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Abstract

Dynamical systems models for controlling multi-agent swarms have demonstrated advances 

toward resilient, decentralized navigation algorithms. We previously introduced the NeuroSwarms 

controller, in which agent-based interactions were modeled by analogy to neuronal network 

interactions, including attractor dynamics and phase synchrony, that have been theorized to operate 

within hippocampal place-cell circuits in navigating rodents. This complexity precludes linear 

analyses of stability, controllability, and performance typically used to study conventional swarm 

models. Further, tuning dynamical controllers by manual or grid-based search is often inadequate 

due to the complexity of objectives, dimensionality of model parameters, and computational costs 

of simulation-based sampling. Here, we present a framework for tuning dynamical controller 

models of autonomous multi-agent systems with Bayesian optimization. Our approach utilizes 

a task-dependent objective function to train Gaussian process surrogate models to achieve 

adaptive and efficient exploration of a dynamical controller model’s parameter space. We 

demonstrate this approach by studying an objective function selecting for NeuroSwarms behaviors 

that cooperatively localize and capture spatially distributed rewards under time pressure. We 

generalized task performance across environments by combining scores for simulations in multiple 

mazes with distinct geometries. To validate search performance, we compared high-dimensional 
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clustering for high- vs. low-likelihood parameter points by visualizing sample trajectories in 

2-dimensional embeddings. Our findings show that adaptive, sample-efficient evaluation of the 

self-organizing behavioral capacities of complex systems, including dynamical swarm controllers, 

can accelerate the translation of neuroscientific theory to applied domains.
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Bayesian optimization; Multi-agent control; Swarming; Dynamical systems models; Spatial 
navigation; UMAP

1. Introduction

Collective biological behaviors of animal groups, including swarming, flocking, and 

schooling behaviors [1–6] have long inspired robotics and computer science research into 

problems of decentralized control and coordination for autonomous groups of artificial 

agents [7–12]. In particular, advancing the autonomous spatial capabilities of multi-agent 

swarm control has been a key objective of simulation studies and analyses of artificial 

swarms based on dynamical systems models [13]. Complementarily, the impressive recent 

progress of artificial intelligence based on deep learning [14] has demonstrated the 

importance of adopting key biological inspirations from neuroscience and the brain. 

However, it has been unclear how to integrate complex temporal features of brain dynamics 

thought to support crucial mechanisms of neural computation [15]. Thus, addressing 

critical questions in autonomous robotics and artificial intelligence may depend on efficient 

exploration and optimization of dynamical systems models with complex interactions among 

many units. In both domains, major gaps in state-of-the-art capabilities are highlighted by 

tasks involving autonomous spatial navigation and foraging [16–19] in complex, novel, or 

changing environments.

Bayesian optimization provides a probabilistic framework for adaptive, sample-efficient 

optimization of ‘black box’ models with moderate dimensionality (up to ~20 parameters) 

and expensive sample evaluations. In this framework, a task-dependent objective function 

signifies the output performance of the complex underlying model, and the optimizer traces 

parameter-space trajectories of candidate points from acquisition functions operating on a 

simpler surrogate model. The typical surrogate model is a Gaussian process that populates 

the parameter space of interest with multivariate normal distributions and which serves as a 

prior distribution for candidate-point updates [20, 21]. Bayesian optimization with Gaussian 

process surrogate models has enabled applications including the hyperparameter tuning 

and optimization of evolutionary algorithms, multi-modal functions, robotic controllers, and 

other complex systems [22–27].

The collective behavioral states of some swarming models are tractable to linear analysis 

of stability, density, and clustering properties [28–32]. However, for dynamical systems 

that preclude such analysis due to nonlinearity, nonstationarity, stochasticity, or other 

complications, the computational budget for parameter exploration or optimization with 

simulation-based samples is a limiting factor for translation to engineered designs. Indeed, 

standard methods based on gradient descent have two main drawbacks in this context: they 
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can discover local optima, but resist exploration of system behaviors for other purposes; 

and their basic operation is massively sample-inefficient, which can be prohibitive for 

expensive simulation-based sample evaluations. Moreover, emergent collective behaviors 

like swarming outstrip conventional agent-based learning methods based on the restrictive 

action and policy spaces of reinforcement learning, particularly for uncertain, changing, or 

open-ended tasks.

