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High dimensionality of microarray data sets may lead to low efficiency and overfitting. In this paper, a multiphase cooperative
game theoretic feature selection approach is proposed for microarray data classification. In the first phase, due to high dimension
of microarray data sets, the features are reduced using one of the two filter-based feature selection methods, namely, mutual
information and Fisher ratio. In the second phase, Shapley index is used to evaluate the power of each feature.Themain innovation
of the proposed approach is to employ Qualitative Mutual Information (QMI) for this purpose. The idea of Qualitative Mutual
Information causes the selected features to have more stability and this stability helps to deal with the problem of data imbalance
and scarcity. In the third phase, a forward selection scheme is applied which uses a scoring function to weight each feature. The
performance of the proposed method is compared with other popular feature selection algorithms such as Fisher ratio, minimum
redundancy maximum relevance, and previous works on cooperative game based feature selection. The average classification
accuracy on eleven microarray data sets shows that the proposed method improves both average accuracy and average stability
compared to other approaches.

1. Introduction

In feature selection, the features of the data sets are selected
which are effective for predicting the target class. By elim-
inating additional features from data sets, the efficiency of
the learning models dramatically increases. Genetic data sets
have high dimensions and small size and are usually imbal-
anced. Increasing the high dimensions leads to classification
complexity and it can reduce the classification accuracy. The
small size of the data sets is another challenge [1]. Robust-
ness issue is often ignored in feature selection. Increasing
and decreasing the training samples in a nonrobust feature
selection algorithm will lead to different results [2].

Feature selection methods are classified as filter methods,
wrapper methods, and embedded methods [3]. Filtering
methods are independent from learning algorithms. They
are statistical tests which rely on the basic features of the
training data and have much lower computational complex-
ity compared with wrapper methods [4]. These methods

use some measurements. Among these measurements are
distance measurements [5, 6], rough set theory [7], and
information theoretic measures [8]. A common distance
measure is Euclidean distance, which was applied in Relief
method by Kira and Rendell [5], which uses Euclidean
distance to assignweights to each feature.Then, [6] developed
Relief algorithm which adds the ability of dealing with
multiclass problems. Peng et al. [9] proposed minimum
redundancy maximum relevance (mRMR) approach, which
selects features that have the highest relevance with the target
class and are minimally redundant. Wang et al. [10] proposed
a new filtering algorithm based on the maximum weight
minimum redundancy (MWMR) criterion.Theweight of the
feature shows its importance and redundancy represents the
correlation between the features. Nguyen et al. [11] proposed
a hierarchical approach called Modified Analytic Hierarchy
Process (MAHP) which uses five individual gene rank-
ing methods including 𝑡-test, entropy, Receiver Operating
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Characteristics (ROC) curve, Wilcoxon test, and Signal to
Noise Ratio (SNR) for feature ranking and selection.

In the wrapper methods, each subset is evaluated using a
specific learning algorithm, and optimal features are selected
to improve classification performance [3]. For example, Inza
et al. [12] proposed classical wrapper algorithms for this
purpose (i.e., sequential forward and backward selection,
floating selection, and best-first search) and evaluated them
on three microarray data sets. Another wrapper approach
for gene selection from microarray data is proposed in [13]
using modified ant colony optimization. Another heuristic
basedwrapper approach is proposed in [14] which is based on
Genetic Bee Colony (GBC) optimization. More referencing
materials on wrapper methods can be found in [15–18].

Similar to wrapper methods, embedded feature selection
methods are classifier dependent but this relationship is
stronger in embedded approaches. Guyon et al. [19] proposed
Support Vector Machine (SVM) based on Recursive Fea-
ture Elimination (SVM-RFE) for feature selection in cancer
classification. Canul-Reich et al. [20] introduced and applied
Iterative Feature Perturbation (IFP) method, as an embedded
gene selector, on four microarray data sets.

Robust feature selection algorithms are another source of
researches. Yang andMao [2] tried to improve the robustness
of feature selection algorithms, with an ensemble method
called Multicriterion Fusion-Based Recursive Feature Elim-
ination (MCF-RFE). Also, Yassi and Moattar [1] presented
robust and stable feature selection by integrating ranking
methods and wrapper technique for genetic data classifica-
tion.

The authors of [3, 21] tried to overcome the weaknesses
of feature selection methods using cooperative game. They
introduced a framework based on cooperative game theory to
evaluate the power of each feature. To evaluate the weight of
each of the features, the Banzhaf power index and the Shapley
value index are used. Paper [3] used the Banzhaf power index
in game theory for evaluating the weight of each feature,
while paper [21] used the Shapley value index in game theory
for evaluating the weight of each feature. Reference [22]
presented a novel feature selection approach calledNeighbor-
hood Entropy-Based Cooperative Game Theory (NECGT)
which was based on information theoretic approaches. The
results of the evaluation of some UCI data sets showed that
the approach yields better performance compared to classical
methods in terms of accuracy.

