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Purpose: This study aims to understand how spatial structures, the interconnections between counties,
matter in understanding the coronavirus disease 2019 (COVID-19) period prevalence across the United
States.
Methods: We assemble a county-level data set that contains COVID-19—confirmed cases through June
28, 2020, and various sociodemographic measures from multiple sources. In addition to an aspatial
regression model, we conduct spatial lag, spatial error, and spatial autoregressive combined models to
systematically examine the role of spatial structure in shaping geographical disparities in the COVID-19
period prevalence.
Results: The aspatial ordinary least squares regression model tends to overestimate the COVID-19 period
prevalence among counties with low observed rates, but this issue can be effectively addressed by spatial
modeling. Spatial models can better estimate the period prevalence for counties, especially along the
Atlantic coasts and through the Black Belt. Overall, the model fit among counties along both coasts is
generally good with little variability evident, but in the Plain states, the model fit is conspicuous in its
heterogeneity across counties.
Conclusions: Spatial models can help partially explain the geographic disparities in the COVID-19 period
prevalence. These models reveal spatial variability in the model fit including identifying regions of the
country where the fit is heterogeneous and worth closer attention in the immediate short term.

© 2020 Elsevier Inc. All rights reserved.
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Introduction

Geography, referring to both an absolute location (i.e., specific
place) and relative locations, matters in the outbreak of coronavirus
disease 2019 (COVID-19). The dynamic data dashboards and news
feeds clearly demonstrate great within-country spatial variations in
the confirmed cases and deaths attributed to COVID-19 [1,2].
However, little formal research has used a spatial perspective to
investigate the geographical disparities in the COVID-19 pandemic
in the United States. This study, based on data through June 28,
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2020, aims to show how spatial analysis may shed light on this
issue.

Supplementing the long-standing focus on person and time of
epidemiological research, the place has been recognized as an
essential dimension of disease processes [3,4]. Previous studies
show that the spatial heterogeneities of infectious diseases can
result from either intrinsic population processes, including spatially
aggregation of infected individuals and their nonrandom social
interactions, or environmental influences acting across different
spatial locations [5,6]. Public health scholars have called for
attention on not only the role of place-based characteristics in the
spread of diseases but also on the spatial relationships or in-
terconnections between places [7,8]. Doing so allows a compre-
hensive understanding of the potential determinants of the novel
disease [9—11].

The embeddedness and connectedness of the place is evident on
a daily basis as much of the news cycle is driven by health, political,
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economic, and social issues based on the different geographies of
the interdependent processes including data reporting, decision-
making, and policy enactment (both the imposition of stay-at-
home orders and their relaxation). Decision makers at all lev-
els—mayors, state representatives and governors—must adapt to
directives or guidelines from higher up the hierarchy because what
matters to them is what is going on in their ‘local’ constituency and
the surrounding areas. These local decision makers have internal-
ized the importance of absolute and relative location as well as
first-hand knowledge of population composition and other
contextual variables about where they live. The present study is
motivated by the need to understand local COVID-19 conditions
within regional and national contexts.

The purpose of this study is to first examine how the COVID-19
period prevalence distributes as of June 28, 2020, with thematic
mapping and then to investigate how different spatial economet-
rics modeling approaches can inform understanding of the possible
outliers (in terms of model fit or residuals), which may shed light on
the transmission pattern. In the following sections, we describe our
data and measures, the methods used, and our findings. The
conclusion and implications of our study as well as a discussion of
measurement and modeling issues related to our findings are
summarized.

Materials and methods

For this study, we assembled a county-level data set for the
contiguous United States (n = 3106 counties) using the Coronavirus
Live Map [12], County Health Ranking and Roadmaps (CHRR) [13],
U.S. Health Maps from the Institute for Health Metrics and Evalu-
ation [14], the Area Health Resources Files [15], and Census Bureau
Geographic Information System data [16].

Dependent variable

The dependent variable is the COVID-19 period prevalence (the
number of cumulative confirmed cases per 100,000 population) in
a county as of June 28, 2020. The data are provided by the Coro-
navirus Live Map that aggregates data from the Centers for Disease
Control and Prevention and state- and local-level public health
agencies. As the period prevalence is skewed, we log transform this
variable as the Yeo-Johnson transformation [17] suggests.