We previously introduced the NeuroSwarms framework for modeling emergent high-

level navigation and foraging in a brain-inspired multi-agent metacontroller [33–35]. 

NeuroSwarms addressed decentralized, distributed control by analogy to neural circuit 

dynamics, including oscillations [36–39] and attractors [40–42], and associative synaptic 

plasticity [43] related to rodent spatial cognition; the resulting collective behaviors of 

NeuroSwarms models included swarming, patroling, and goal-finding in simulated maze 

environments with complex, irregular, or fragmented geometry [34]. These behaviors 

enabled NeuroSwarms to complete cooperative multiple reward-capture tasks without 

pretraining across distinct environments [34]. However, the nonlinearities inherent in 

NeuroSwarms’ oscillatory phase-coupled self-organization precluded analytic approaches 

to global identification, exploration, or optimization of system behaviors. Thus, this class 

of dynamical systems model can provide insights into key aspects of brain structure 

and function that may inspire theoretical advances as well as new directions for systems 

engineering designs. This insight depends crucially on devising a task-dependent objective 

function that can guide the efficient discovery of system behaviors and optimal performance. 

In this paper, we demonstrate that Bayesian optimization can utilize such an objective 

function to efficiently and usefully find paths through otherwise prohibitive model spaces. 

In particular, we show that a neurodynamical controller model with emergent properties can 

be characterized and tuned using Bayesian optimization with Gaussian process surrogate 

models.

2. Models and methods

2.1. NeuroSwarms model

Monaco et al. (2020) [34] introduced the NeuroSwarms framework and described a model 

implementation with 300 agents; baseline wall-avoiding, momentum-carrying motion-vector 

updates; maze environments whose geometry occluded agents’ line-of-sight; interagent 

communication between mutually visible agents; cosine-coupling of internal phase variables 

driving interagent attraction and repulsion; and 9 key dynamical parameters (Table 1) that 

had required intensive manual fine-tuning to balance swarming and reward capture.

2.2. Bayesian optimization

Bayesian optimization constructs and performs sequential optimization on a surrogate 

model that represents the objective performance of a more complex model [44–46]. 

Learning surrogate models can be beneficial if directly optimizing a complex model is 

not computationally tractable given resource constraints. These surrogate models can then be 

deployed to predict the performance of the underlying model at untested parameter points 

without requiring a full model simulation of those parameter values (Fig. 1).
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We implemented Bayesian optimization with surrogate models defined as Gaussian 

processes [20,48,49]. Gaussian processes are parametric models that iteratively learn a 

probabilistic mapping f :X ℝ such that the density estimate p(yi|xi) = f(xi, yi), where 

X ⊆ ℝp is the bounded parameter subspace being optimized, xi ∈ X is a parameter point, and 

yi ∈ ℝ is an objective function output value [21,50,51]; e.g., p = 9 NeuroSwarms parameters 

in this paper. Thus, the underlying ‘black box’ objective function ftrue is assumed to be 

distributed according to a Gaussian process,

ftrue GPμ, k(X),

where μ(·) and κ(·) are mean and covariance kernels applied to an input parameter set, 

X ⊂ X. The posterior distribution of a q-sized batch of candidate points X = x1, …, xq

conditioned on the observed training data D = xi, yi i = 1
n  takes the form of a p-

dimensional multivariate normal distribution, i.e., P(GP(X) ∣ D) Np(μ(X), k(X)).

2.3. Acquisition functions

Bayesian optimization relies on acquisition functions to provide the candidate parameter 

points that navigate the underlying model space. Acquisition functions define a strategy to 

manage the trade-off between exploring the parameter space and exploiting regions that 

yielded improvement for previous samples [52]. An acquisition function can be evaluated 

on the Gaussian process posterior P(GP(X) ∣ D) by averaging a set of Monte Carlo (MC) 

samples, e.g.,

αn(X; D) = 1
n ∑

i = 1

n
a εD

i (X) , (1)

where n is the sample count and a(·) is the net utility function providing objective function 

output. Thus, αn is an expectation of posterior samples εD P(GP(X) ∣ D). We study a pair of 

MC-based acquisition functions: q-Expected Improvement (qEI) [53] and Noisy q-Expected 

