hybrid approaches.

Rule-based approaches

Rule-based concept extraction approaches use an extensive
collection of rules and keyword-based characteristics to
detect predetermined patterns in text.>' The rule-based
method has been widely used in many clinical applications
because of its simplicity and tractability, which refers to its
efficacy in incorporating domain-specific information. An
early endeavor in clinical concept extraction, known as the
Medical Language Processing Project, was derived from
the Linguistic String Project. Its objective was to extract
symptoms, medications, and potential side effects from
medical records. This was accomplished by utilizing a
semantic lexicon and a vast set of rules.”* An inherent advan-
tage of using rule-based methodologies is the ability to
obtain dependable outcomes promptly and at a minimal
expense, since it obviates the need for laboriously annotating
a substantial number of training instances.” The effective use
of rules and well-curated dictionaries might lead to a very
favorable performance, depending on the individual tasks

at hand. Several tasks have used rule-based matching techni-
ques with various degrees of effectiveness.?>*** For instance,
in the 2014 i2b2/UTHealth de-identification challenge, the
top four teams, including the winning team, used rule-based
techniques.” Similarly, the 2009 i2b2 medicine challenge
identified 10 rule-based systems among the top 20
systems.?® In the i2b2/UTHealth Cardiac risk factors chal-
lenge, Cormack et al.”’ showed that a system based on
pattern matching may reach competitive performance by
using various lexical resources. Furthermore, using pre-
existing resources such as clinical criteria, guidelines, and
clinical corpora may significantly decrease development
efforts. A widely used approach is to use well-curated clin-
ical dictionaries and knowledge base. The dictionary func-
tions as a specialized knowledge repository for a specific
field or task, allowing for easy modification, updating, and
aggregation.”® Established medical terminologies and ontol-
ogies, such as UMLS Metathesaurus,'> Medical Subject
Headings (MeSH), and MEDLINE,> have been used in clin-
ical information extraction activities due to their comprehen-
sive collection of well-defined concepts associated with
numerous words. Although there are advantages, the
lexicon or dictionary-based approach also has limitations.
These include the difficulty of creating general rules that
apply to the entire problem or system, the inability to
capture complex semantic relationships between words,
and the challenge of handling name entities, particularly in
dynamic specialized domains.

ML-based approaches

To overcome the challenges with rule-based approaches, a
cutting-edge machine learning method is used for the
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purpose of clinical concept categorization. ML is able to
acquire patterns without the need for explicit programming
by learning the correlation between input data and labeled
outputs.”’ Commonly used conventional machine learning
methods for clinical concept extraction include conditional
random fields (CRFs), support vector machines (SVMs),
structural support vector machines (SSVMs), logistic
regression (LR), Bayesian model, and random forests.
Whereas CRFs and SVMs are the predominant models
for clinical concept extraction.’® Because they offer a com-
bination of sequential modeling capabilities, robustness,
interpretability, and availability that make them well-suited
for clinical concept extraction tasks. Similarly, CRFs may
be seen as an extension of LR specifically designed for ana-
lyzing sequential data. On the other hand, SVMs use
diverse kernels to convert data into a hyperspace that is
more readily distinguishable. Further, SSVMs are a tech-
nique that combines the benefits of both CRFs and
SVMs.*® In their study, Tang et al. conducted a comparison
between SSVMs and CREF utilizing the datasets from the
2010 i2b2 NLP challenge. They found that the SSVMs out-
performed the CRFs when employing the same features, as
seen by their improved performance. In addition, Wang and
Akella®! used NLP features, including semantic, syntactic,
and sequential aspects, as input for a supervised classical
machine learning model in order to extract mentions of dis-
orders from clinical notes. Nevertheless, ML models need
labeled data. Manually preparing annotated data requires
domain expert and is a laborious operation that consumes
a significant amount of time and resources. In the same
way, ML models may not always achieve optimal perform-
ance on labeled data, since they might suffer from overfit-
ting or underfitting. This often necessitates the use of
complicated feature engineering techniques.

DL-based approaches

Similarly, DL is efficiently used in the clinical field for a
range of activities. In fact, it is a specific area within ML
that emphasizes the automated acquisition of features
across many layers of abstract representations.** The algo-
rithms mostly revolve on neural networks, including RNNss,
CNN:s, and transformers. Notably, DL differs from classic
machine learning approaches by reducing the need for
manually designing explicit data representations like
bag-of-words or n-grams. A significant number of deep
learning applications in concept extraction have used
either modified versions of RNNs or CNNs. CNNs use con-
volutional filters to capture spatial correlations in the input
data and pooling layers to reduce computational complex-
ity. As a result, CNNs have shown to be very effective
for computer vision tasks, they may encounter challenges
when it comes to identifying long-range dependencies
that are often present in text.>® In contrast, RNNs are a
kind of neural networks that specifically represent

connections in a sequence. This makes RNNs particularly
well-suited for tasks that involve capturing long-term
de:pe:nde:ncies.34’35 Since, conventional RNNs are con-
strained in their ability to represent text owing to the vanish-
ing gradients issue, which limits their capacity to capture
long-range dependencies between words. Because of that,
models such as LSTM and GRU have been devised to
tackle this problem by segregating the gradient propagation
and controlling it via “gates.” Although shown to be effica-
cious, these methods simply mitigate the problem rather
than fully resolve it, since they are still constrained to
sequence lengths ranging from tens to hundreds of words.>*

LLM-based approaches

Moreover, the process of training these models requires sig-
nificant computational resources and is challenging to par-
allelize because of the sequential nature of weight training.
Recently, the transformer architecture has been offered as a
solution for several of these issues. The transformer design
eliminates the need of processing text sequentially by sim-
ultaneously processing the full sequence using matrix mul-
tiplications. This enables the network to remember the
significant elements in the sequence.’® Actually, long
sequences need significant memory resources for training.
To accommodate extended sequences of text without over-
whelming memory limits, it is necessary to break up the
sequence into smaller chunks and add additional layers to
the model. In that case, Transformers are capable of accur-
ately representing associations between words that are far
apart, and they are much more efficient in terms of process-
ing resources when compared to variations of RNNs.
Architectures such as ULMFit, ELMO, BERT, and GPT
have shown substantial improvements in the performance
of state-of-the-art natural language processing workloads.
As a result, researchers have constructed huge models
based on Transformers, such as ClinicalBERT,
SCIBERT, and BIO-BERT. These models have shown
promising performance in the medical and clinical field.
Similarly, these models have been employed for various
tasks in the clinical domain, including the de-identification
of personal health information,7 the identification and
de-identification of medical risk factors associated with cor-
onary artery disease from diabetic patient records, and the
extraction of medical problems.”’

TL-based approaches

TL aims to transfer the existing knowledge from a large,
well-trained model and apply it to a new model at its begin-
ning stage. Subsequently, the novel prototype gradually
acclimates to the given job. Similarly, TL offers optimized
initialization that enhances performance in downstream
tasks, particularly when the dataset for the downstream
job is limited in size. Moreover, the researcher has come
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up with a method called ATL to enhance the effectiveness
of TL. This method involves a domain expert who verifies
the results acquired by a LLM. Such ATL techniques have
been used in a clinical setting to reduce the laborious task of
data annotation and improve the effectiveness of model
classification with a small number of labeled sample
sets.'*3® For instance, Li et al.>® adopted ATL to decrease
the need for annotations in the de-identification procedure.
They achieved this by integrating actual clinical trials with
i2b2 datasets, demonstrating that trained models performed
better than the typical passive learning framework.
Similarly, Tomanek and Hahn® also investigated the
effect of ATL on reducing the time needed for annotating
data for the extraction of entities such as person, organiza-
tion, and place. It was shown that the ATL method reduces
data annotation time and cost by up to 33% compared to the
baseline. Further, Chen*' performed a simulation study to
reannotate a portion of the i2b2/VA 2010 dataset from the
concept extraction challenge. Their findings demonstrated
that the query technique based on ATL significantly
decreased the amount of data required for human annotation
in comparison to the baseline.

Likewise, the word embedding similarity approach in
the ATL environment is proposed by the author for causal-
ity mining in the clinical text.*” In this study, the author
applied a BERT model to generate embedding vectors util-
izing training data obtained from SemEval Task 8.** Then,
a word embedding similarity operation was conducted
using a similarity threshold value to compare the training
and test data embedding vectors, leading to automated clas-
sification. Though TL enables leveraging knowledge from
one domain to another, applying it in healthcare may
result in suboptimal performance without careful adaptation
due to domain specificity.

Hybrid approaches

Conversely, hybrid approaches provide exceptional support
towards solving complex tasks in the clinical domain. By
integrating both rule-based and machine learning method-
ologies into a single system, possibly providing the benefits
of each while reducing their individual limitations. There
are two primary hybrid techniques, referred to as terminal
hybrid approaches and supplementary hybrid approaches.’
In a terminal hybrid technique, rule-based systems are
used to extract features, which are then utilized as input
for the machine learning system. The machine learning
system then serves as the final stage in order to choose
the most optimum features. For example, Wang and
Akella** used NLP attributes, including semantic, syntactic,
and sequential aspects, as input to a supervised classical
machine learning model. Their objective was to extract
mentions of disorders from clinical notes. Moreover,
hybrid systems were applied for automatically removing
personal information from psychiatric notes'’ and

identification of sections in clinical notes.'® In contrast, sup-
plemental hybrid approaches use ML techniques to address
shortcomings in the extraction of entities that exhibit subpar
performance when extracted only using rule-based
methods. In this study,*® research infused a supplemental
hybrid system with a user interface to facilitate interactive
concept extraction. Owing to that, Meystre et al.*° utilized
a conventional machine learning classifier to extract medi-
cations for congestive heart failure as an additional compo-
nent to the rule-based system. This system extracted
references and values of left ventricular ejection fraction,
along with other concepts, to evaluate treatment perform-
ance measures. However, the coordination between rule-
based and ML/DL models remains unsophisticated, result-
ing in a lack of smooth integration or performance boost.

Through the adoption of various methodologies, we
have formulated a pipeline for the automated classification
of clinical concepts. Our approach builds on the limitations
of existing models by addressing key challenges identified
in prior work. We mitigate the rigidity of rule-based
approaches by incorporating the UMLS Metathesaurus for
more structured and semantically rich data preparation.
The reliance on large annotated datasets for DL models is
reduced through ATL, which leverages state-of-the-art
LLMs while keeping domain experts involved in the
loop, ensuring clinical accuracy and reducing error
propagation. This approach overcomes the challenges of
domain generalization seen in traditional ML and TL
models. Additionally, we enhance the integration of rule-
based and ML techniques through a novel hybrid mechan-
ism that uses rule-based preprocessing and DL/LLM-based
classification, improving the overall adaptability and
precision of classifying clinical concepts into Problem,
Treatment, and Test categories. This amalgamation enhances
the adaptability and effectiveness of the classification
process, showcasing the coordination between rule-based
and ML techniques in the realm of clinical concept
classification.

Proposed methodology

The proposed methodology comprises of three main
modules, such as initial level label data preparation
module (M1), ATL module (M2), and DL and LLM
(M3). Figure 1 provides an overview of the clinical
concept classification system, illustrating the interdepend-
ence of each module, with each successive module
relying on the output of the preceding one. We have pre-
sented the role of each module within the proposed system.