Independent variables

Time is measured by the number of days since the first
confirmed case in a county until June 28, 2020. To consider the
nonlinear nature of infectious disease, we include the square term of
time to capture an acceleration rate. In light of the racial/ethnic
disparities in confirmed cases and deaths [18], we include racial/
ethnic composition variables: the percentage of non-Hispanic blacks
(hereafter blacks), non-Hispanic Asians (hereafter Asians), Hispanics,
and American Indian and Alaska Natives (hereafter Native Ameri-
cans). In addition, we consider the percentage of older adults (people
who are older than 65 years), unemployment rate, and the logged
median income to capture the age structure and socioeconomic
conditions of a county. Furthermore, we consider the nonwhite/
white residential segregation index (i.e. dissimilarity index), the
percentage of the uninsured, the percentage of households with at
least one severe housing problem (e.g., overcrowding or lacking
major facilities), the percentage of people who work outside the
county of residence, and life expectancy. These contextual variables
are frequently used in social science research to capture funda-
mental conditions of, and inequalities in, society and the economy
within an area.

The availability of medical resources in a county is measured by
the Health Professional Shortage Area (HPSA) code. We capture
health provisioning through two dummy variables identifying “the
whole county is at shortage” and “part of the county is at shortage,”
respectively, with counties that are “not at any shortage” as the
reference group. Population density is calculated by dividing the
total county population by the land area of a county (Census Bureau
GIS data), and this variable is log transformed. Population density
has been known to be a factor for the transmission of infectious
disease [19]. Most of the independent variables are drawn from
2018 to 2020 CHRR, except for the life expectancy (U.S. Health
Map), the percentage of people who work outside the county of
residence (American Community Survey 5-year estimates,
2014—2018), and the HPSA code (the Area Health Resources Files).

We compare the ordinary least squares (OLS) model and three
spatial econometric models [20]. A spatial lag model is a model that
examines how the infection burden in a county is influenced by the
infection burden in adjacent counties. The spatial lag parameter (p)
refers to the estimate of how the average logged period prevalence
in neighboring counties is associated with the logged period
prevalence of a focal county. By contrast, a spatial error model es-
timates the extent to which the OLS residual of a county is corre-
lated with that in its adjacent counties. The spatial error parameter
(A) measures the strength of the relationship between the average
residuals/errors in neighboring counties and the residual/error of a
given county. Finally, a spatial autoregressive combined (SAC)
model is a combination of the previous two models, which simul-
taneously considers the spatial lag and spatial error parameters. In
the analysis presented, all spatial models are based on a first-order
Queen spatial weight matrix, which defines a neighboring rela-
tionship between two counties when they share a common
boundary or vertex (corner). The maps of the residuals generated
for all four models are presented. These residual maps can inform
our understanding of the spatial patterning of model fit predicting
the COVID-19 period prevalence.

Results

Table 1 presents the descriptive statistics of the variables, and
the last column includes the variance inflation factors. In an average
U.S. county, there were 493.07 COVID-19—confirmed cases per
100,000 population, and not surprisingly, the distribution is posi-
tively skewed. The average number of days since the first confirmed
case in a county was 88.30, with the maximum of 159 days (King
county, WA). Regarding racial/ethnic composition, on average,
9.08% were blacks, 1.48% Asians, 9.69% Hispanics, and 2.08% Native
Americans. The average percentage of the population older than
65 years was 19.31. The unemployment rate was slightly more than
4%, and on average, 11% of county population were uninsured. On
average, 14.35% of households have at least one severe housing
problem (e.g., no kitchen or plumbing facilities). As if to underline
the spatial relationships between counties, on average, 30.80% of
the adult population work outside their county of residence. The
average life expectancy was 77.74 years, and only 10% of contiguous
counties have no shortage of health professional shortage. We
emphasize that multicollinearity is not a concern in our analysis as
the variance inflation factors are all less than 4.