Improvement (qNoisyEI) [54]. We compare qEI and qNoisyEI to random sampling of 

candidate parameters. First, similar to αn (Eq. (1)), qEI calculates an expectation over 

posterior samples,

qEI(X) ≈ 1
n ∑

i = 1

n
max
j = 1

q
εji − Y * +,

where [·]+ indicates linear rectification and Y* is the best observed objective function 

value. Thus, qEI estimates a noise-free expected improvement of the posterior with respect 

to the best value. Second, qNoisyEI approximates improvement relative to the expected 

best objective value conditioned on the observed MC sampling history εobs within each 

batch [55]; simplistically, the constrained batch-sampling performed by qNoisyEI [54,56] 

approximates
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qNoisyEI(X; D) ≈ 1
n ∑

i = 1

n
max
j = 1

q
εji − maxεobs +,

but more detailed treatments of this complex optimization problem provide critical analyses 

and caveats (cf. [54–56]).

Throughout our study, Bayesian optimization with any of the three acquisition functions 

employed 512 MC samples, 30 training epochs (with a batch size of 3), and 8 random 

training samples to initialize the Gaussian process surrogate model.

2.4. Objective function

We constructed an objective function to evaluate the performance of the example 

NeuroSwarms model [34] in a time-pressured cooperative foraging task. The objective 

function quantifies how quickly the swarm of agents collectively capture several spatially 

distributed rewards in a given maze. Let ncap(t) be the cumulative number of cooperatively 

captured rewards by time t. A reward is captured if, at any timestep, at least ns∕nr agents 

were simultaneously colocated within a defined radius from the reward, where ns = 300 

agents and nr = 3 and 5 rewards in the Tunnel and Hairpin mazes, respectively. For a given 

simulated play-through, this objective function can be expressed as a loss which is updated 

at every timestep until all rewards are captured,

L = − t / ntncap (t) + 1 , (2)

where nt is the total number of time steps. The agent group’s behavior is time-pressured by 

t growing continuously until all rewards are captured. If the swarm is not able to capture all 

the rewards in the environment, t will be set to the maximum number of timesteps allowed 

for the simulation nt and the loss will reflect the number of missed rewards. Loss values 

range from [−1, 0], with better task performance closer to zero.

To account for the generalizability of spatial task performance across distinct environmental 

geometries, each simulation-based sample constitutes play-throughs of both the Hairpin and 

Tunnel mazes, respectively providing loss values LH and LT as calculated in Eq. (2) (see 

Fig. 1B). Thus, the generalized performance at a given parameter point xi is indicated by the 

objective value Y, computed as the average

yi xi ≐ Y = LH + LT
2 . (3)

2.5. Gaussian process training

The means and variances of the Gaussian process surrogate model are updated with 

each sample evaluation to reflect the expected values and uncertainty, respectively, of the 

underlying model’s performance. We use the Bayesian optimization library BoTorch [51] 

to implement the outer loop of surrogate model training based on iteratively updating a 

updating a Gaussian process following initialization with sample data D. The posterior 
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distribution P(GP(X) ∣ D is then sampled from a batched MC sampling process using an 

acquisition function to determine the candidate parameter points X from the subspace 

bounded by the ranges listed in Table 1. The candidate points are selected based 

on predictive estimates of utility value Y  (Fig. 1A) and evaluated by simulating the 

NeuroSwarms model to generate loss values (Eq. (2)) and objective function output Y (Eq. 

(3)) (Fig. 1B). Lastly, the resulting (X, Y ) tuple is appended to training data D to update the 

Gaussian process for the next iteration.

The surrogate model hyperparameters were tuned by first computing the marginal log-

likelihood (MLL) of the Gaussian process applied to observed parameters X and fitting 

hyperparameters with the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm 

with simple bounds (L-BFGS-B) [47]. The fitting process provides an updated MLL for the 

next optimization step.

2.5.1. Convergence metrics—This hyperparameter tuning process described above 

was repeated until convergence according to two metrics: maximum posterior variance and 

minimum candidate dissimilarity. First, maximum posterior variance for training epoch M 
was computed following

maxVar P GP xM ∣ DM

to indicate whether the Gaussian process’ posterior variance was no longer increasing 

and that training should cease. Second, minimum candidate dissimilarity measures the 

stabilization of candidate selection as an inverse cosine similarity; i.e., we calculated the 

metric following

min
i = 1

M − 1
1 −

xi ⋅ xM
xi ⋅ xM

to confirm whether epoch M selected for similar neighborhoods of parameter points 

as in previous training epochs. These convergence metrics determined hyperparameter 

convergence and enabled the resulting Gaussian process surrogate model to efficiently adapt 

to the NeuroSwarms parameter space.