Label data preparation process (M1)

Recently, emerging Medical Language Processing techni-
ques and DL models are playing a cornerstone role in the
Al-based clinical decision support system (CDSS) system
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that needs label data. Preparing label data requires domain
experts, and it is tedious to prepare label data manually. To
save time and energy, various semantic, syntactic, and
lexical-based approaches are utilized to automatically
prepare label data. In the proposed methodology, we uti-
lized a semantic-based automatic labeling approach that
involves data preprocessing, word boundary detection,
semantic breakdown using UMLS, and rules that categorize
concepts into Problems, Treatment, and Test based on
UMLS semantics. Each subprocess is explained in this
section below.

Data preprocessing process. In the clinical domain, often
data are available in heterogeneous and unstructured
formats, resulting in distortion and ambiguity. Data prepro-
cessing is one of the preliminary steps in the development
of any Al-based CDSS system. Applied preprocessing
operations such as tokenization, stop word removal,
lemmatization, N-gram, and part of speech (POS) tagging
are introduced below.

Let D={d,, d», d5 ... d,;} represent a group of clinical
documents, where d,, represents the nth clinical document.
Whereas, W= {w;, wy, wz ... w,} represents a group of
words in a document D, and w,, denotes the nth word.

1. Tokenization: Each document d; is tokenized into sen-
tences, and each sentence is tokenized into the words W.

2. Lemmatization: Employed the Lemmatization, base
form of word obtained to enhance the meaning of
ambiguous words. Most of the cases lemmatization is
preferred instead of steaming to obtain precise and
accurate information such as lemmatizing word
“caring,” it returns “care,” while applying stemming it
returns “car” which is erroneous.

3. N-gramming: N-gram of word is applied to obtain a set
of co-occurring words in a sentence as shown in equa-
tion (1).

n=x ~N-1) (1)

where ~ denotes the subtraction of a scalar (N — 1) from
each element of the vector x = Y ; _, Wi. The W, pre-
sents the number of words in a sentence. In our
approach, we have implemented a strategy encompass-
ing n-grams ranging from unigrams to 5-grams. This
means that a medical concept can consist of a single
word (unigram) or a combination of words (bigram,
trigram, 4-gram, and 5-gram), such as “cancer,”
“blood cancer,” “high blood pressure,” ‘“chronic
kidney disease patient,” and “overall left ventricular
systolic function.”

4. Duplication: Duplicate words are removed to reduce
data dimensionality and avoid ambiguity. Such as:
“The patient presented with severe pain in the right
knee joint, along with swelling and inflammation,

which indicates a potential issue with the knee joint.”
In this sentence the clinical concept “knee joint”
appear two times. Similarly, we remove the duplicate
concepts to reduce computational complexity and
improve the efficiency of algorithms.

5. Punctuation removal: Punctuation marks such as
commas, periods, question marks, and exclamation
points serve grammatical purposes but may not carry
substantial semantic meaning for some NLP tasks.
Removing them simplifies the text, making it easier to
process and analyze. Further, removing punctuation
ensures that similar texts are recognized as such, even
if they differ in punctuation usage during text similarity
approach.

6. POS tagging: The POS tagging using NLTK NLP
library was employed and then constructed a regular
expression pattern to filter only meaningful information
explicitly like noun, adjective, and adverb from a list of
words as shown in Reg.3.1. In Reg.3.1, <NN*> denotes
all the noun phrases, <JJ*> represents all the adjec-
tives, and <RB*> shows the adverbs phrases from X,
where X represents the “bag of words” list attained
through regular expression.

X = Bag of words

="(NNx){JJ*)(RBx)" . (Reg.3.1)

Word boundary detection. The method of detecting single or
multiple neighboring terms that signify a clinical term is
known as word boundary detection in the NLP domain.
Multiple neighboring terms describing a clinical term may
be a combination of stop words, punctuations, and digits,
rendering it difficult to retrieve details. Using rules and
regular expressions, we establish a protocol that smoothly
defines the boundary between single or multiple adjacent
terms of a clinical term. Following word boundary detection,
each word is then mapped to the UMLS Metathesaurus to
determine whether it assimilate to a clinical concept or not.
The detailed idea diagram and workflow for word boundary
detection has been discussed in this study.'®

Clinical concept identification. The most common strategy is
to leverage a well-curated clinical dictionary for a clinical
concept extraction. The dictionary acts as a domain or
task specific knowledge base. In the proposed methodology
a biomedical dictionary such as UMLS has been utilized as
knowledgebase for clinical concept identification and
extraction with semantic information. Clinical concept
extraction is a multi-step process that includes finding
terms, concept identification, and semantic type extraction.
Generally, various approaches like exact or approximate
term matching approach to UMLS is used to identify
terms. In this study, we have utilized a combined exact
plus approximate term matching approach for clinical
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concept extraction. The steps for mapping biomedical ter-
minologies using UMLS are outlined below:

1. Finding terms: Subsequently identifying word bound-
ary, each word 1is mapped to the UMLS
Metathesaurus. If a word matches to UMLS, it is
stored in a list data structure; otherwise, the word is
discarded.

2. Concept identification: A concept in the UMLS
Metathesaurus illustrates the meaning of medical
terms by different names. Metathesaurus significance
lies in illustrating the predefined interpretation of each
name and associating all names from all source vocabu-
laries that have identical meanings, known as syno-
nyms. In UMLS Metathesaurus, each concept had its
own permanent and special concept descriptor, which
was expressed as ‘“name,” for example, “Coronary
Arteriosclerosis.” When a new concept is added to the
Metathesaurus structure, it is given a specific identifier
or “ui” value, such as “C0010054.” Each term in the
Metathesaurus has a single or a list of concepts
available.

3. Semantic Type Extraction: Semantic type is important
in concept categorization, such as Medical Problems,
Medical Treatment, and Medical Test, since it gives
Metathesaurus terms an interpreted and obvious sense.
For instance, the general term “Trout” has the semantic
type “fish” but not “animal”? since “fish” is more
closely associated with the concept of “trout” than
“animal.” In the Metathesaurus, every concept is
assigned at least one semantic type (STY) and can
have up to five semantic types.'® Concepts with multi-
faceted or inherently vague meanings may encompass
more than one semantic type. For example, the
concept “Febrile Convulsion” is associated with both
“Finding” and “Disease or Syndrome.”*’

Clinical concept classification lexicons. Clinical concept
extraction and classification is significant to transform the
huge amount of unstructured clinical data into a set of

actionable knowledge to improve quality of care and clin-
ical decision-making support. After identifying the
concept along with semantic information in the previous
section, we constructed rules to map the semantic informa-
tion of clinical phrases to the semantic dictionaries as
shown in Table 1. These dictionaries facilitate precise clas-
sification of clinical concepts into explicit categories. The
mapping dictionaries have been enriched to include seman-
tic types of three distinct types of categories of concept such
as problem, treatment, and test. For a deeper understanding
of the rules, algorithm, and implementation process, refer to
our study.'®

Clinical concept classification example-case-study. Figure 2
depicts a detailed scenario for clinical terms mapping to
UMLS, semantic information extraction from UMLS and
concept classification into a specific category utilizing
semantic-enriched dictionaries. In the study, three clinical
terms are chosen as examples for relevant categories expli-
citly such as “beta blockers,” “increased heart rate” and
“heart rate.” Each clinical term is mapped to the UMLS
Metathesaurus.

In response, specific clinical terms such as
“Tachycardia,” “Adrenergic beta antagonists,” and “Heart
rate,” identified by concept IDs like “C0039231,”
“C001645,” and “C0018810,” are obtained from the
UMLS. Extracting semantic information involves inputting
these concept IDs into the UMLS Metathesaurus, which
yields semantic type IDs such as “T033,” “T121,” and
“T201,” as well as semantic types like “Finding,”
“Pharmacologic Substance,” and “Clinical Attribute,” all
of which are explicitly retrieved. Semantically enriched dic-
tionaries are tailored for specific concept categories such as
Problem, Treatment, and Test as outlined in Table 1. The
semantic types extracted from UMLS for exclusive clinical
terms are mapped to these specialized dictionaries. When
there is concordance between the extracted semantic types
and those in the dictionaries, the clinical terms are effect-
ively classified into their respective categories, as illustrated
in Figure 2.

Table 1. Clinical concept semantic types dictionaries for concept classification.

Problem “Disease or Syndrome, Sign or Symptom, Finding, Pathologic Function, Mental or Behavioral Dysfunction, Injury or
Poisoning, Cell or Molecular Dysfunction, Congenital Abnormality, Acquired Abnormality, Neoplastic Process,
Anatomic Abnormality, virus/bacterium.”

Treatment “Therapeutic or Preventive Procedure, Organic Chemical, Pharmacologic Substance, Biomedical and Dental material,
Antibiotic, Clinical Drug, Steroid, Drug Delivery Device, Medical Device.”

Test

Substance.”

“Tissue, Cell, Laboratory or Test Result, Laboratory Procedure, diagnostic procedure, Clinical Attribute, Body
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Figure 2. Clinical concept extraction and classification: an example case study scenario workflow.

ATL module (M2)

In the clinical domain, vast amounts of unstructured data
are generated daily in the form of clinical reports, EHR,
and EMR (Electronic Medical Record), which contain
meaningful information. Recently, DL and ML techniques
have been extensively used to extract this useful informa-
tion and convert it into actionable knowledge. Certainly,
ML and DL algorithms require huge amounts of labeled
data. Another way, ATL techniques surprisingly play a
vital role in many modern ML and DL problems, particu-
larly when data labeling is complex, time-consuming, and
expensive to collect. Likewise, we have introduced an
ATL approach to solve and automate the data labeling
process through LLMs while keeping the domain expert
in the loop, as shown in Figure 1 (M2). As a result, it sig-
nificantly improves the automated data preparation
process, thereby facilitating the application of DL and
LLM models for the clinical concept classification task.
The following section illustrates individual steps and
components that assess the ATL module, as depicted in
Figure 1 (M2).

True instances collection. In an AL environment, the learn-
ing algorithm is given the ability to choose the subset of
available examples to be labeled next from a pool of yet
unlabeled instances. A set of true instances is selected
while performing a semantic-based concept classification
process, as discussed in the section “Label data preparation
process” (M1). The core concept of this principle is that
when a ML or DL algorithm is empowered to autono-
mously select the data it learns from, it can achieve
enhanced performance while requiring fewer training
labels. In this study, domain experts manually curated
high-quality true instances, and the process is detailed

in the Experimental setup and results and Discussion
sections. The proposed methodology leverages pretrained
transformer-based language models, such as BERTBase,
SCIBERT, ClinicalBERT, and DistilBERT, to generate
concept embeddings from a dataset of true instances.
These embeddings then serve as features for downstream
classification models.

Clinical concept embedding generation. Much of NLP relies
on similarity in high-dimensional spaces. Typically, an
NLP solution takes a text, processes it to create a large
vector or array representing the text, and then performs
various transformations. Similarly, we have explored
several BERT-based architecture models. These models
are explicitly used to generate contextual word embeddings
for clinical concepts (Problem, Treatment, and Test), as
shown in Figure 1 (M2). Initially, a true labeled clinical
concept, previously obtained as discussed in module
(M1), is fed into these BERT-based architecture models
to generate embeddings. The simplest approach that we fol-
lowed was to execute these BERT-based models using the
sentence-transformers library by Hugging Face.

Initially, the dataset lacked balance; consequently, we
curated a balanced dataset comprising a total of 6000 clin-
ical concepts, evenly distributed among 2000 instances
each of Problem, Treatment, and Test clinical concepts.
Following this, we proceeded to generate word embedding
vectors using BERTBase, ClinicalBERT, SCIBERT, and
DistilBERT for each concept category, namely Problem
Embeddings, Treatment Embeddings, and Test
Embeddings. The embedding vectors for explicit categories
are saved using Pickle, a Python package commonly used
for serializing and deserializing Python object structures.
For example, the Problem Embeddings vector contains
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embeddings specific to clinical concepts related to pro-
blems, while the Treatment and Test Embeddings vectors
contain embeddings relevant to treatments and tests,
respectively. Furthermore, generating embedding vectors
for a dataset of 6000 concepts is a computationally demand-
ing task, typically taking several hours when executed on a
CPU.