Stability and robustness are important specially when
the data is scarce and classes are imbalanced. In this paper,
cooperative game theory is used for robust feature selection.
In the proposed method, a cooperative game theory frame-
work based on Shapley value is introduced for evaluating the
power of each feature. To score the features in Shapley value
index, we propose Qualitative Mutual Information criterion
to achieve more stable results even in the presence of class
imbalance and data scarcity. This criterion improves the
robustness of feature selection algorithm. In this criterion,
we use the Fisher ratio as the utility function in calculating
Qualitative Mutual Information and this criterion leads to
better robustness of the feature selection algorithm. The rest
of this paper is organized as follows. Section 2 introduces

the fundamental materials and methods. In Section 3, our
proposed method is described. In Section 4, the simulation
results and evaluation of the proposed method are dis-
cussed. Finally, conclusions and future work are described in
Section 5.

2. Mutual Information, Qualitative
Mutual Information, and Conditional
Mutual Information

The entropy, 𝐻(𝑋), of discrete random variable 𝑋 with
𝑝(𝑥) = Pr(𝑋 = 𝑥) as its probability density function is
defined as follows:

𝐻(𝑋) = −∑

𝑥∈𝑋

Pr (𝑋) log Pr (𝑋) . (1)

Also, the mutual information (MI) between two random
variables 𝑋 and 𝑌 with a joint probability distribution
Pr(𝑥, 𝑦) is formulated as follows [22]:

MI (𝑋; 𝑌)

= ∑

𝑌𝑗∈𝑌

∑
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0 ≤ MI (𝑋; 𝑌) ≤ 1.

(2)

Hence, Qualitative Mutual Information (QMI) is defined by
multiplying a utility function 𝑈(𝑋

𝑖
, 𝑌
𝑗
) to mutual informa-

tion formula; the formula is as follows [23, 24]:
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) .

(3)

Different informative functions can be applied as the utility
function. In the proposed approach, we use the Fisher ratio
[2]. Also, Conditional Mutual Information (CMI) noted as
CMI(𝑋; 𝑌 | 𝑍) denotes the amount of information between
𝑋 and 𝑌, when 𝑍 is given and is formulated as follows [21]:

CMI (𝑋; 𝑌 | 𝑍) = ∑

𝑥∈𝑆𝑋

∑

𝑦∈𝑆𝑌

∑

𝑧∈𝑆𝑍

Pr (𝑋, 𝑌, 𝑍)

⋅ log( Pr (𝑋, 𝑌 | 𝑍)

Pr (𝑋 | 𝑍)Pr (𝑌 | 𝑍)
) .

(4)

3. Proposed Approach

The proposed method consists of three phases, which are
described as follows. Figure 1 depicts the flowchart of the
proposed feature selection algorithm.

3.1. Filter Approaches for Dimension Reduction. Due to high
dimension of features of microarray data, in the first phase
of the proposed method, the features are reduced by using
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Phase 1

Phase 2

Phase 3

Selecting 300 superior features using
either Fisher ratio or mutual

information

Computing the weight of each
feature with Shapley value in

cooperative game theory

Selecting the final features using
qualitative mutual information which

is multiplied by utility value (SU) 

Input: microarray data sets with
feature space and target class

Figure 1: Flowchart of the proposed feature selection algorithm.

one of the two filter-based feature selectionmethods, namely,
mutual information and Fisher ratio. Fisher’s ratio is an indi-
vidual feature evaluation criterion. Fisher’s ratiomeasures the
discriminative power of a feature 𝑗 by the ratio of interclass to
intraclass variability. This relationship is as follows [2]:

FR (𝑗) =
(�̂�
𝑗1
− �̂�
𝑗2
)
2

𝜎
2

𝑗1
− 𝜎
2

𝑗2

, (5)

where �̂�
𝑗𝑐
is the sample mean of feature 𝑗 in class 𝑐 and 𝜎2

𝑗𝑐
is

variance of feature 𝑗 in 𝑐.

3.2. Feature Evaluation. In large data sets, there are intrinsic
correlations among features. However, most of the filter-
based feature selection algorithms discard redundant features
that are highly correlated with the selected ones [21]. Each
feature is weighted using information theory measures such
as CMI and QMI [21].

Theoretically, themore relevancy of a featuremeans that it
shares more information with the target class [21, 25]. Feature
𝑓
𝑖
is to be redundant with feature 𝑓

𝑗
if the following form is

accepted [21]:

CMI (𝑓
𝑗
; class | 𝑓

𝑖
) ≤ QMI (𝑓

𝑗
; class) . (6)

Two features 𝑓
𝑖
and 𝑓

𝑗
are interdependent if the following

form is accepted [21, 26]:

CMI (𝑓
𝑗
; class | 𝑓

𝑖
) > QMI (𝑓

𝑗
; class) . (7)

The relevance criterion that is introduced by Peng et al. [9] is
the relevance criterion of set𝐾 with the target class; we have

𝐷 (𝐾, class) = 1

|𝐾|
∑

𝑓𝑗∈𝐾

QMI (𝑓
𝑗
; class) . (8)

The change of the relevance of set of𝐾 features with the target
class considering the feature 𝑓

𝑖
(𝑓
𝑖
∉ 𝑘) which is introduced

by Jain et al. [27] is measured by the following formula:

CMI (𝐾; class; 𝑓
𝑖
)

≈
1

|𝐾|
∑

𝑓𝑗∈𝐾

CMI (𝑓
𝑗
; class | 𝑓

𝑖
) −QMI (𝑓

𝑗
; class) .