2.6. Parameter visualization

The low-dimensional representations produced by the uniform manifold approximation and 

projection (UMAP) [57] result from a locality-preserving embedding that serves to spatially 

cluster higher-dimensional vectors such as p-dimensional parameter points. A 2D UMAP 

projection allows these point clusters to be simply visualized as images or scatter plots, 

for which the x-axis and y-axis constitute an arbitrary coordinate frame. For UMAP scatter 

plots, as in Figs. 3 and 6, the marker for each point can be colored for convenient visual 

inspection of associated values, including vector elements or computed output. We use 

this visual clustering to qualitatively inspect the parameter-dependence and structure of 

the Gaussian process surrogate model by selecting a UMAP data point with, e.g., high 
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performance indicated by its loss value yi (Eq. (3)), and assessing that point’s other values in 

the context of its location and neighborhood relative to UMAP-based clusters.

3. Results and discussion

3.1. Overview

We demonstrate Bayesian optimization methods (see Section 2.2) for tuning the parameters 

of a neuroscience-inspired swarming model, NeuroSwarms [33,34,39] (see Section 2.1), 

to find cooperative foraging behaviors for capturing multiple rewards in distinct maze 

environments under time pressure (see Section 2.4). We train Gaussian process surrogate 

models (see Section 2.5) to characterize the NeuroSwarms parameter space using noise-free 

(i.e., qEI) and observed sampling history-dependent (i.e., qNoisyEI) acquisition functions 

(see Section 2.3). Then we show how the locality-preserving dimensionality reduction 

provided by UMAP embeddings (see Section 2.6) can be used to evaluate the surrogate 

model and identify system behaviors.

3.2. Training the surrogate model for swarming performance

Small variations in the p = 9 dynamical NeuroSwarms parameters (Table 1) can substantially 

impact collective behaviors. Optimal parameters that allow NeuroSwarms models to 

accomplish generalized cooperative foraging may not be limited to a single set of parameters 

due to the complexity and potential degeneracy of emergent collective behaviors in a 

distributed multi-agent system. Thus, we constructed a simple time-pressured objective 

function to measure the progress of reward-capture (Section 2.4) and guide Bayesian 

optimization using Gaussian process surrogate models (Fig. 1A). We utilized acquisition 

functions to sample candidate parameter points and optimize the Gaussian process’ 

predictive performance compared to observed NeuroSwarms simulations (Section 2.5). We 

evaluated the surrogate models in two environments for each sample: a Hairpin maze and 

a Tunnel maze (Fig. 1B). By simultaneously assessing mazes with distinct geometries, the 

surrogate model optimization was allowed to find swarming and navigational dynamics 

resulting in time-efficient cooperative foraging that may generalize across environments.

We started training with an initial set of 24 randomly selected parameter points with 

corresponding simulation results. Each Gaussian process was trained by an acquisition 

function for selecting candidate points: q-batched Expected Improvement (qEI), q-batched 

Noisy Expected Improvement (qNoisyEI), or random parameter sampling (Section 2.3). 

Gaussian process modeling and training was implemented using BoTorch [51] and 

optimized with 512 MC samples over 30 training epochs (Section 2.5). We verified that 

the EI-based acquisition functions converged based on metrics of minimum candidate 

dissimilarity and maximum posterior variance (Section 2.5.1). The EI-based acquisition 

functions approached zero dissimilarity during training (Fig. 2A). Similarly, the maximum 

posterior variance for each surrogate model had converged by the end of training (Fig. 2B).

We evaluated how effective each acquisition function was at finding regions of the parameter 

space that optimize the NeuroSwarms objective function (Eqs. (2) and (3)). Both qEI and 

qNoisyEI discovered more parameter points with high-performance values than random 
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sampling (Fig. 2C). Both random sampling and the default parameters from Monaco et 

al. (2020) [34] were outperformed by the EI-based acquisition functions. Thus, qEI and 

qNoisyEI demonstrated the strongest utility improvement of best observed values during 

training as the NeuroSwarms parameter space was learned by the corresponding surrogate 

models (Fig. 2D).