Fortunately, by leveraging the efficiency of the sentence-
transformer library in Python, we enabled GPU acceler-
ation, which substantially decreased computational time.
In our experiments, we efficiently processed clinical con-
cepts, generating embedding vectors for all variants of the
BERT base models in under 10 minutes each.
Consequently, the overall time for producing the embed-
ding vectors was significantly reduced to less than an
hour, thanks to the utilization of an NVIDIA GeForce
RTX 2060 GPU. However, as the dataset size increases,
the time and computational power required for embedding
vector generation also increases, especially when employ-
ing the ATL approach.

Cosine function for embedding similarity. Cosine similarity is
a metric that determines how similar two vectors (words,
sentences, features) are to each other. Essentially, it is the
angle between two vectors. In the same way, we have lever-
aged the cosine similarity algorithm to find the embedding
similarity between unseen or unlabeled clinical concepts
(candidate concepts) and labeled clinical concepts (known
concepts). Ultimately, the unseen clinical concept is cate-
gorized into an explicit concept category based on the
embedding similarity matching, as shown in Figures 1
and 3.

According to equation (1), A and B are two vectors that
compute the angular distance between them. Initially, word
embedding is generated for unlabeled clinical concepts.
Subsequently, we computed the word embedding similarity
score between the embeddings of unlabeled clinical con-
cepts and pretrained or labeled embeddings (Problem,
Treatment, and Test Embeddings). This process yielded
three cosine similarity scores against the pretrained embed-
ding models. Finally, the unlabeled concept was categor-
ized into explicit clinical concept categories based on a
similarity threshold score of 0.83. Through experimenta-
tion, we determined the optimal similarity threshold
value, which is extensively discussed in the Experimental
setup and results section.

A-B Y AiB;
WANIBI /> AL/ B

cos (0) = 2)

Afterward, we utilized a domain expert to manually
analyze the classified concepts. The domain expert manu-
ally cross-checks the newly classified concepts with the
gold standard dataset. If the label assigned to the newly

classified concept matches that in the gold standard docu-
ment, it is added to the explicit category data list as
labeled data. Otherwise, the domain expert manually cate-
gorizes the concept. This process iterates for each batch
of unseen clinical concepts, with validation by domain
experts. This iterative process, which we refer to as ATL,
dynamically enhances the dataset, as illustrated in
Figure 1 (M-2). TL involves utilizing various
BERT-based models that are pretrained on generic data,
with the exception of ClinicalBERT, which is specifically
trained on clinical data. Then, we utilized these pretrained
models for the clinical concept classification task.
Similarly, we interpret the term “Active” to mean that we
engage domain experts in real-time to validate the
concept classifications made by the LLM model and incorp-
orate them into the explicit concept category list.

Threshold value identification. In Module-2 (M-2), we delve
into clinical concept classification using the cosine similar-
ity approach based on a threshold value. Selecting an appro-
priate similarity threshold is pivotal for accurate concept
classification via embedding similarity, thus requiring com-
prehensive experimentation to pinpoint the optimal similar-
ity score. To achieve this goal, we utilized unlabeled or
unseen concepts and conducted embedding similarity
operations to derive similarity scores and identify the best
threshold value. The precision—recall curve (PRC) plays a
key role in this process, aiming to maximize the area
under the curve. Particularly in biased datasets, where the
positive class is significantly outnumbered by the negative
class, the area under the PRC (AUPRC) serves as an
optimal metric for threshold selection.

Our test dataset comprises a total of 1200 clinical
concept samples, evenly distributed with 400 samples for
each category (Problem, Treatment, and Test). The
AUPRC was employed to determine optimal threshold
values for various BERT base models, and further details
regarding the threshold selection results are provided in
the Experimental setup and results and Discussion sections.

Clinical concept embedding similarity: case study. A case
study has been crafted to provide a clearer and more com-
prehensive illustration of the clinical concept embedding
similarity approach, as depicted in Figure 3. Initially, we
curated a balanced dataset comprising true labeled
concept documents categorized as problem, treatment,
and test documents, as illustrated in Figure 3.
Subsequently, each concept document underwent process-
ing through a pretrained BERT-based models to produce
contextual word embedding vectors specific to its category
such as Problem, Treatment, and Test models, which
encompassed explicit concept category embeddings.
Given a set of unlabeled clinical concepts like “Beta
Blocker,” our objective was to categorize them into specific
categories using the word embedding similarity approach.
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learning process for automatically boosting labeled concepts.

To achieve this, we utilized the BERT model to generate
embeddings for the “Beta Blocker” concept. We then com-
pared the embedding of “Beta Blocker” with the embed-
dings of annotated clinical concepts using cosine
similarity. Consequently, the process yielded a similarity
score indicating the degree of match between “Beta
Blocker” and labeled concept models such as problem
(69%), treatment (96%), and test (7%). By applying a
max_score() selection function that identifies the
maximum score from the MAX Score list, we classified
“Beta Blocker” into the explicit category of “Treatment,”
which had the highest similarity score.

The classified concepts were further examined manually
by domain experts. Following validation, these concepts
were added to the explicit concept category document
with labels such as “Beta Blocker” < “treatment.” This
process enhances the labeled data in real time.
Additionally, during the embedding generation phase, we
utilized various BERT-based architecture models discussed
earlier. The parameters of these models were the number of
transformer blocks (L): 12, hidden layer size (H): 768, and
attention heads (A): 12, except for DistilledBERT, which
contained the number of transformer blocks (L): 6.

DL models and LLMs (M3)

Utilizing DL and ML algorithms for clinical concept classi-
fication requires a substantial amount of labeled data.
Currently, we have obtained a significant amount of
labeled data through the ATL process (M2), which we
have organized into explicit category documents: problem
concepts, treatment concepts, and test concepts, as

discussed in the section “Active Transfer Learning
Module (M2)”. The size of this labeled data is explicitly
stated in the section “Evaluation matrices and datasets”.
These data from the three documents are then fed into
various BERT-based models (ClinicalBERT, SCIBERT,
and DistilBERT) to generate contextual word embeddings
for the clinical concepts. These embeddings are subse-
quently used in downstream DL models to train them for
clinical concept classification tasks.

Furthermore, there has been a rise in the utilization of
deep learning classification models for text data classifica-
tion problems. In our study, we employ five types of DL
algorithms RNN, GRUs, LSTM, BiLSTM, and CNN for
clinical concept classification, using BERT based various
embeddings as input features. These models are trained to
classify clinical concepts into explicit categories while
maintaining high accuracy. Additionally, we leverage pre-
trained LLMs, such as BERTBase, DistilBERT,
SCIBERT, and ClinicalBERT, to harness state-of-the-art
language representations tailored to the clinical domain
and assess their performance on the specific nuances of clin-
ical text. The performance of each DL model is detailed in
the section “Experimental setup and results”.

Evaluation matrices and datasets

In this section, we have discussed the empirical analysis of
the proposed methodology by evaluating unstructured clin-
ical documents provided by I2b2 National Center in 2010
NLP challenges.*® Each process performance results are
presented and discussed to highlight the need and value
of the proposed methodology. Similarly, we have open-
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source code for clinical researchers and the health industry
to run and integrate the proposed methodology into their
systems or research, which is available on GitHub (https:/
github.com/TuriAsim/MCECS.git).

Performance measure matrices

To measure and compare system performance, generally,
three indexes are used for information retrieval and extrac-
tion: precision, recall, and F1-score. Precision measures the
number of valid instances in the set of all retrieved
instances. Recall measures the number of valid instances
in the intended class of instances. F1-score is the harmonic
mean between precision and recall with =1 to obtain
F-score. The measures can be computed through the follow-
ing equation:
Precision * Recall

F1- =2 3
score * Precision + Recall )

TP

Precision = m (4)
TP
Recall = ——— 5
A = TP FEN )
TP + TN
A - . 6
CeUmaCY = P I TN + FP + EN ©)

Datasets evaluation and preparation

We evaluated publicly available open datasets clinical data-
sets provided by: Partners Healthcare, and Beth Israel
Deaconess Medical Center, provided by the i2b2 National
Center. The clinical dataset consists of discharge summaries
that have been manually annotated for three types of clinical
concepts (Problem, Treatment, Test) according to the
instructions granted by the i2b2/VA challenge organizers.*®
Consequently, the Beth Israel Deaconess Medical Center
dataset contains 73 annotated notes, the Partners
Healthcare dataset contains 97 annotated notes, and the
test dataset provided by the i2b2 National Center for
system evaluation contains 256 annotated notes. Overall,
the i2b2 datasets comprise 426 gold standard notes, as
depicted in Figure 4(A). Moreover, the datasets consist of
19,665 Problem, 14,187 Treatment, and 13,834 Test clin-
ical concepts, cumulatively totaling 47,686 clinical con-
cepts available in the datasets (see Figure 4(B)).

While evaluating the rule-based approach, we selected
20 clinical notes from each dataset. As a result, we acquired
a total of 2035 clinical concepts from the rule-based
approach. We then selected only true instances, totaling
500 for each concept category, to utilize them in the ATL
process, as depicted in Figure 4(C). Further, while evaluat-
ing ATL approach, we acquired 1500 true instances from
the rule-based approach and 3500 concepts of equal size

from the gold standard data to generate training embed-
dings. Afterward, we chose 1200 test concepts, which
were not previously seen or used, to find the threshold
value and measure the LLMs’ performance towards
unseen concept classification in the ATL process, as
shown in Figure 4(D).

Finally, we trained the DL models and LLMs on data
acquired from the rule-based approach, the active learning
approach with a size of 1500, unseen data with only true
instances of 885, and gold standard data with a size of
1615 (see Figure 4(E)). Overall, we utilized a dataset of
9000 clinical concepts to evaluate the DL models and
LLMs in the proposed approach, with each category con-
sisting of 3000 concepts, as shown in Figure 5(F). In the
sections below, we have explicitly presented the results
and performance of each approach.

Experimental setup and results

The proposed methodology outlined in the section
“Proposed methodology” provides a theoretical foundation
for clinical concept identification and classification from
unstructured clinical documents. To construct a robust
implementation of this framework, it is crucial to determine
the specific models and algorithms that can optimize each
component individually, thereby producing high-
performance intermediate results. These results can then
be combined to achieve an overall optimal outcome for
clinical concept classification. We conducted numerous
experiments to assess the effects of a rule-based approach
on initial label preparation, embedded vector generation,
and similarity threshold calculation within an ATL
approach. Additionally, we trained various DL models
and LLMs to identify a well-balanced ecosystem that
meets both our local and global optimization goals.
Figure 5 depicts a detailed experimental workflow.

Initial-level labeling performance (M1)

During the label data preparation process, we conducted
several experiments to assess performance based on clinical
concept categorization. These experiments encompassed
evaluations of individual datasets and individual concepts,
as well as comparisons with alternative approaches, as ela-
borated below.