Figure 1 shows the spatial distribution of the logged COVID-19
period prevalence (by quintiles). Counties with high rates are
clustered along the Boston—Washington corridor, in parts of the
Rust Belt, the Black Belt with scattered high values found in the
Mountain, Mexico/U.S. border, and West. By contrast, counties with
a low period prevalence are concentrated in the Upper Great Plains,
in Montana and Idaho, in west Texas, and in parts of central
Appalachia.
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Table 1
Descriptive statistics of variables used in this study, as of June 28, 2020 (n = 3106)"

Variable Mean SD Minimum Maximum VIF
Confirmed cases per 100,000 (logged) 4.94 3.87 -16.12 9.50 —
Confirmed cases per 100,000 493.07 751.27 0 13,403.56 —
Time since the first confirmed case (day) 88.30 24.45 0 159 —
% Blacks 9.08 14.36 0 85.41 1.81
% Asians 148 251 0 38.31 1.84
% Hispanics 9.69 13.91 0.61 96.36 2.03
% Native Americans 2.08 6.69 0 92.52 1.39
% older than 65y 19.31 4.65 4.83 57.59 1.83
% unemployed 4.09 1.40 1.30 18.09 1.78
Median income (logged) 10.84 0.24 10.14 11.85 3.74
Nonwhite-white segregation index 30.81 1243 0.07 90.42 1.20
% of uninsured 11.42 5.11 2.26 33.75 2.14
% households with severe housing problems 14.35 4.35 0 39 1.86
% people work outside the county of residence 30.80 17.81 0 87.45 1.35
Life expectancy 77.74 237 66.81 86.83 3.24
HPSA

% no shortage (reference group) 10.56

% whole county is at shortage 26.50 3.10

% part of the county is at shortage 62.94 2.82
Population density (logged) 3.82 1.75 -1.48 11.18 3.19

" We show the original descriptive statistics in this table and emphasize that all continuous variables except for population density are standardized in our regression

models.

The OLS and spatial modeling results are summarized in Table 2,
and several findings are notable. First, the number of days since the
first confirmed case and its square term follow the expectation.
Specifically, the negative association between the square term and
COVID-19 period prevalence (B = —0.002) suggests that the accel-
eration rate decreases with time, yet the total number of confirmed
cases continues to grow (3 = 0.349) since the first case. Second, the
racial/ethnic composition of a county is important in determining
the period prevalence, although the magnitude of the coefficients
across models varies. The coefficients in the spatial error model are
closer to that in the OLS model, whereas spatial lag and SAC models
tend to yield comparable estimates. For example, the OLS model
estimates that every 1% increase in the percentage of blacks is
associated with 0.543-unit increase in the logged period prevalence
and the magnitude of this relationship is 0.51 in spatial error
model; however, the value drops by 15% to roughly 0.45 in the
spatial lag and SAC models. The same pattern is observed for the
percentage of Asians, Hispanics, and Native Americans, respec-
tively. Third, the nonwhite-white segregation index, life expec-
tancy, and population density are positively associated with the

Logged Prevalence
I -16.118- 4.488 (Q1)
| 4.488-5.250 (Q2)

5.250 - 5.867 (Q3)
[ 5.867 - 6.552 (Q4)
I 6552 - 9.503 (Q5)

Fig. 1. Spatial distribution of the logged COVID-19 period prevalence by quintiles, as of
June 28, 2020.

period prevalence. These three associations are consistent across all
models and robust to the specification of spatial dependence.

We test if the residuals of each model are spatially correlated
with the Moran's [ statistic. As shown in Table 2, the OLS model has
a Moran's I of 0.110, which is significant at the 0.001 level. The
spatial lag model reduces Moran's | to 0.023, but it remains sta-
tistically significant. That being said, even after considering the
average period prevalence of neighboring counties (i.e., the lag
term), the spatially correlated errors suggest that this model omits
variables that are not only related to the COVID-19 period preva-
lence but also spatially correlated. This finding is confirmed as the
Moran's I is nonsignificant when spatial error terms are included in
the analysis.

The residuals of all four models are visualized in Figure 2.
Although these figures look similar, two major findings are worth
noting. One is that spatial models improve the predicted values for
counties with a low period prevalence, especially those in the
Upper Great Plains (e.g., North/South Dakota, Wyoming, and
Nebraska). Specifically, counties in the Upper Great Plains tend to
have large and negative residuals in OLS, suggesting that the OLS
model overestimates the period prevalence in these mostly
sparsely populated counties. The other notable finding is that
counties in the Great Plains (from Montana, North Dakota to
southwestern Texas) show greater spatial heterogeneity (i.e. the
pattern that neighboring counties have dissimilar values) in fit than
those counties found along both coasts, even after considering the
potential spatial autocorrelation in the analysis.