3.3. Evaluating UMAP-clustering of selected parameters

Understanding the results of the above Bayesian optimization process requires a visual 

representation of the parameter space, yet it can be challenging to represent data with >3 

dimensions. We considered that visualizing parameter points in lower dimensions could 

facilitate the discovery of critical surrogate model structures, including clusters of high-

performing parameters that potentially yield distinct behavioral solutions to the cooperative 

foraging task. Thus, we used UMAP (Section 2.6) to reduce sets of 9-dimensional 

NeuroSwarms parameters (Table 1) into locality-preserving 2D representations. For qEI-

selected parameters, we assigned colors to the resulting 2D UMAP-clustered data points 

according to posterior mean estimates of objective values (top, left plot) or individual 

parameter values (Fig. 3). The resulting visual representation in Fig. 3 shows where the 

highest utility (i.e., best posterior mean estimate of objective value) data points cluster into 

groups based on the values of NeuroSwarms parameters.

Given that qEI demonstrated the largest utility improvement (Fig. 2D) and consistently 

identified high-performing parameters (Fig. 2C), we consider its UMAP representation for 

further analysis. The qEI-based parameter samples formed two clusters of data points with 

the highest utility (Fig. 3). In the (top, left) posterior mean plot, we selected one of these 

points from the lower, left cluster and matched it with the numerical values of its associated 

parameters, which we subsequently evaluated in NeuroSwarms simulations.

We simulated the qEI-optimized NeuroSwarms model on both the Hairpin and Tunnel 

mazes (see Fig. 1B). Trajectory-trace plots for the Hairpin (Fig. 4, blue traces) depict the 

movement of each agent that contributed to reward capture throughout the simulation, up 

to the timestep at which cooperative capture of each reward goal was achieved. Likewise, 

trajectory traces in orange (Fig. 4) reflect the behavior of the reward-capturing agents after 

the reward had been captured. For example, the transition from swarming and goal-directed 

dynamics to post-capture exploration is depicted by the capture of Reward 3 (R3) in the 

third row of Fig. 4, in which a subset of agents converged on and captured R3 and 

immediately dispersed, thus permitting the search for and capture of subsequent reward 

goals. Agents recommenced exploration following reward-capture because NeuroSwarms 

relies on local, line-of-sight communication between agents, meaning that agent motion 

may not be influenced by nearby rewards if they are occluded by walls of the maze. The 

qEI-tuned swarms were able to quickly capture all five rewards on the Hairpin environment 

(t = 25.38 s), as shown in Fig. 4, whereas the original default parameters of NeuroSwarms

—determined by hand-tuning as described in our previous work [34]—produced relatively 

slow reward capture (t = 41.02 s). Reward-capture speed using the default parameters was 

additionally exacerbated in the Tunnel maze (t = 175.42 s). In contrast, the qEI-tuned swarm 

captured all three rewards (Fig. 5) faster than the default swarm captured two rewards (t 
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= 34.88 s). We attribute the worse performance of the hand-tuned default parameters to 

longer dynamical time-constants and thus slower behavioral responsivity. Thus, compared 

to manual parameter tuning for each maze environment, our Bayesian batch-optimization 

process (Section 2.3; Fig. 1A) with joint objective sampling (Section 2.4; Fig. 1B) was 

able to simultaneously, jointly, and efficiently discover distinct high-performing dynamical 

parameters for multiple mazes.

A key feature of our Bayesian optimizer is that the objective indirectly quantifies (i.e., 

as a ‘black box’ model) cooperative foraging without directly modifying NeuroSwarms’ 

underlying mechanisms. In general, this feature allows a task-dependent objective to 

evaluate multi-agent performance in collective tasks involving, e.g., social coordination or 

distributed consensus. In contrast to the regular but fragmented geometry of the Hairpin 

maze (Fig. 4), the Tunnel maze required the swarm to distribute through an irregular 

geometry to complete the foraging task (Fig. 5). Additionally, whereas agents were 

initialized at uniform random locations in the Hairpin maze, all agents in the Tunnel maze 

were initialized to points inside a small disc circumscribed within its Southwest quadrant. 