Individual datasets and concept-wise performance. In this
section, we provide a comparative analysis of the results
obtained from each dataset, examining them on both a
dataset-specific and clinical concept level. We utilize the
Beth, Partner, and 12b2 Test datasets for this purpose. As
a result, a high precision of 83%, recall of 75%, and
Fl-score of 79% were measured for the Partner dataset,
which was found to be better than those for the Beth and
12b2 Test datasets. The overall lowest score was calculated
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for the 12b2 Test dataset, with a precision of 69%, recall of
67%, and F1-score of 68%, as shown in Table 2. The arrow
symbol (1) indicates the model performance improvement
in percentage on the current dataset over the previous
one. For instance, the methodology applied to the Partner
dataset shows an (18%) increase in performance compared
to the Beth dataset in terms of precision, and vice versa.

We also computed individual concept-wise results for
the proposed methodology in terms of concept classifica-
tion. While performing the analysis for the individual con-
cepts, we noticed an approximately equal and high
precision of 80% for the Problem and Test categories,
whereas the Treatment category gained a higher recall of
87%. The overall best performance, with an Fl-score of
81%, was achieved by the Problem concept category, as
shown in Table 3.

Proposed approach vs. competitors (rule-based). We com-
pared our proposed approach with that of three related
systems: QuickUMLS,*® BIO-CRF,’° and the Rules
(i2b2) model.>" The three systems were tested against the
i2b2 2010 dataset for three types of concept category
extraction: Problem, Treatment, and Test.

QuickUMLS employed an approximate dictionary
matching approach for medical concept extraction, requir-
ing a threshold value between 0.6 and 1.0 to select an
acceptable medical concept from a collection of UMLS
concepts. In our suggested methodology, we used both
approximate dictionary matching and exact word matching,
which resulted in 25% greater accuracy and almost 13%
higher Fl-score compared to QuickUMLS. However,
QuickUMLS demonstrated almost 5% greater recall com-
pared to the proposed methodology, as depicted in Table 4.




DIGITAL HEALTH

Table 2. Individual datasets-wise performance for clinical concepts
classification.

Test data (I12b2)  69% 67% 68%

Beth datasets 75% (1 6%) 70% (1 3%) 72% (1 4%)

Partner datasets 83% (1 8%) 75% (1 5%) 79% (1 7%)

Table 3. Individual concept-wise performance for concept
classification.

Problem 79% 83% 81%
Treatment 68% 87% 76%
Test 80% 42% 55%

Table &. Comparative analysis among proposed approach and the
competitors (QuickUMLS, BIO-CRF, Rules (i2b2)).

QuickUMLS 50% 75% 60%
BIO-CRF 70% 73% 71%
Rules (i2b2) 48.4% 38.5% 42.9%
Our approach 75.76% 70.32% 72.94%

The Rules (i2b2) model created a simple set of rules by
harvesting information from the annotated training data.
This rule-based algorithm used a statistical method to cat-
egorize and extract concepts from structured and annotated
data. On the other hand, our suggested rules-based method-
ology employed a majority vote mechanism to identify and
extract concepts from unstructured clinical data. When
compared to the Rules (i2b2) model, the proposed method-
ology yielded higher precision, recall, and Fl-score, as
shown in Table 4.

BIO-CRF is a medical concept extraction approach
based on ML that aims to automatically identify the
concept boundary and assign the concept type to them.
For each medical concept, word-level and
orthographic-level features were retrieved to train the
BIO-CRF model. At the individual concept and dataset
level, we compared the performance of the proposed
approach with BIO-CRF. The proposed methodology

achieved 75.76% precision and a 72.94% F1-score, which
are approximately 6% and 2% higher than the BIO-CRF
system, respectively. Nevertheless, BIO-CRF achieved
approximately 3% higher recall than the proposed system.
Overall, the proposed system performed better than the
QuickUMLS, BIO-CRF, and Rules (i2b2) models, as
shown in Table 4.

ATL module performance (M2)

In this section, we present the experimental results for the
ATL module. The results from this module include
optimal threshold value identification, individual LLMs’
performance towards concept embedding similarity, and
ensemble LLMs’ performance for concept classification
employing the embedding similarity approach.

Threshold value identification assessments. Our problem is a
multiclass classification, so we transform the categorical
class labels into a binary matrix representation as per the
experiment’s requirements. Ultimately, we concatenate all
three concept category labels along with their similarity
scores. Similarly, we also perform experiments for explicit
concept models, which are presented in the article’s appen-
dix. As illustrated in Figure 6, we present the threshold
scores and area under the curve (AUC) values, acquired
from the evaluation of four different models: BERT,
ClinicalBERT, DistilBERT, and SCIBERT, applied
towards a clinical concept classification task. The threshold
score indicates the decision boundary for classifying
instances, while the AUC score quantifies the overall dis-
criminative ability of an explicit model.

Analyzing the AUC scores, we observe that all models
perform reasonably well, with scores ranging from 0.73
to 0.76, as shown in Figure 6. The AUC is a crucial
metric in binary classification tasks, representing the
model’s ability to distinguish between positive and negative
instances in concept classification. In this context, an AUC
score above 0.5 indicates that the models are performing
better than random chance. Interestingly, ClinicalBERT,
DistilBERT, and BERTBase exhibit similar AUC scores
of 0.73, suggesting comparable discriminative performance
on the task. In contrast, SCIBERT stands out with a slightly
higher AUC score of 0.76, indicating improved discrimina-
tive ability compared to the other models.

Moving on to the threshold scores, we note that
DistilBERT and ClinicalBERT have relatively higher
threshold values (0.96, respectively), indicating a more con-
servative classification approach as shown in Figure 6.
BERT and SCIBERT, on the other hand, have slightly
lower threshold values (0.94 and 0.92, respectively), sug-
gesting a relatively more lenient approach in assigning posi-
tive class labels as shown in Figure 6. The choice of
threshold can be crucial in real-world applications, impact-
ing the balance between sensitivity and specificity. A higher
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Figure 6. Threshold value identification for embedding similarity using cosine similarity approach.

Table 5. Individual LLM performance towards concept classification in active transfer learning environment.

BERTBase (Problem, Treatment, and Test) 91 157
DistilBERT (Problem, Treatment, and Test) 115 232
ClinicalBERT (Problem, Treatment, and Test) 65 121
SCIBERT (Problem, Treatment, and Test) 143 260

4 167 54.14 53.74 51.60 53.33
81 188 52.0 51.52 48.50 49.19
70 174 53.57 53.13 53.0 55.58
86 196 52.72 52.49 49.20 49.50

TP: true positive; FN: false negative; FP: false positive; TN: true negative; A: accuracy; P: precision; R: recall; F: F1-score.

threshold tends to prioritize precision, reducing the likeli-
hood of false positives but potentially increasing false nega-
tives. Conversely, a lower threshold may result in higher
recall but at the expense of precision.

We calculated the average threshold score and AUC
score across the four models and found that the average

threshold is approximately 0.95, while the average AUC
score is approximately 0.7375. This suggests a moderate
threshold level for classification and an overall moderate
discriminative performance across the ensemble of
models. Finally, we combined the threshold score of 0.95
and the AUC score of 0.7375 and took the average. As a
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result, we obtained a prominent threshold value of 0.83,
consequently assisting in lower recall and precision
expense towards clinical concept classification.

System performance for ATL process. Subsequently, identify
the optimal threshold value which is 0.83 as shown above
section. Further, all the four BERT variant-based concept
embedding models trained during the AT process are eval-
uated individually on unseen clinical concepts. In the ATL
environment, the individual LLMs exhibit varying perfor-
mances towards concept classification tasks across three
categories: Problem, Treatment, and Test as presented in
Table 5. Each model underwent evaluation based on True
Positives (TP), False Negatives (FN), False Positives
(FP), True Negatives (TN), precision (P%), recall (R%),
Fl1-score (F1%), and accuracy (A%).

The BERTBase model demonstrated 91 True Positives,
157 False Negatives, 74 False Positives, and 167 True
Negatives, resulting in precision, recall, Fl-score, and
accuracy of 54.14%, 53.74%, 51.60%, and 53.33%,
respectively. DistiIBERT, on the other hand, exhibited
115 True Positives, 232 False Negatives, 81 False
Positives, and 188 True Negatives, yielding precision,
recall, Fl-score, and accuracy values of 52.0%, 51.52%,
48.50%, and 49.19%, respectively. ClinicalBERT dis-
played 65 True Positives, 121 False Negatives, 70 False
Positives, and 174 True Negatives, resulting in precision,
recall, Fl-score, and accuracy of 53.57%, 53.13%, 53.0%,
and 55.58%, respectively. Lastly, SCIBERT recorded 143
True Positives, 260 False Negatives, 86 False Positives,
and 196 True Negatives, with precision, recall, Fl-score,
and accuracy values of 52.72%, 52.49%, 49.20%, and
49.50%, respectively. Comparatively, ClinicalBERT
demonstrated the highest precision and accuracy among
the models, while BERTBase had the highest recall.
The Fl-scores across the models were relatively close,
with ClinicalBERT achieving a slightly higher F1-score.
These metrics collectively indicate nuanced differences in
the LLM models’ performance, emphasizing the import-
ance of considering various evaluation measures for a
comprehensive assessment. Afterward, we incorporated a
domain expert into the process to allocate the remaining
concepts into proper category, ensuring a comprehensive
and accurate clinical concept classification in the dynamic
ATL environment.

Use the wisdom of many. Every text classification algorithm
has its own strengths and weaknesses. There is no single
algorithm that always works well. One way to circumvent
this is by using an ensemble of multiple classifiers. The
data are passed through every classifier, and the predictions
generated are combined (e.g. majority voting) to arrive at a
final class prediction. Owing to this, we evaluated four
LLMs such as BERTBase, DistilBERT, ClinicalBERT,
and SCIBERT in our study towards clinical concept

classification. The UpSet analysis graph, as shown in
Figure 7, provides valuable insights into the intersection
and performance dynamics across different degrees for
these LLMs in an ensemble model environment.
Similarly, the data reveal distinct patterns and nuances,
shedding light on the collaborative strengths of the models.

In Figure 7, the x-axis presents the total size of clinical
concepts that have been identified by individual models,
while the y-axis presents the size of clinical concepts
extracted by individual models, two models, or more col-
lectively. Overall, 222 (25.1%) clinical concepts are pre-
dicted by BERTBase, DistilBERT, ClinicalBERT, and
SCIBERT at a degree > 4. At the first degree, the individual
performance of SCIBERT stands out with a minimal but
noteworthy 7.0% (62) intersection size relative to the
other models. This finding suggests that SCIBERT can
capture unique clinical concepts independently, laying the
foundation for its contribution to ensemble modeling.
Moving to the second degree, the intersections involving
pairs of models unveil interesting collaborative patterns.
For instance, the combination of SCIBERT and
DistilBERT demonstrates a substantial 15.1% (134)
overlap, indicating a shared capacity to extract common
clinical concepts. Similarly, the pairing of SCIBERT and
BERTBase exhibits a notable 5.0% (44) overlap, emphasiz-
ing a complementary relationship that enhances clinical
concept extraction.

As we progress to the third degree, the complexity of
ensemble interactions becomes evident. The intersection
involving BERTBase, DistilBERT, and SCIBERT reveals
a unique set of clinical concepts with a 10.6% (94)
overlap. In the same way, the pairing of BERTBase,
DistilBERT, and ClinicalBERT uniquely classifies con-
cepts with a 7.8% (69) overlap. This suggests that the
synergy among these three models contributes to the extrac-
tion of diverse and complex clinical information. Finally,
the fourth-degree intersection, involving all four models
(SCIBERT, DistilBERT, BERTBase, and ClinicalBERT),
showcases a more specialized set of clinical concepts,
accounting for 25.1% (222) of the total. This highlights
the ensemble’s ability to capture intricate medical informa-
tion, leveraging the collective strengths of each model.
Further exploration into additional third-degree intersec-
tions uncovers distinctive patterns, such as the 4.7% (42)
and 3.2% (28) overlaps between SCIBERT, BERTBase,
ClinicalBERT, and DistilBERT. This specific combination
suggests a collaborative effect in extracting clinical con-
cepts not fully captured by individual models.

