

POSTER PRESENTATION

Open Access

Diffuse Myocardial Fibrosis detected by Multislice T₁ Mapping using Slice Interleaved T₁ (STONE) Sequence in Patients with Hypertrophic Cardiomyopathy

Shingo Kato^{1,2*}, Steven Bellm¹, Sébastien Roujol¹, Jihye Jang¹, Tamer Basha¹, Sophie Berg¹, Kraig V Kissinger¹, Beth Goddu¹, Martin Maron³, Warren J Manning¹, Reza Nezafat¹

From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016

Background

The presence of myocardial fibrosis is associated with worse clinical outcome in hypertrophic cardiomyopathy (HCM) patients. Due to the substantial variations in left ventricular (LV) wall thickness and fibrosis in HCM, volumetric coverage of entire LV myocardium is essential for the accurate assessment of myocardial fibrosis. Slice-interleaved T_1 (STONE) mapping sequence allows for the assessment of native T_1 time with complete coverage of LV myocardium. The aim of this study was to investigate whether STONE sequence is useful for the assessment of regional variability of LV native T_1 time in HCM patients.

Methods

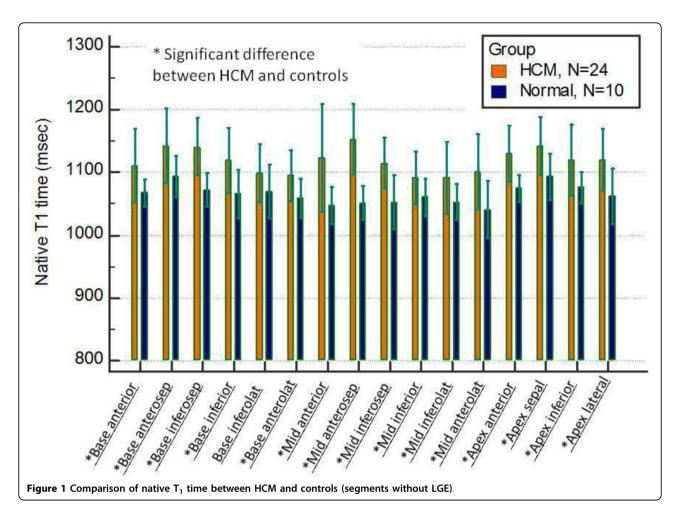
Twenty-four septal HCM patients (56 \pm 16 years) and 10 healthy adult control subjects (57 \pm 15 years) were studied. Native T_1 mapping was performed using STONE sequence which enables acquisition of 5 slices in the short-axis plane within a 90 sec free-breathing scan. The sequence was acquired in a free-breathing ECG-triggered slice-selective bSSFP with the following parameters: 5 slices, in-plane resolution = 2.1x2.1 mm², slice thickness=8 mm, slice gap=4 mm, field of view=360x352 mm², TR/TE/ α =2.8 msec/1.4 msec/70 ;, SENSE-factor=2, linear ordering, 10 linear ramp-up pulses and acquisition window=240 msec. We measured LV native T_1 time and maximum LV wall thickness in each 16 segments from 3 slices (basal-, mid- and apical-slice). Late gadolinium enhanced (LGE)

MRI was acquired to assess presence or absence of myocardial enhancement.

Results

In HCM patients, LV native T_1 time was significantly elevated compared to healthy controls, regardless of presence or absence of LGE (mean native T_1 time; LGE (+) segments (n = 27), 1139 \pm 55 msec; LGE (-) segments (n = 351), 1118 \pm 55 msec; healthy control (n = 160),1065 \pm 35 msec; p < 0.001 by one-way ANOVA, 6 segments were excluded from analysis due to artifacts). Among 351 segments without LGE, native LV T_1 time was diffusely elevated over the 16 segments (Figure). Significant positive correlation was found between LV wall thickness and native LV T_1 time (y=1013+8.7x, p < 0.001).

Conclusions


In HCM, substantial number of segments without LGE showed elevated native T_1 time, and native T_1 time was correlated with LV wall thickness. Slice-interleaved T_1 mapping by using STONE sequence could be advantageous to overcome limited cardiac coverage of conventional single-slice T_1 mapping technique and to accurately detect the diffuse myocardial fibrosis in HCM patients.

Authors' details

¹Beth Israel Deaconess Medical Center, Boston, MA, USA. ²Yokohama City University, Yokohama, Japan. ³Tufts Medical Center, Boston, MA, USA.

¹Beth Israel Deaconess Medical Center, Boston, MA, USA Full list of author information is available at the end of the article

Published: 27 January 2016

doi:10.1186/1532-429X-18-S1-P238

Cite this article as: Kato *et al.*: Diffuse Myocardial Fibrosis detected by Multi-slice T₁ Mapping using Slice Interleaved T₁ (STONE) Sequence in Patients with Hypertrophic Cardiomyopathy. *Journal of Cardiovascular Magnetic Resonance* 2016 **18**(Suppl 1):P238.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