Discussion

Our findings suggest that there is great variability across the
United States in the COVID-19 period prevalence and spatial models
improve model fits especially for counties with a low period
prevalence. Our model specification seems to explain reasonably
well why counties have high levels of period prevalence; that is,
most counties with a high period prevalence have relatively small
residuals in our analysis. Nonetheless, it should be emphasized that
some of the explanatory variables—such as the time since the first
confirmed case, demographic composition, nonwhite-white
segregation index, life expectancy, and population density—have
significant impacts on the period prevalence of COVID-19, but they
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Table 2
OLS, spatial lag, spatial error, and SAC model for the period prevalence (logged), as of June 28, 2020
Variable OLS Spatial lag model Spatial error model SAC model
Estimate SE Estimate SE Estimate SE Estimate SE

(Intercept) —9.094#** 0.244 —9.203#** 0.238 —8.930%** 0.257 —9.210%** 0.248
Time 0.349%%* 0.006 0.338%x* 0.006 0.345%%* 0.006 0.342%%* 0.006
Time square —0.002%*%* 0.000 —0.002%** 0.000 —0.002%** 0.000 —0.002%** 0.000
% Blacks 0.543%k* 0.052 0.448%xx* 0.051 0.513 %% 0.061 0.465%* 0.056
% Asians 0.227%%* 0.053 0.243*** 0.051 0.214%%* 0.056 0.234%%* 0.054
% Hispanic 0.327 %% 0.055 0.280%** 0.053 0.328* 0.064 0.298*** 0.058
% Native Americans 0.216%** 0.046 0.227%x* 0.045 0.227%%* 0.050 0.227%%* 0.047
% older than 65 y —0.087 0.050 —0.119* 0.049 —0.079 0.054 —0.107* 0.051
% unemployed —0.099 0.051 —0.105* 0.050 —0.087 0.056 —0.099 0.052
Median income (logged) 0.028 0.073 0.000 0.071 0.025 0.078 0.006 0.075
Nonwhite-white segregation index 0.147 %% 0.042 0.139%x* 0.041 0.106* 0.043 0.125%* 0.042
% uninsured 0.074 0.055 0.078 0.054 0.101 0.064 0.085 0.058
% severe housing problems —0.003 0.053 —0.004 0.052 —0.004 0.056 —0.004 0.054
% work outside the county of residence 0.046 0.045 -0.024 0.044 0.065 0.045 0.004 0.045
Life expectancy 0.176** 0.060 0.185** 0.058 0.181** 0.062 0.187** 0.060
HPSA (ref: no shortage)

The whole county is at shortage —0.180 0.154 -0.223 0.151 —0.153 0.153 -0.197 0.152

Part of the county is at shortage —0.051 0.134 —0.049 0.131 -0.019 0.134 -0.034 0.133
Population density (logged) 0.168*** 0.040 0.089* 0.040 0.195%*x* 0.044 0.127** 0.043
p (spatial lag parameter) 0.192%x* 0.139*
A (spatial error parameter) 0.269%** 0.121**
AIC 13,608 13,501 13,516 13,494
Observed Moran's I for residuals 0.110%** 0.023* —0.008 —0.003

Level of significance: *P < .05, **P < .01, ***P < .001.

cannot fully account for the spatial pattern. Even with this caveat,
the residual maps of spatial error and SAC models do help shed
some light on identifying other potential explanatory variables for
use in future research.

In addition, taking into account spatial structure improves the
predicted values for the counties with a low period prevalence.
From the comparison across different spatial regression models, the
variability or heterogeneity in residuals is interesting. Here, the
model may fit well in one county but fit poorly in neighboring
counties. Similarly, we find counties where the COVID-19 period
prevalence is severely underpredicted are often adjacent to
counties where the model overpredicts. This checkerboard-like
pattern is most visible across the Plain States and offers a stark
contrast with the good model fit across much of the Atlantic
seaboard and South East. We also note that a recent study [21] on
COVID-19 suggests that spatial heterogeneity is fairly common in
U.S. counties, which is supported by our findings. It should also be
emphasized that while some scholars have noted the importance of
spatial autocorrelation [21—23], they did not consider the potential
impact of time on the pandemic and little research has considered
the spatial lag and error term simultaneously. Our study advances
the rapidly evolving literature by filling these gaps.