To sum up, the ensemble model environment proves to
be conducive to capturing a wide spectrum of clinical con-
cepts, with varying degrees of overlap and collaboration
among the four LLMs. Moreover, these findings provide
nuanced insights into the intricate relationships and per-
formance dynamics within the ensemble, offering valuable
guidance for optimizing model selection in clinical concept
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Figure 7. Upset analysis to measure the LLM performance in ensemble learning environment towards clinical concept classification.

extraction tasks. Furthermore, future research may delve
deeper into fine-tuning strategies, model interpretability,
and generalizability across diverse clinical datasets to
further advance the effectiveness of ensemble modeling in
healthcare applications.

DL and LLM models parameter tuning and
performance evaluation (M3)

In our experimental environment, we leverage the Ktrain®?
framework for training LLMs, which is a streamlined inter-
face for the TensorFlow Keras deep learning library. The
Ktrain framework simplifies the processes of constructing,
training, and deploying LLMs, DL, and various ML algo-
rithms. Similarly, the TensorFlow and Keras libraries are
used for training DL models for the clinical concept classi-
fication task. We utilized a final dataset comprising 9000
clinical concepts, evenly distributed with 3000 concepts
in each category (Problem, Treatment, and Test), for train-
ing our classification models. The data were split with an
8:2 ratio, allocating 80% for model training and 20% for
evaluation purposes. As outlined in the proposed method-
ology, we undertook the training and evaluation of
diverse DL models, including pretrained LLMs, for the
purpose of concept classification.

DL model parameter turning. Our initial approach involved
applying DL models to leverage contextually generated

word embeddings based on LLMs. We referred to these
DL models as downstream models. Throughout the training
process, which included models such as RNN, CNN,
LSTM, BiLSTM, and GRU, we performed parameter
tuning to identify the most optimal settings.

Table 6 provides a comprehensive overview of the tuned
parameters that resulted in notable accuracy for these
models. The dropout layer with a value of 2.0 is added
only to the CNN model, while for the other models, we
added an L1 regularization layer of 0.001 to reduce and
prevent model overfitting. The purpose of adding these
regularization layers to the DL models is to achieve better
generalization performance on unseen data. Furthermore,
in our DL model experiments, we employed the Adam opti-
mizer, which is known for its adaptive learning rate and effi-
cient optimization capabilities. These DL models are
trained over 10 epochs, with a batch size of 32, to strike a
balance between computational efficiency and generaliza-
tion. Additionally, the categorical cross-entropy loss func-
tion was utilized to measure the dissimilarity between
predicted and actual class distributions. This choice is par-
ticularly suitable for multiclass classification tasks, ensuring
the model optimizes its parameters to minimize classifica-
tion error.

LLM parameter tuning. To gain a deep insight into the clin-
ical concept classification task, we carefully choose and
employed a set of hyperparameters, as shown in Table 6,
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Table 6. Presented deep learning (DL) model and large language
models (LLMs) tuning parameters utilized during training.

Hyperparameters Value
Max sequence length 256
Embedding dimension 768

Regularization L1 (0.001) (excluding in CNN)

Dropout 2.0 (only in CNN)
Optimal optimizer adam
Epochs 10

Loss function categorical_crossentropy
Batch size 32

Parameter settings for pretrained LLM’s models

Max sequence length 512
Max features 10 k
Embedding dimension 768
Learning rate 2e°
Batch size 6
No. of cycles 2

for training BERT-based models, including BERTBase,
ClinicalBERT, SCIBERT, and DistilBERT, using the
Ktrain framework.>® The selected hyperparameters, such
as a maximum sequence length of 512, maximum features
set at 10 k, embedding dimension of 768, a learning rate
of 2¢7> , batch size of 6, and a total of 2 training cycles,
were strategically tuned to explicitly optimize the models’
performance for the clinical concept classification task.
These parameters were chosen based with the aim of
achieving a balance between effective learning, computa-
tional efficiency, and model generalization. Similarly, we
perform ablation study to choose optimal parameter as pre-
sented in the Section “Ablation study and learning rate ana-
lysis for LLMs”. Consequently, the results of this parameter
selection provide valuable insights into the fine-tuning
process for BERT-based models in clinical contexts.

DL model performance. We have experimented with distinct
state-of-the-art DL models (RNN, LSTM, BiLSTM, GRU,
CNN) using different combinations of BERT-based word

embeddings, along with their corresponding performance
metrics of loss and accuracy. We found that a CNN DL
model with different LLM embeddings emerged as an
ideal performer in terms of achieving high training and
test accuracy, as well as low training and testing loss, as
shown in Table 7.

Similarly, the RNN, GRU, LSTM, and BiLSTM models
demonstrated strong performance with accuracy around
87-89% for both training and testing, suggesting good
learning capabilities. However, the CNN achieved the
highest accuracy among BERT embeddings (BE 4+ CNN)
at 92% for training and 91% for testing, and the lowest
training and testing loss of 0.22 and 0.28, respectively,
emphasizing its effectiveness in capturing hierarchical fea-
tures in sequential clinical data, as shown in Table 7.

Furthermore, DL models with scientific-based embed-
dings (SCIBERT) exhibited competitive performance, par-
ticularly with CNN (SCI_BE + CNN), which achieved
remarkable accuracy of 95.3% and 92.7% on training and
testing, with minimal loss of 0.14 and 0.22. Other
models, like RNN, GRU, LSTM, and BiLSTM with
scientific-based embeddings (SCIBERT), also performed
well on both training and testing, showing improved accur-

acy compared to their BERT-based embedding
counterparts.
Likewise, DistilBERT combined with CNN

(DistiIBERT + CNN) stood out with exceptional accuracy
of almost 92.4% for training and 89.2% for testing, at an
economical loss of 0.21 and 0.34, indicating the effective-
ness of leveraging pretrained transformer-based embed-
dings in conjunction with convolutional layers. In
contrast, LSTM, GRU, RNN, and BiLSTM models with
DistilBERT embeddings also performed well, showcasing
the ability of transformer-based embeddings to enhance
sequential learning. The ClinicalBERT, a domain-specific
contextualized embedding, contributed to improved accur-
acy across various models, particularly with CNN
(ClinicalBERT + CNN) achieving 94.4% and 92.4% accur-
acy for training and testing, with a loss of 0.16 and 0.24.
Despite this, the RNN, GRU, LSTM, and BiLSTM
models with ClinicalBERT embeddings demonstrated
notable performance, highlighting the significance of
domain-specific embeddings in clinical applications.
Notably, the overall CNN model with LLM embeddings
stands out with the lowest training and testing loss and
the highest training and testing accuracy, as shown in
Table 7, highlighted in green to depict its importance.
Additionally, we calculated the time complexity for
training various DL models combined with different
embedding techniques, detailed analysis is provided in
Table 7. To accurately assess the time complexity, we cal-
culate the total time taken across 10 epochs. BERT embed-
dings (BE) combined with different models exhibit the
highest time complexity, with the BiLSTM model taking
the longest time at 83 seconds across 10 epochs, followed
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Table 7. Deep learning (DL) model performance trained over large language model (LLM) contextual embeddings.

BE + BiLSTM 0.74 0.874 0.75 0.87 83 seconds
BE + LSTM 0.56 (| 0.18)  0.875 (1 0.001) 0.59 (| 0.16)  0.86 (| 0.01) 72 seconds
BE + GRU 0.54 (} 0.02) 0.876 (1 0.001)  0.53 (| 0.06) 0.875 (1 0.015) 53 seconds
BE + RNN 0.45 (| 0.09) 0.882 (1 0.06) 0.48 ( 0.05)  0.88 (1 0.005) 61 seconds
BE + CNN 0.22 (| 0.23)  0.92 (1 0.038) 0.28 (| 0.2) 0.905 (1 0.025) 61 seconds
SCI_BE + BiLSTM 0.60 0.935 0.67 0.914 48 seconds
SCI_BE + LSTM 0.44 (| 0.16)  0.927 (| 0.008)  0.47 (] 0.2) 0.915 (} 0.001) 46 seconds
SCI_BE + GRU 0.39 ( 0.05)  0.927 (1 0.0) 0.44 (} 0.03)  0.916 (1 0.001) 32 seconds
SCI_BE + RNN 0.32 (} 0.07)  0.932 (1 0.005) 0.37 (} 0.07)  0.918 (1 0.002) 33 seconds
SCI_BE + CNN 0.14 (| 0.18)  0.953 (1 0.021)  0.22 (} 0.15)  0.927 (1 0.009) 39 seconds
DistilBERT + BiLSTM 0.77 0.872 0.81 0.868 52 seconds
DistilBERT + LSTM 0.62 (| 0.15)  0.867 (| 0.005) 0.65 (] 0.16)  0.852 (] 0.016) 45 seconds
DistilBERT + GRU 0.57 (1 0.05)  0.868 (1 0.001)  0.63 (| 0.02)  0.855 (1 0.03) 30 seconds
DistilBERT + RNN 0.5 (J 0.07) 0.88 (1 0.012) 0.54 (} 0.09) 0.862 (1 0.007) 36 seconds
DistilBERT + CNN 0.21 (| 0.29)  0.924 (1 0.044)  0.34 (] 0.2) 0.892 (1 0.072) 39 seconds
ClinicalBERT + BiLSTM 0.64 () 0.918 0.66 0.909 48 seconds
ClinicalBERT + GRU 0.42 (] 0.22)  0.916 (| 0.002)  0.44 (] 0.22)  0.907 (] 0.002) 30 seconds
ClinicalBERT +RNN 0.36 (1 0.06)  0.92 (1 0.004) 0.5 (| 0.05)  0.907 (1 0.0) 32 seconds
ClinicalBERT + LSTM 0.47 (1 0.11)  0.915 (| 0.005)  0.49 (1 0.09)  0.905 (| 0.002) 45 seconds
ClinicalBERT + CNN 0.16 (| 0.31)  0.944 (1 0.029)  0.24 (} 0.25)  0.924 (1 0.019) 32 seconds

by LSTM at 72 seconds, and GRU, RNN, and CNN all
within the 53 to 61 seconds’ range. The SCIBERT embed-
dings (SCI_BE) show a noticeable reduction in time com-
plexity across all models compared to BERT.
Specifically, SCI_BE combined with GRU achieves the
fastest processing time at 32 seconds across 10 epochs,
while BiLSTM, LSTM, RNN, and CNN also perform effi-
ciently, ranging from 33 to 48 seconds over 10 epochs. In
the similar way DistilBERT embeddings further reduce
time complexity, with the GRU model being the most effi-
cient at 30 seconds over 10 epochs, followed by RNN and
CNN at 36 and 39 seconds, respectively. Interestingly, the

combination of ClinicalBERT embeddings with GRU
also reaches 30 seconds per epoch, matching the perform-
ance of DistilBERT + GRU. Across all models, GRU con-
sistently demonstrates the lowest time complexity,
regardless of the embedding type. Conversely, BiLSTM
generally incurs the highest time costs, particularly when
paired with BERT embeddings. This analysis reveals that
while traditional BERT embeddings are powerful, they
are more computationally expensive. In contrast,
SCIBERT, DistilBERT, and ClinicalBERT embeddings
offer significant reductions in time complexity, especially
when paired with GRU and other simpler models like
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RNN and CNN. These findings suggest that for tasks where
computational efficiency is crucial, SCIBERT or
DistilBERT combined with GRU or RNN might be
optimal choices (Figure 8).