As a result, the agents rapidly capture R2 (Fig. 5, top row) and then split into subgroups 

to capture the remaining two rewards (Fig. 5, lower two rows). An additional challenge 

of the Tunnel maze is that R3 is initially visible to all agents and closer than R1, yet 

the tunnel constricts access to it. Conversely, R1 is initially visible and accessible, yet 

further away and partially occluded once agents have converged onto R2’s location. The 

fast capture of R1 (t = 5.46 s) vs. R3 (t = 31.78 s) reflects the characteristic time-scale 

differences between coordinated reward-approach trajectories and exploratory swarming 

trajectories, respectively. Comparing the pre-capture (blue, left) and post-capture (orange, 

right) trajectories for each reward (Fig. 5), the agents began using the large opening in 

the center of the map only once R2 and R1 were both captured. This behavioral transition 

suggests that exploration traded off with goal-directed exploitation by adaptively forming 

and regrouping subgroups of agents. Thus, distinct challenges presented by the Tunnel maze, 

in concert with our optimizer’s objective function definition (Section 2.4), may have induced 

collective behaviors that can flexibly adapt to diverse foraging problems.

3.4. Exploring the future parameter space

Trained acquisition functions can be used to predict the performance of unobserved regions 

of the parameter space. To test predictive selection, we generated 500 samples from the qEI 

acquisition function and the posterior distribution of its trained Gaussian process surrogate 

model. The qEI sample means from the posterior (Fig. 6, top-left plot) were similar across 

most data points because qEI had adapted to parameter regions with the highest likelihood 

of utility improvement. As in the previous Section 3.3, we selected candidate points from 

these anticipated future qEI parameters to simulate in the Hairpin and Tunnel mazes, but we 

chose points that featured mid-range parameter values, i.e., whose vector elements were not 

at or near the range limits of the respective parameter (Table 1). In particular, we selected 

parameters where the time-constants were greater than the minimum of their ranges (1 

ms), constituting a parameter regime that was distinct from clusters of qEI samples which 

minimized their respective time-constants in response to the time-pressure imposed by our 

objective function (Eq. (2)). We chose these points, with corresponding simulations shown 
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in Fig. 7, to demonstrate the distinct behavioral solutions to the foraging task that can 

be discovered by the same acquisition function and associated surrogate model. Trajectory-

trace plots of reward-capturing agents before and after rewards were cooperatively captured 

on the Hairpin and Tunnel mazes show that the selected parameters resulted in slower 

reward capture for the Hairpin (t = 47.44 s; Fig. 7A) and Tunnel (t = 66.96 s; Fig. 7B) mazes 

compared with the optimized parameters in Fig. 4 (Hairpin, t = 25.38 s) and Fig. 5 (Tunnel, 

t = 31.78 s). Additionally, the default parameters from Monaco et al. (2020) [34] entailed 

strong reward-approach exploitation (e.g., κ = 6.6), but weak swarming-based exploration 

(e.g., σ = 2.0). This combination of behavioral forces increased the time-to-capture for all 

five rewards. Thus, we attribute slow reward-capture to a combination of longer dynamical 

time-constant parameters and exploration–exploitation mismatches. Moreover, if the energy 

budget of agent locomotion (e.g., speed, turning, etc.) were to be taken into account by the 

objective function, a slower behavioral repertoire enabled by these parameter regimes could 

help to minimize energetic or inefficient navigational patterns.

4. Concluding remarks

Neuroscience-inspired learning and control methods have seen increased interest from 

robotics, artificial intelligence, and multi-agent control. Here, we presented a demonstration 

of exploring and visualizing the parameter space of a multi-agent model with complex 

dynamical behaviors using sample-efficient Bayesian optimization with Gaussian process 

surrogate models. We introduced an objective function for a spatial cooperative foraging 

task in NeuroSwarms simulations [34] to predict reward-capture performance across two 

distinct maze environments. Training the surrogate model was facilitated by the qEI and 

qNoisyEI acquisition functions. In particular, qEI was shown to guide optimizer trajectories 

towards parameter regions with high utility improvement, outperforming random sampling 

and manual tuning

By learning UMAP embeddings [57], we demonstrated visualization of 9-dimensional 

parameter points to identify and select high performing clusters of parameters. We illustrated 

the identification of parameters that generalized across environments by jointly evaluating 

the NeuroSwarms metacontroller in two distinct maze environments. Overall, our study 

serves as an example application of Bayesian optimization of complex multi-agent models 

to explore and select for complex behaviors like goal-directed spatial navigation in a system 

with distributed neural control.