Given the array of demographic, social, economic, and health
service—related variables in our models coupled with controls for
population density and time since the first COVID case and incor-
porating spatial dependence into the model, the heterogeneity in
the model fit underscores the complexity of COVID-19 period
prevalence. On the one hand, there is the behavior and mutations of
the virus itself, but there are also a host of modifiable social factors
determined by federal, state, and local governments and in-
stitutions and the actions and behaviors of businesses and in-
dividuals vis-a-vis service provisioning, social distancing, and
protection of the most vulnerable members of society. The
complexity and levels of decision-making that have influenced the
spread and intensity of COVID-19 have yet to be unpacked. We do
not yet fully understand the reasons behind the high variability in
testing availability and the rates of testing per capita. In this study,

we looked at reported cases and that measure is subject to wide
variability, driven by both the need to test in identified disease
hotspots and in clusters of high-risk populations but also by the
lack of testing and/or delays in testing. It may be a coincidence or a
measurement concern that our model fit is most variable in the
Great Plain states, an area including many of the states not to
implement stay-at-home orders, and there have been fewer tests
for COVID-19 in these states [24]. Future research is necessary.

We conducted several sensitivity analyses to assure the
robustness of our findings. For example, we replaced the HPCA
codes with other continuous measures, such as the number of
hospital beds or physicians per 1000 population, but the results
were similar. We also applied the principal component analysis
(PCA) to a set of socioeconomic variables and created a PCA score to
indicate the level of socioeconomic status of a county. Using this
PCA score did not alter our conclusions or findings. These results
are shown in Appendix Table Al. Furthermore, we implemented
spatial regime models with different definitions of regime (e.g.,
stay-at-home vs. no stay-at-home order; metropolitan vs.
nonmetropolitan) and found that the results were not changed. The
results of these models are presented in Appendix Table A2. Finally,
we visualized the residuals with different legend classifications
(e.g., standard deviations, natural breaks, and quantiles), but the
main visual patterns were consistent with the interpretation re-
ported here.

This study is subject to some limitations. First, treating the
period prevalence as a linear dependent variable may mask the
great variations across counties. To our knowledge, there is no
readily available software program that allows us to conduct a
spatial lag model with a dependent variable that follows a Poisson
or Binomial distribution. As such, we chose to use the log-
transformed dependent variable with approximate normality.
Second, our analysis relies on secondary data sources such as
Coronavirus Live Map and CHRR, which also use the secondary data
from federal agencies. Owing to the lack of data, we are unable to
incorporate the county-level testing rates into our models, which in
an ideal scenario ought to be associated with the period prevalence.
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OLS

Residuals

<2 -2-0 0-2 >2

Spatial Error Model
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Spatial Lag Model

Residuals .
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Fig. 2. Thematic maps for residuals of OLS, spatial lag, spatial error, and SAC model, as of June 28, 2020".t: With respect to the values, “< —2” means less than —2 and “> 2" means

greater than 2.

We can only partially address the issue via a proxy for medical
service provisioning and infrastructure using HPSA codes. In addi-
tion, while we consider the number of days since the first case in
the analysis, this study remains cross-sectional and this design may
mask temporal trends of the ongoing COVID-19 pandemic. All
COVID-19 researchers are working in a dynamic environment, and
we are all aware that findings may need to be revised by new data.
Finally, there is a growing concern about asymptomatic cases [25],
which cannot be included in our data. Future research is warranted
to understand the impact of undercounted cases on geographical
disparity of the COVID-19 crisis.