Mitigating  overfitting  and  ensuring  robust  model
performance. Figure 9 illustrates the training and validation
accuracy and loss curves for CNN models trained on
embeddings generated from four BERT-based variants:
BERTBase, DistilBERT, ClinicalBERT, and SCIBERT,
over 10 epochs. These curves offer a comprehensive
visual representation of the models’ performance and their
ability to generalize.

Consequently, BERTBase + CNN model shows a steady
increase in training accuracy, starting at 76.36% in the first
epoch and improving to 92.04% by the tenth epoch (see
Figure 9(A)). Similarly, validation accuracy rises from
84.03% to 90.48%, with a slight leveling off in later
epochs. The training and validation loss curves demonstrate
a consistent decrease, indicating that the model is learning
effectively ~ without  significant  overfitting  (see
Figure 9(E)). The validation loss starts higher but follows
a similar downward trend, ending at 0.284 in epoch 10.
This suggests that BERTBase + CNN is robust and able
to generalize well, maintaining relatively low validation
loss.

Similarly, the DistilBERT + CNN model training accur-
acy starts at 74.85% and reaches 92.40% by the tenth
epoch, showing a similar trajectory to BERTBase + CNN
(see Figure 9(B)). However, the validation accuracy curve
shows some fluctuations after the eighth epoch, peaking
at 89.15% before dipping slightly. The validation loss
decreases steadily but shows an upward trend in the final

epochs, which could be an indication of mild overfitting
(see Figure 9(F)). Despite these fluctuations, DistilBERT
+CNN remains efficient and competitive, albeit less
stable than the full BERT model.

Moreover, ClinicalBERT + CNN emerges as one of the
most robust models. Its training accuracy rises significantly,
from 78.09% to 94.36% by the final epoch, with a consist-
ently decreasing training loss curve (see Figure 9(C and
G)). The validation accuracy also steadily improves, reach-
ing 92.42% by epoch 10, while validation loss steadily
declines to 0.242. The alignment between training and val-
idation loss suggests that ClinicalBERT + CNN effectively
mitigates overfitting and achieves strong generalization,
especially in clinical concept classification tasks, conse-
quently domain-specific embeddings provide a notable
advantage.

Additionally, SCIBERT + CNN demonstrates outstand-
ing performance throughout the epochs. The training accur-
acy improves from 80.77% to 95.31%, with validation
accuracy reaching 92.67% (see Figure 9(D)). Importantly,
SCIBERT + CNN achieves the lowest validation loss of
all models, starting at 0.325 and declining steadily to
0.219 by epoch 10 (see Figure 9(H)). This low validation
loss, coupled with high validation accuracy, highlights the
model’s robustness and ability to generalize effectively in
scientific and clinical text contexts. SCIBERT’s specialized
embeddings appear to provide a significant performance
boost.

When comparing the models, SCIBERT + CNN and
ClinicalBERT + CNN clearly outperform the others in
terms of both training and validation accuracy, with lower
validation loss, indicating better generalization capabilities
and less risk of overfitting. BERT + CNN also performs

BERTBase + CNN DistilBERT + CNN

ClinicalBERT + CNN SCIBERT + CNN
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Figure 8. Training and validation accuracy and loss curves for CNN models trained on embeddings generated from four BERT-based
variants (BERTBase, DistilBERT, ClinicalBERT, and SCIBERT). The plots demonstrate the model’s performance over epochs, highlighting the
efforts to mitigate overfitting and ensure robust generalization. Training accuracy and loss are represented by solid lines, while validation
accuracy and loss are depicted by dashed lines for each model variant.




Abbas et al.

21

Ablation Study: Effect of Max Sequence Length on Models Accuracy

Ablation Study: Effect of Regularization on Models Accuracy

1.01 7 |
—e— Train: BERT+CNN  —e— Train: DistilBERT+CNN  —@~ Train: ClinicalBERT+CNN ~ —@— Train: SCIBERT+CNN
Val: DistilBERT+CNN

-m- Val: BERT+CNN -®- Val: ClinicalBERT+CNN Val: SCIBERT+CNN

1.00 7 )
—&— Train: BERT+CNN —e— Train: DistilBERT+CNN —e— Train: ClinicalBERT+CNN —&— Train: SCIBERT+CNN
0.98 " Val: BERT+CNN ~®- Val: ClinicalBERT+CNN - Val: SCIBERT+CNN

Val: DistilBERT+CNN

150 200 250 300 350 400 aso0 500
Max Sequence Length
(a)

Ablation Study: Effect of Dropout on Models Accuracy

0.000 0.002 0.004 0.006 0.008 0.010
Regularization Values

(b)

Ablation Study: Effect of Batchsize on Models Accuracy

1.00 !
—@— Train: BERT+CNN —&— Train: DistilBERT+CNN —&— Train: ClinicalBERT+CNN —&— Train: SCIBERT+CNN
~M- Val: BERT+CNN Val: SCIBERT+CNN

Val: DistilBERT+CNN -®- Val: ClinicalBERT+CNN

0.98

0.96

0.94

0.92

Accuracy

1.01 7 1
—e~ Train: BERT+CNN  —— Train: DistilBERT+CNN  —@~ Train: ClinicalBERT+CNN  —@— Train: SCIBERT+CNN
~M- Val: BERT+CNN Val: DistilBERT+CNN  —B- Val: ClinicalBERT+CNN Val: SCIBERT+CNN

Accuracy
°
©
@

0.0 0.1 0.3 0.4 05

0.2 .
Dropout Values

(©)

20
Batchsize Values

(d)

Figure 9. Ablation testing results for the CNN model utilizing BERT-based embeddings (BERTBase, DistilBERT, ClinicalBERT, and SCIBERT),
evaluating the impact of sequence length, regularization, dropout, and batch size on model performance.

well but shows slightly higher validation loss compared to
the domain-specific models. DistilBERT + CNN, while
efficient and fast, shows some signs of overfitting in later
epochs, making it less robust than the other models, espe-
cially when working with domain-specific tasks.

Overall, Figure 9 demonstrates that domain-specific
models like ClinicalBERT +CNN and SCIBERT + CNN
are superior for specialized tasks in medical or scientific
domain, as they achieve both high accuracy and low loss
with minimal overfitting. These models are ideal for clinical
concept extraction and classification task, where domain
knowledge is crucial for robust model performance.

DL model ablation testing. In our comprehensive analysis of
DL models for clinical concept classification, we evaluated
the performance of various DL models trained over differ-
ent BERTBased word embeddings, including BERTBase,
DistilledBERT, SCIBERT, and ClinicalBERT. The
receiver operating characteristic (ROC) curves and the cor-
responding area under the ROC curve (AUC) values were
examined for each model. The AUC values serve as a quan-
titative measure of each model’s ability to distinguish
between positive (True Positive Rate on y-axis) and

negative (False Positive Rate on x-axis) instances.
Notably, for BERT base embeddings, the CNN architecture
demonstrated an outstanding performance compare to other
DL models (see Figure Al). As a result, we conducted abla-
tion testing specifically to fine-tune the hyperparameters of
the CNN models trained on these BERT-based architec-
tures. The parameters considered for optimization included
dropout, regularization, batch size, and sequence length.
The goal of this ablation testing was to identify the
optimal combination of these parameters that would
enhance the performance of the CNN model across differ-
ent BERT-based LLMs, ensuring strong generalizability
and minimizing overfitting or underfitting.

Based on the results of the ablation study and the ana-
lysis of training and validation accuracy gaps, the final
hyperparameters were selected to ensure the model avoids
overfitting or underfitting, while promoting generalizabil-
ity. In terms of sequence length, a length of 256 strikes
the best balance across models, particularly for BERT +
CNN, ClinicalBERT +CNN, and SCIBERT +CNN,
where it minimized the gap between training and validation
performance, indicating strong generalization without over-
fitting. For regularization, it was consistently observed that
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applying regularization (even at low values) increased the
gap between training and validation accuracies, leading to
underfitting. Therefore, no regularization (0) is recom-
mended to maintain optimal performance and prevent
underfitting. Regarding dropout, while setting dropout to
0 led to overfitting in some models, particularly BERT +
CNN and DistilBERT 4+ CNN, introducing a dropout of
0.2 improved validation accuracy and reduced the gap in
models like ClinicalBERT + CNN and SCIBERT + CNN,
enhancing generalizability. Finally, a batch size of 32 was
found to stabilize performance, minimizing the accuracy
gap and ensuring good generalization, especially for
ClinicalBERT + CNN and SCIBERT +CNN. This com-
bination of sequence length 256, no regularization,
dropout of 0.2, and batch size of 32 provides the best con-
figuration for achieving a well-generalized model across
different language models, avoiding overfitting while
ensuring robust validation performance.

Comparative analysis among Al based proposed and existing
approaches for clinical concept classification. Table 8 pro-
vides a comprehensive comparison among several existing
approaches and the proposed approaches for clinical
concept classification, focusing on precision, recall, and
Fl-score metrics. Among the existing approaches, Zhu
et al.>* utilized a BILSTM-CRF model, achieving precision,
recall, and Fl-score of 89.34%, 87.87%, and 88.60%,
respectively. Wu et al.>> experimented with both CNN
and RNN architectures, achieving varying levels of per-
formance, with CNN yielding a precision of 84.91% and

Table 8. Performance comparison among proposed approach and
existing approaches for clinical concept extraction.

Zhu et al.>* BiLSTM-CRF 89.34  87.87 88.60
Wu et al.” CNN 8491 80.73 82.77
Wu et al.>® RNN 85.33  86.56 85.94
Tang et al.* SSVMs 87.38 84.31 85.82
Tang et al.* CRFs 88.20 83.30 85.68
Our approach-1 BERT+ CNN 92.03 90.12 91.01
Our approach-2  DistilBERT+ CNN 91.51 88.85 90.36
Our approach-3  ClinicalBERT + 91.51 88.85 90.11
CNN
Our approach-4 SCIBERT + CNN 93.34  92.58 92.68

TP: true positive; FN: false negative; FP: false positive; TN: true negative; A:
accuracy; P: precision; R: recall; F: F1-score.

an Fl-score of 82.77%, while RNN achieved a higher
recall of 86.56%. Tang et al.’® explored SSVMs and
CREFs, with the latter achieving a precision of 88.20% and
an Fl-score of 85.68%.

In contrast, the proposed approaches leverage various
versions of BERT-based embeddings in conjunction with
CNN architectures for clinical concept classification task.
Consequently, our approach-1 utilized BERTBase embed-
dings, achieved a precision of 92.03%, a recall of
90.12%, and an Fl-score of 91.01%. Similarly, our
approach-2, employing DistilBERT embeddings, achieved
competitive performance with a precision of 91.51% and
an Fl-score of 90.36%. Our approach-3, employing
ClinicalBERT embeddings, achieved results similar to our
approach-2, with a precision of 91.51% and an Fl-score
of 90.11%. Overall, our approach-4, leveraging SCIBERT
embeddings, outperformed the other approaches, achieving
a precision of 93.34%, a recall of 92.58%, and an F1-score
of 92.68%.