As parameter size grows, the computational cost of the matrix inversions required to 

calculate updated Gaussian process parameters increases exponentially and eventually 

outweighs the gains in adaptive search efficiency provided by computing the acquisition 

function over the surrogate model to advance the sample trajectory [20]. This limitation 

on model dimensionality does not, in general, prohibit analysis of complex dynamics, 

particularly in systems of homogeneous particles, but it would reasonably detract the 

feasibility of Bayesian optimization for modeling systems with nontrivial heterogeneity in 

agent/particle behaviors. Within that moderate limit on model complexity—e.g., for p up to 

~20—Bayesian optimization may facilitate adaptive and efficient computational exploration 
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of dynamical parameter spaces, resulting in the identification of distinct and complex system 

behaviors.

Future work is needed to develop new controller models and critical spatial tasks to explore 

the capabilities of multi-agent objective functions that adapt efficiently to the characteristics 

of diverse environments (e.g., occlusive geometry, dynamic change, reward distribution, 

cue richness, etc.). We theorize that heterogeneous variation of swarm spatial structure and 

intertemporal coordination dynamics will be able to support a form of swarm metacognition 

that allows adjustment to the available goals in an environment, without initial knowledge 

of the goals or their locations. This approach could extend the flexibility of Bayesian 

optimization to operate in diverse environments and adapt efficiently to tasks with difficult 

or uncertain goals.
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Fig. 1. 
Computation flow for optimization and simulation-based sampling. A, Step 1: The posterior 

distribution is computed from the Gaussian process surrogate model (GP Model) based 

on the training data D. Step 2: The acquisition function’s Quasi Monte Carlo sampling 

process uses the posterior distribution to select new candidate parameters X (Step 3) based 

on the acquisition function’s estimated objective function value Y  (Step 4). Step 5: The 

NeuroSwarms model [33,34] is simulated with candidate parameter points X to generate the 

observed objective value Y (see B). Step 6: The initial Gaussian process model’s marginal 
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log-likelihood (MLL) is then calculated and used to optimize the Gaussian process using 

the L-BFGS-B algorithm [47]. Step 7: The resulting D (from Step 5) and MLL (from Step 

6) update the Gaussian process model for the next iteration of the outer loop. B, Flow 

diagram of simulation-based candidate-point evaluation. For each sample (see Step 5 in A), 

the optimizer executes play-throughs in both the Hairpin (top) and Tunnel (bottom) maze 

environments. The sample’s objective value Y is computed as the average of the respective 

loss values LH and LT (Eq. (3)).
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Fig. 2. 
Convergence metrics and objective function values for acquisition functions across training. 

A+B, Training convergence metrics: minimum candidate dissimilarity (A) and maximum 

posterior variance (B). C+D, The training performance of Gaussian process models based 

on the qEI and qNoisyEI acquisition functions, compared to a baseline of random sampling, 

was quantified by objective function values shown as histograms of losses for the sampled 

parameter trajectories (C) and as the improvement in best observed values (D), where values 

closer to 0 indicate better performance (Eq. (2)) in the time-pressured cooperative foraging 

task.
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Fig. 3. 
UMAP-clustered parameter points selected by the noise-free qEI acquisition function. The 

dimensional reduction computed by the UMAP transformation (Section 2.6) preserves 

locality of neighboring parameter points. As a result, high-dimensional clusters can be 

revealed by scatter plots of 2D UMAP data. Each of the 10 scatter plots shows the 

same UMAP projection of qEI-sampled parameter points, using the same (arbitrary) 

2D coordinate frame. In the first plot (top, left), the color of each point indicates the 

expected posterior mean of the trained Gaussian process surrogate model according to 

the colorbar legend to the right of the plot; e.g., a group of adjacent blue points reflects 

a high-performing cluster of NeuroSwarms parameters. The top-left colorbar additionally 

serves to provide a reference for how colors are mapped to the respective value ranges (i.e., 

[min, max]) specified in the label above the remaining p = 9 plots. These 9 plots show the 

individually sampled parameter values (cf. Table 1) associated with each UMAP point.
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Fig. 4. 
NeuroSwarms trajectories depicting reward capture in the Hairpin maze. The Hairpin maze 

presents a large, fragmented arena to assess the swarm’s foraging performance given the 

uncertain localization inherent in environments with symmetrically repeating geometric 

patterns. Five reward goals are spatially distributed at maze locations indicated by gold stars 