Conclusion

We believe in the old adage that “some models are useful.” This
study goes beyond data dashboards and description to contribute
to emergent research using spatial models to look at the correlates
of COVID-19 cases. Our results are consistent with expectations and
a spatially informed study. For example, the variables with statis-
tically significant associations with county-level COVID-19 cases
include demographic variables (i.e., race/ethnicity), socioeconomic
factors (i.e., income and housing conditions), and population
mobility (i.e., the level of commuting ties between counties). The

county-level analysis provides evidence on the embeddedness and
connectedness of places and the importance of relative locations to
local decision makers. What matters in the spread of COVID-19 is
not only the contextual factors of a specific place but also the latent
features of its neighbors. With additional data, which will inevi-
tably be furnished, rigorous spatiotemporal analysis will play an
important role. Our findings call for further efforts to help explain
the spatial distribution and dynamics of this new infectious disease
for prediction and prevention purposes.
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Appendix
Appendix 1. Sensitivity analysis with the SAC model using different
covariates
Table A1
Sensitivity analysis for the period prevalence (logged)
Variable Model Al Model A2
Estimate SE Estimate SE
(Intercept) —9.467 *** 0.216 —9.146%** 0.248
Time 0.343%*x* 0.006 0.339%** 0.006
Time square —0.002%** 0.000 —0.002%** 0.000
% Blacks 0.434#x* 0.055 0.418%**x* 0.057
% Asians 0.228%** 0.054 0.251%*%* 0.053
% Hispanic 0.295%*x* 0.057 0.250%** 0.058
% Native Americans 0.226%* 0.047 0.270%** 0.046
% older than 65y —0.106%** 0.051 —0.150%** 0.052
% unemployed —0.093 % 0.052 — —
Median income (logged) 0.025 0.074 — —
Nonwhite-white segregation index 0.123%* 0.042 —0.088** 0.072
% uninsured 0.082 0.058 0.116* 0.055
% severe housing problems 0.013 0.053 —0.045 0.054
% work outside the county of residence 0.007 0.046 0.003 0.045
Life expectancy 0.191** 0.060 0.265%** 0.061
Number of physicians per 1000 people -0.026 0.049 — —
Number of hospital beds per 1000 people 0.147%** 0.041 — —
HPSA (ref: no shortage)
The whole county is at shortage — — —0.255 0.153
Part of the county is at shortage — — -0.075 0.133
Population density (logged) 0.139%* 0.043 0.135%* 0.043
SES Score (PCA) — — 0.118 0.042
p (spatial lag parameter) 0.144%*x* 0.134%*x*
A (spatial error parameter) 0.115%* 0.137 %%
Level of significance: *P < .05, **P < .01, ***P < .001.
Appendix 2. Sensitivity analysis with the spatial regime model
Table A2
Spatial regime models by the stay-at-home order and metropolitan status
Variable Model A3 Model A4
Stay-at-home order No stay-at-home order Metropolitan Nonmetropolitan
Estimate SE Estimate SE Estimate SE Estimate SE
(Intercept) —9.220%** 0.232 —10.016%*** 1.240 —9.977*** 0.212 —3.726%* 1.178
Time 0.322%xx* 0.007 0.451%** 0.015 0.389%*x* 0.007 0.152%*%* 0.023
Time square —0.002%** 0.000 —0.003*** 0.000 —0.002%** 0.000 —0.001*** 0.000
% Blacks 0.406%*** 0.076 2.679 1.840 0.522%x* 0.063 0.298** 0.093
% Asians 0.187**x* 0.053 0.533* 0.249 0.169 0.119 —0.001 0.003
% Hispanic 0.266%** 0.092 0.552 0.369 0.260%** 0.061 0.187* 0.091
% Native Americans 0.063 0.071 0.432%** 0.123 0.234%xx* 0.046 -0.102 0.422
% older than 65y -0.137 0.119 0.421 0.227 —0.139* 0.058 -0.115 0.137
% unemployed —0.009 0.101 —0.484* 0.221 —0.099 0.054 -0.024 0.021
Median income (logged) 0.006 0.107 0.379 0.262 0.058 0.099 0.007 0.014
Nonwhite-white segregation index 0.157*** 0.043 -0.218 0.127 0.113* 0.047 0.163 0.087
% uninsured 0.149* 0.063 0.445 0.267 0.111 0.059 0.074 0.084
Life expectancy 0.175 0.132 —-0.065 0.153 0.226%** 0.065 0.143 0.087
Population density (logged) 0.127%** 0.042 0.421* 0.197 0.202%*x* 0.051 0.029 0.084
p (spatial lag parameter) 0.144%3x* 0.138x*
A (spatial error parameter) 0.079* 0.109%**

Level of significance: *P < .05, **P < .01, ***P < .001.