Comparatively, our approaches exhibit promising per-
formance across all metrics, with our approach-4 demon-
strating the highest precision, recall, and F1-score among
all approaches. This suggests that leveraging BERT-based
embeddings in combination with CNN architectures
enhances the model’s ability to accurately classify clinical
concepts. Additionally, our approaches demonstrate con-
sistency and robustness across different variants of BERT
embeddings, highlighting their effectiveness in capturing
contextual information and improving concepts classifica-
tion performance. Overall, our approaches offer a compel-
ling alternative to existing methods, showcasing the
potential of BERT-based models in clinical concept classi-
fication tasks.

LLM performance. Table 9 illustrates the evaluation of dif-
ferent LLMs on both training and testing datasets for the
clinical concept  classification  task. Notably,
ClinicalBERT stands out with the lowest training loss
(0.05) and the highest training accuracy (98.4%), indicating
its strong capability to learn and represent clinical concepts
from the training data. Moreover, this model maintains a
competitive testing performance, showcasing a testing
loss of 0.15 and testing accuracy of 96.0%. These results
suggest that ClinicalBERT not only excels in fitting the
training data but also generalizes effectively to new,
unseen clinical concepts during testing, making it a promis-
ing candidate for robust clinical concept classification. In
contrast, other models like BERT, DistilBERT, and
SCIBERT also exhibit commendable performance, they
generally exhibit slightly higher losses and marginally
lower accuracies in both training and testing phases.
Overall, these four LLMs, exhibit strong performance and
deliver superior results underscore their effectiveness
towards clinical concept classification task as shown in
Table 9.
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Table 9. Large language model (LLM) performance towards clinical concept extractions.

Large language models Loss Accuracy (%) Loss Accuracy (%) (XN: Sec;/Epochs), where epochs =2
i

DistilBERT 0.16 0.950 0.17 0.949 26.84 minutes

BERTBase 0.12 (} 0.04)  0.962 (1 0.012) 0.18 (1 0.01) 0.953 (1 0.004) 121.48 minutes

SCIBERT 0.12 (| 0.04)  0.965 (1 0.003) 0.14 (| 0.04) 0.959 (1 0.006) 51.57 minutes

ClinicalBERT 0.05 (} 0.07)  0.984 (1 0.019) 0.15 (1 0.01) 0.960 (1 0.001) 52.62 minutes

On the other hand we also calculated the time complex-
ity of various LLMs, measured in total time taken across
two epochs. The time was initially measured in seconds,
but due to the large values, it was converted into minutes
for easier interpretation. As a result, BERTBase exhibits
the highest time complexity, requiring 121.48 minutes
over two epochs, indicating a considerable computational
load. In contrast, DistilBERT is the most efficient, taking
only 26.84 minutes across two epochs, reflecting its
design for faster performance while maintaining accuracy.
SCIBERT and ClinicalBERT, which are specialized ver-
sions of BERT, show moderate time complexities, with
51.57 minutes and 52.62 minutes over two epochs, respect-
ively. Overall, DistilBERT emerges as the most computa-
tionally efficient model in this comparison, while
SCIBERT and ClinicalBERT balance specialization with
moderate increases in time complexity.

Ablation study and learning rate analysis for LLMs. This
section presents an ablation study that examines the
impact of two key learning rates—Longest Valley (Red)
and Min Numerical Gradient (Purple)—on the performance
of four models: BERTBase, DistilBERT, ClinicalBERT,
and SCIBERT. The learning rates were determined using
the ktrain library, and the models were evaluated based
on their training loss, accuracy, validation loss, and valid-
ation accuracy. Whereas, the Longest Valley represents a
stable area on the learning rate plot where the loss
remains low, ensuring reliable performance and reducing
the risk of uncertain training behavior. This method is par-
ticularly useful for models that aim for stability and to avoid
overfitting. In contrast, the Min Numerical Gradient marks
the point where the loss gradient is at its lowest, facilitating
faster convergence. However, this approach can introduce
instability if the learning rate is too high. A comprehensive
understanding of these strategies is vital for optimizing
model performance, as highlighted in the analysis of the
four LLM models in our study.

For BERTBase, the Longest Valley learning rate of
7.43E7% provided better performance, with lower training

loss (0.11) and higher accuracy 0.97%, compared to the
Min Numerical Gradient learning rate of 3.18E7% , which
resulted in slightly worse performance with higher loss
(0.13) and lower accuracy 0.96% (see Figure 10(A)).
Similarly, for ClinicalBERT, the Longest Valley learning
rate (9.44E7°%) resulted in slightly lower validation loss
(0.11) and higher accuracy 0.98% compared to the Min
Numerical Gradient (4.39E™"°), which had a similar train-
ing loss but higher validation loss (0.12) as shown in
Figure 10(C).

For DistilBERT, both learning rates performed excep-
tionally well, but the Min Numerical Gradient learning
rate (2.22E7%) slightly outperformed the Longest Valley
(7.29E_06) in terms of training loss (0.07 vs. 0.08) and val-
idation accuracy (0.97% vs. 0.96%) as depicted in
Figure 10(B). Similarly, SCIBERT achieved much better
training loss (0.06) with the Min Numerical Gradient
(3.22E_06), compared to the Longest Valley (3.89E_06),
where the training loss was higher (0.11), though both
learning rates produced comparable validation results (see
Figure 10(D)).

Overall, this study shows that while the Longest Valley
learning rate generally provides stable training and good
results for BERTBase and ClinicalBERT, the Min
Numerical Gradient learning rate tends to offer better con-
vergence for DistilBERT and SCIBERT. The study empha-
sizes the importance of selecting an appropriate learning
rate based on the specific model architecture, as different
models benefit from different strategies for learning rate
optimization.

Individual LLM performance statistical analysis. We per-
formed statistical analysis of four LLMs (BERT,
DistilBERT, ClinicalBERT, and SCIBERT) in classifying
clinical concepts derived from the I2B2 test dataset. This
dataset includes 990 clinical concepts equally distributed
among three categories: Problem, Treatment, and Test,
with 330 concepts in each. These models have been previ-
ously trained and fine-tuned on 12B2 datasets for accurately
categorizing these unseen concepts, and the output is
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compared against the I2B2 gold standard to evaluate classi-
fication performance as shown in Figure 11.

In Figure 11, the intersection size bars at the top of the
graph depict the number of correctly classified concepts
shared across different combinations of models, organized
by degrees of overlap. The largest bar, marked in orange,
represents the degree-4 intersection, showing 814 concepts
(82.2%) that were correctly classified by all four models.
This high overlap indicates strong agreement among the
models for a substantial subset of clinical concepts, suggest-
ing that these concepts may be inherently easier to classify
accurately, regardless of the model used.

Moving to the right, smaller bars reflect concepts cor-
rectly classified by fewer models. For example, blue bars
(degree-2 intersections) indicate concepts that were cor-
rectly classified by two models but missed by the others,
while green bars (degree-3 intersections) represent concepts
identified by three models. The percentages beneath each
bar denote the proportion of the overall dataset for each
intersection, indicating that most classifications fall within
high-overlap categories, with minimal divergence across
models.

On the left side, horizontal bars display the total number
of correct classifications achieved by each individual
model. ClinicalBERT leads with the highest correct classi-
fication count at 961 concepts (97.1%), followed by
SCIBERT with 942 (95.2%), BERT with 915 (92.4%),
and finally, DistilBERT with 901 (91.0%). This perform-
ance distribution suggests that ClinicalBERT, which is tai-
lored for clinical language, outperforms the other models,
with SCIBERT also demonstrating high performance due
to its specialization in scientific and biomedical language.
BERT and DistilBERT, while still performing well, show
slightly lower accuracies in comparison, reflecting their
more general-purpose language understanding capabilities.

Overall, the Upset plot reveals that ClinicalBERT and
SCIBERT are particularly well-suited for clinical concept
classification, with high agreement across all models on a
large portion of the dataset, and relatively few cases
where only one or two models accurately classified a
concept. This high consistency underscores the effective-
ness of domain-specific models for clinical applications.

Discussion

Clinical documents are usually available in an unstructured
format, incorporating important information that assists the
practitioner, patient, and hospital in terms of diagnosing
disease, prescribing medication to improve patient health,
and enhancing practitioner and hospital services, which is
time and cost-efficient. The information available in the
clinical document could be related to a patient’s medical
history, current health status, diagnoses, treatments, and
overall healthcare management. In this study, we have
focused on clinical concept identification and extraction

to support biomedical information retrieval, question
answering, and clinical event detection and parsing tasks.
Researchers and industrialists are using NLP and Al techni-
ques to automate the clinical concept extraction process.
Utilizing NLP and AI techniques necessitates annotated
or training data for model development. The process of pre-
paring label data requires domain expertise and is time-
consuming due to manual annotation. To address this chal-
lenge, we have presented an end-to-end process to automat-
ically extract and label clinical concepts, and then evaluated
various DL and LLMs to gain deep insights into these
models’ performance and contribute to clinical NLP
research. The proposed study comprises three modules:
initial level concept labeling (M1), ATL process (M2),
and DL and LLM for concept classification (M3).

In the initial concept labeling stage, we have leveraged
UMLS Metathesaurus to identify clinical concepts.
UMLS incorporates over 200 source vocabularies and
ontologies, covering various domains of biomedicine,
including anatomy, diseases, drugs, procedures, and more.
Initially, after preprocessing unstructured clinical text, we
can then identify the concept boundary through our pro-
posed algorithm, which is discussed in the Proposed meth-
odology section. Typically, clinical notes contain concepts
expressed either as single words or as part of composite
terms. While using just n-gram words might not accurately
capture these concepts, further processing, such as applying
POS tagging and regular expressions, is required to more
effectively extract the valuable concepts embedded within
unstructured clinical documents.

Moreover, a concept matching to UMLS approach is
adapted to extract the semantic information including
concept id, concept semantic type. Additionally, we have
curated our own dictionaries containing explicit concept
category semantic types as shown in Table 1. These diction-
aries encompass relevant semantic types that play context-
ual role in defining explicit concept category. Following
this, we establish handcrafted rules to explicitly categorize
concepts into Problem, Treatment, and Test categories,
upon successfully matching the concept’s semantic type
with the entries in the semantic dictionaries. Matching
words to a lexicon is a fundamental step in generating
labeled data for data-driven approaches. As a result, the pro-
posed module (M1) has shown promising results compared
to existing methods. Likewise, we assessed the effective-
ness of the proposed module (M1) across distinct datasets
from the 12b2 Challenge 2010, which encompassed the
Beth, Partner, and Test datasets. We scrutinized each
dataset meticulously, examining individual concepts to
gain a thorough understanding of the proposed approach.

Applying a rule-based approach is a computationally
expensive and time-consuming task. Therefore, we intro-
duce the ATL approach to automate the labeling process
while incorporating the initial level label data acquired
through the previous approach. In the ATL process, we
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Figure 11. Upset Analysis plot presented statistical analysis of individual LLMs toward clinical concept classification.

utilize LLMs that require sufficient label data to obtain
promising results. To achieve our goals in the ATL
process, we incorporate true label instances from the previ-
ous approach along with label instances from the gold
standard. We obtained gold standard labeled data because
the label data acquired from the rule-based approach was
insufficient for training the LLMs.

Word embedding similarity is another widely used
approach adapted by researchers for data classification
based on similarity scores. Following this, we generated
embeddings for labeled or known concepts (rule-based con-
cepts and gold standard concepts) using the SCIBERT
model for explicit concept categories. Similarly, we gener-
ated embeddings for the unlabeled or candidate concepts
via SCIBERT, and embedding similarity was performed
between known concepts and candidate concepts. As a
result, the unseen concepts were ultimately classified into
explicit categories based on high embedding similarity
scores. Furthermore, we involved domain experts to valid-
ate the embedding similarity-based concept classification
and incorporate it into the appropriate concept category.
Consequently, the labeled data were automatically
enhanced, and these newly classified concepts were
applied during the ATL process. Therefore, we named
this approach the ATL environment.