(R1–R5, top-left maze plot). The 10 maze plots show segments of spatial trajectories traced 

out by NeuroSwarms agents during a sample simulation. Maze plots on the left show agent 

paths (blue traces) from either the beginning of the simulation or the most recent previous 

reward capture to the time of the reward capture indicated by the text label to the left of the 
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plot. Traces are shown for only those agents that contributed to cooperative capture of the 

given reward (see Section 2.4). Conversely, maze plots on the right show agent paths (orange 

traces) from the time of reward capture until the end of the simulation. From top to bottom, 

each row presents a pre-capture and post-capture pair of swarm trace plots in the order in 

which rewards were captured in the simulation. Individual traces are translucent; thus, the 

degree to which the trajectories of multiple agents superposed upon the same observed paths 

is indicated by the relative saturation of the trace color. As a result, visual inspection yields 

information about the swarming and reward-approach dynamics with respect to the spatial 

convergence and divergence of agents over time.
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Fig. 5. 
NeuroSwarms trajectories depicting reward capture in the Tunnel maze. The Tunnel maze 

presents an irregular arena to assess the swarm’s foraging performance given a loop-like 

environment with substantial geometric occlusion of visibility and passageways with large 

vs. constrictive (e.g., the eponymous ‘tunnel’ connecting the Southwest to the Southeast 

quadrants) apertures. Three reward goals are spatially distributed at maze locations indicated 

by gold stars (R1–R3, top-left maze plot). The 6 maze plots show agent paths before (left, 

blue traces) and after (right, orange traces) the cooperative reward capture (see Section 2.4) 

indicated by the label to the left of the plots. Additional details are as described in the 

caption for Fig. 4.
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Fig. 6. 
Anticipated future qEI-sampled parameter points. As in Fig. 3, a UMAP projection is shown 

across a series of plots: the top-left scatter plot assigns colors to each 2D UMAP point 

based on the colorbar to the right of the plot as indexed by the surrogate model’s expected 

posterior mean for each associated parameter point; the remaining p = 9 plots depict the 

same UMAP transformation except that the color of each point is mapped to the specified 

range (i.e., [min, max]) of the given NeuroSwarms parameter (cf. Table 1). A large batch 

of 500 qEI-based parameter samples is shown to facilitate visual inspection of the local 

structure of the trained surrogate model. For instance, these plots show that posterior sample 

means (top, left) have converged to similar high-performing values, and that most of the 

discovered system behaviors rely on short time-constants in the neural controller’s dynamics 

(viz., the prevalence of red data points in the three τ* plots).
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Fig. 7. 
Example reward-capture trajectories from selected future qEI-sampled NeuroSwarms 

parameters. Pre-capture (left, blue traces) and post-capture (right, orange traces) pairs of 

trajectory-trace plots are shown relative to example reward-capture events from qEI-selected 

simulations in the Hairpin (A; cf. Fig. 4) and Tunnel (B; cf. Fig. 5) mazes. Parameters 

were selected for mid-range values (i.e., away from parameter range limits) from predictive 

(anticipated future) samples generated by the trained qEI-based surrogate model. Our 

Bayesian batch-optimizer naturally produces diverse output parameters that allow for the 

selection of distinct high-performing solutions and system behaviors, all of which have been 

equivalently constrained and guided by the high-dimensional shape of its task-dependent 

objective function.
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Table 1

Tunable parameters that governed the spatiotemporal dynamics of the example NeuroSwarms model 

implementation [34]. ‘Range’ indicates the limits of the parameter subspace made available for Bayesian 

optimization. All other NeuroSwarms parameter values and constants were fixed at the defaults in Table 1 of 

Monaco et al. (2020) [34].

Name Range Description

σ [10−3, 4] Normalized interagent spatial scale

κ [10−3, 4] Normalized reward-approach spatial scale

ηs [10−3, 4] Recurrent interagent learning rate

ηr [10−3, 4] Feedforward reward-approach learning rate

ω 0 [0, 1] Baseline agent oscillation frequency

ωI [0, 1] Max. activation-based frequency increase

τq [0, 1] Recurrent interagent time-constant

τr [0, 1] Feedforward reward time-constant

τc [0, 1] Sensory input time-constant
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