Hence, after acquiring a substantial amount of labeled
data from the ATL environment, we experimented with
DL and LLMs to automate the clinical concept

classification task. We adapted a contextual word embed-
ding approach for feature generation and trained various
state-of-the-art DL models such as RNN, LSTM,
BiLSTM, GRU, and CNN. We leveraged BERT base
variant LLM models, such as BERTBase, DistilBERT,
SCIBERT, and ClinicalBERT, to generate the contextual
word embeddings and trained DL models over them.
Throughout the experiment, the CNN model, when com-
bined with all variant BERT base embedding models,
achieved promising results for concept classification on
both training and test data.

Likewise, an ablation study was conducted to evaluate
the performance of a CNN model trained over various
LLM embeddings, for the clinical concept classification
task. The study examined the influence of key hyperpara-
meters such as batch size, sequence length, dropout, and
regularization on the model’s training and validation
accuracy and loss. By systematically adjusting these
parameters, we fine-tuned the model to optimize per-
formance while maintaining a balance between underfit-
ting and overfitting. To further mitigate overfitting and
ensure robust model performance, we plotted the training
and testing scores, as well as training and validation loss
for CNN model trained over LLM embeddings. These
plots highlighted the model’s ability to generalize
across different embeddings, providing insights into
how various LLMs can enhance the CNN’s capability
for clinical concept classification.
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Moreover, we conducted another ablation study to deter-
mine the optimal learning rate for various LLMs in the
context of the clinical concept classification task.
Specifically, we examined two key learning rates:
Longest Valley and Min Numerical Gradient for each
LLM, as suggested by the learning rate plots generated
during training. These rates varied across models, reflecting
the unique learning dynamics of each LLM. Based on the
results, we selected a learning rate of 2¢™°° as the optimal
value for all LLMs, ensuring a balance between training sta-
bility and performance. This consistent choice of learning
rate allowed for improved model convergence while main-
taining robust accuracy and minimizing loss on both the
training and validation sets. The aim of ablation study to
demonstrates the importance of selecting appropriate hyper-
parameters and embedding models to ensure effective and
stable model performance in clinical NLP tasks. In addition,
we performed a statistical analysis to measure the perform-
ance of individual LLMs on unseen clinical concepts. The
results reveal that ClinicalBERT and SCIBERT are particu-
larly well-suited for clinical concept classification, with
high agreement across all models on a large portion of the
dataset and relatively few cases where only one or two
models accurately classified a concept. This high consist-
ency underscores the effectiveness of domain-specific
models for clinical applications.

Though there is a myth that CNN does not perform well
in NLP tasks, our observation shows that CNN performs
best in our study due to the concept window size, which
is not greater than six words. This smaller window size
allows CNN to focus on local patterns within the text,
easily capturing short-range dependencies and extracting
relevant features from neighboring words. Moreover, we
further trained the pretrained LLMs individually, including
BERTBase, DistilBERT, SCIBERT, and Clinical BERT. As
a result, ClinicalBERT outperformed the others, likely
because ClinicalBERT is trained on the Medical
Information Mart for Intensive Care III (MIMIC-II)
dataset. The MIMIC-III dataset consists of EHRs from
58,976 unique hospital admissions of 38,597 patients in
the intensive care unit of the Beth Israel Deaconess
Medical Center between 2001 and 2012. Similarly, the
dataset we utilized was collected from the Beth Israel
Deaconess Medical Center for the 12b2 challenge 2010,
on which Clinical BERT outperformed in our study for clin-
ical concept classification.

The motivation behind this study is to introduce an
end-to-end approach to automatically prepare annotated
data, advancing clinical NLP research by adopting
state-of-the-art data-driven approaches for various clinical
tasks. In the future, we will further extend this approach
for clinical concept classification by incorporating
character-level, concept-level, and UMLS semantic-level
features to enhance large language model accuracy and
streamline the clinical concept annotation process.

Conclusions, limitations, and future works

Labeling unstructured clinical text manually is time-
consuming and requires domain expertise. To streamline
this process, we proposed an automated end-to-end
approach for clinical concept labeling into Problem,
Treatment, and Test. The proposed approach consists of
three modules: a heuristic approach (M1), an ATL approach
(M2), and a DL and LLM approach (M3).

In M1, we used the UMLS dictionary and lexical seman-
tics to categorize clinical concepts. Once a substantial
amount of data was labeled, we moved to M2, where we
employed BERT-based models (DistilBERT, SCIBERT,
and ClinicalBERT) for automatic labeling, keeping the
domain expert in loop. We generated contextual word
embeddings of labeled concepts and unlabeled concepts
and adopted embedding similarity approach with in some
threshold scores to categorize unlabeled concepts. A
domain expert is utilized to further validate the classified
concepts. Finally, in M3, we explored DL models com-
bined with various LLM embeddings. Remarkably, CNN
models incorporating all variant LLM model embedding
achieve promising accuracy. Notably, ClinicalBERT
emerged as the leading performer among the LLM
models, showcasing superior performance in concept clas-
sification. This approach not only alleviates the burden of
manual labeling but also enhances the efficiency and accur-
acy of clinical concept classification in unstructured text.

Despite the promising results, our study has some limita-
tions. First, the performance of the proposed model depends
heavily on the availability of high-quality labeled data, as
the quality and accuracy of annotations can significantly
affect classification performance. Additionally, the general-
izability of our model may be restricted to the specific
context of the i2b2 dataset and might require adaptation
for use with other datasets or in different clinical settings.
Moreover, the proposed methodology is specifically
designed for Problem, Treatment, and Test -clinical
concept classification tasks, and its effectiveness may
vary when applied to other medical protocols or classifica-
tion tasks.

In future research, a promising direction to explore is the
incorporation of prompt engineering techniques based on
LLMs. LLM-based prompt engineering has demonstrated
its potential to enhance the performance of language
models across various NLP tasks. Integrating these techni-
ques into the proposed methodology for clinical text anno-
tation and classification could lead to even greater
improvements.

Furthermore, combining active learning with LLM-based
prompt engineering can improve annotation quality and
model performance. By utilizing the contextual knowledge
and capabilities of LLMs, the model can gain a deeper
understanding of the clinical context, leading to more accur-
ate annotations during the active learning process.
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Overall, incorporating LLM-based prompt engineering
techniques into the proposed methodology could signifi-
cantly advance clinical text annotation and classification.
This approach can improve the model’s efficiency, accur-
acy, and generalizability, making it more robust in handling
variations in clinical notes and enhancing its performance in
clinical practice settings.
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computing AUC ROC

In our comprehensive analysis of deep learning models for
clinical concept classification, we evaluated the perform-

ance of various

DL models trained over different

BERTBased word embeddings, including BERTBase,

DistilledBERT, SCIBERT,

and ClinicalBERT. The

receiver operating characteristic (ROC) curves and the cor-
responding area under the ROC curve (AUC) values were
examined for each model. The AUC values serve as a
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quantitative measure of each model’s ability to distinguish
between positive (True Positive Rate on y-axis) and nega-
tive (False Positive Rate on x-axis) instances. Notably, for
BERTBase embeddings, the CNN architecture demon-
strated an outstanding performance with an AUC of
0.98%, closely followed by RNN and GRU with AUC
values of 0.97% (see Figure Al).

The LSTM and BiLSTM models exhibited slightly
lower but still commendable AUC values of 0.96% (see
Figure Al). Transitioning to DistilledBERT, we observed
consistently high AUC values across all architectures,
with the CNN model leading the way with an AUC of
0.97%, reinforcing the robustness of DistilledBERT
embeddings (see Figure Al). Moving to SCIBERT, all
models showcased exceptional discriminative power, par-
ticularly the CNN architecture with a remarkable AUC of
0.99% (see Figure Al). The RNN, GRU, LSTM, and
BiLSTM models closely followed with AUC values of
0.98%, indicating the superior discriminative capability of
SCIBERT embeddings for clinical concept classification
(see Figure Al).

Finally, ClinicalBERT embeddings demonstrated con-
sistently high AUC values across all deep learning architec-
tures, reinforcing the effectiveness of this domain-specific
embedding for clinical tasks (see Figure Al).

In summary, our comparative analysis underscores the
nuanced interplay between LLM’s based word embeddings
and deep learning model, with each combination exhibiting
strengths in the discriminative power for clinical concept
classification. The choice of BERT-based embedding,
whether BERTBase, DistilBERT, SCIBERT, or
ClinicalBERT, offers distinct advantages, providing practi-
tioners with valuable insights for optimizing model selec-
tion based on the specific requirements of their clinical
applications.

Appendix B. Individual concept classification
using LLMs
In the context of clinical concept classification, a compre-

hensive analysis of the performance metrics reveals dis-
tinctive characteristics among four state-of-the-art large
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language models: BERTBase, DistilBERT, SCIBERT, and
ClinicalBERT as shown in Table B1.

Regarding precision (P), ClinicalBERT exhibits the
highest precision score of 98%, indicating a remarkable
ability to correctly identify Problem clinical concepts.
DistilBERT and SCIBERT follow closely with a precision
score of 97%, showcasing its robust performance towards
Treatment and Test concepts classification as shown in
Table B1. In terms of recall (R), DistilBERT and
SCIBERT emerge as top performers, attaining an impres-
sive score of 97% in accurately classifying the Problem
concept. This achievement underscores their effectiveness
in capturing a significant proportion of actual positive
instances.

In the context of Treatment concepts, ClinicalBERT and
SCIBERT closely boast recall scores of 97% and 98%,
respectively. Notably, for Test concept categorization,
BERT, DistilBERT, and ClinicalBERT exhibit consistent
performance, each achieving an equal recall rate of 96%.
This indicates their reliability in identifying positive

Table B1. LLM performance towards individual concept categories.

instances within the Test category as shown in Table B1.
The F1-score, serving as a balanced metric between preci-
sion and recall, effectively illuminates the overall perform-
ance of the models in the context of concept classification.
For the categorization of Problem concepts, both BERT and
SCIBERT demonstrated an impressive Fl-score of 97%,
surpassing the slightly lower but still commendable scores
of 96% obtained by DistilBERT and ClinicalBERT.
Similarly, in the realm of Treatment concept classification,
SCIBERT and ClinicalBERT exhibited closely matched
F1-scores of 96%, outperforming the respective scores of
95% achieved by BERT and DistilBERT.

Additionally, when assessing the classification of Test
concepts, BERT consistently maintained a competitive
Fl-score of 96%, while DistilBERT, SCIBERT, and
ClinicalBERT closely followed with Fl-scores of 95% as
shown in Table B1. Overall, these LLM models demon-
strating a balanced performance in precision and recall,
also exhibit strong F1-scores, emphasizing their suitability
for clinical concept classification tasks.

Large language models P (%) R (%) F (%)
BERT 0.97 0.96 0.97
DistilledBERT 0.94 0.97 0.96
SCIBERT 0.96 0.97 0.97
ClinicalBERT 0.98 0.95 0.96

P (%) R (%) F (%) P (%) R (%) F (%)
0.95 0.96 0.95 0.96 0.96 0.96
0.97 0.93 0.95 0.95 0.96 0.95
0.95 0.98 0.96 0.97 0.93 0.95
0.96 0.97 0.96 0.95 0.96 0.95

TP: true positive; FN: false negative; FP: false positive; TN: true negative; A: accuracy; P: precision; R: recall; F: F1-score.
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