(9)

3.3. Feature Evaluation via Shapley Value. In the second
phase of the proposed method, after filtering the features, the
weight of each feature is obtained using the Shapley value
[28, 29] for all features. In this work, we used QMI in all
our formulations. The Shapley value is an efficient way for
estimating the importance of features weight. The Shapley
value of the 𝑖th feature is denoted by 𝜙

𝑖
(V) as is formulated

as follows:

𝜙
𝑖
(V) = ∑

𝑘

Δ
𝑖
(𝑘)

|𝑘|! (𝑛 − |𝑘| − 1)!

𝑛!
, (10)

where 𝑛 denotes the total number of features and Δ
𝑖
(𝑘) is

defined as follows:

Δ
𝑖
(𝑘)

=

{{

{{

{

1, CMI (𝑘; class; 𝑓
𝑖
) ≥ 0, ∑

𝑓𝑗∈𝐾

𝜓 (𝑖, 𝑗) ≥
|𝐾|

2
,

0, else.

(11)

And 𝜓(𝑖, 𝑗) denotes the interdependence index and is
defined as follows:

𝜓 (𝑖, 𝑗)

=

{

{

{

1, CMI (𝑓
𝑗
; class | 𝑓

𝑖
) > QMI (𝑓

𝑗
; class) ,

0, else

(12)

whichmeans that the feature will be appropriate if it increases
the relevance of subset𝐾 on the target class and is interdepen-
dent with at least half of the features [21]. Figure 2 shows the
flowchart of feature evaluation. The output is a weight vector
indicating the Shapley value of feature 𝑓

𝑖
. In all the above

relationships, we used QMI criterion for more robustness of
selected features.

In step 2 of the proposed algorithm, for each feature
𝑖, we should calculate all subsets of features, so that these
subsets do not contain feature 𝑖. So at first we calculate
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Step 2: for each feature i, create all coalitions set

Step 3: for each coalition, calculate 

Step 4: calculate the Shapley value

Step 5: normalize the weight vector

Input: a microarray data set

Step 1: weight w(f) = 0 for each

the value of Δi(𝜋j)

𝜙i(�), w(i) = 𝜙i(�)

{𝜋1, . . . , 𝜋t} over F /i

w(1 : |F|)

Output: w(1 : |F|): weight vector of F

Figure 2: Feature evaluation flowchart.

all two member subsets of features. Then, using (9), Con-
ditional Mutual Information measure between set 𝑘 and
target class is calculated. Then, we calculate the Qualitative
Mutual Information measure between each feature and class,
namely, QMI(𝑓

𝑗
; class), and set these two measures in the

interdependence index𝜓(𝑖, 𝑗). Finally, Shapley value (weight)
of each feature is computed according to (10).

3.4. Final Feature Selection Phase. In the third phase that is
the final phase of the proposed method, the feature selection
algorithm is performed using the weight of each feature.
Accordingly, we use the weights of features to reevaluate
the features. For this purpose, the features with the highest
weights are used. A straightforward optimization is used by
employing any information criterion, such as BIF [26], SU
[30], and mRMR [9]. In this paper, we used SU criterion.The
formula for obtaining this criterion is provided as follows:

SU (𝑓
𝑗
, class) = 2

MI (𝑓
𝑗
| class)

𝐻 (class) + 𝐻 (𝑓
𝑗
)

, (13)

where𝐻 indicates the entropy andMI is themutual informa-
tion between feature and class. The flowchart of this phase is
specified in Figure 3.

To select the optimal feature in each iteration, the victory
criterion 𝑉(𝑓) is defined to evaluate the superiority of each
feature on others. The criterion function 𝑔(𝑓

𝑖
) (i.e., SU) is

used to select feature 𝑓
𝑖
by feature relevance or redundancy

Step 3: calculate victory criterion

Input: a microarray data set
Output: selected feature subset S

Choose feature fi with the largest
V(fi)

Step 2: calculate criterion g(fi)

V(fi) = g(fi) × w(i)

F = F /{fi}, S = S ∪ {fi}

Step 1: initialize parameters: S = 𝜙, k

Figure 3: The flowchart of the final feature selection.

Table 1: Characteristics of the evaluation data sets.

Number Data set Features Samples Classes
1 11 Tumors 12533 174 11
2 14 Tumors 15009 308 26
3 9 Tumors 5726 60 9
4 Brain Tumor1 5920 90 5
5 Brain Tumor2 10367 50 4
6 Leukemia1 5327 72 3
7 Leukemia2 11225 72 3
8 Lung Cancer 12601 203 5
9 SRBCT 2309 83 4
10 Prostate Tumor 12600 102 2
11 DLBCL 7129 77 2

analysis. The weight 𝑤(𝑖), which denotes the impact of
feature 𝑓

𝑖
on the whole feature space, is used to regulate

the relative importance of evaluation value 𝑔(𝑓
𝑖
) in feature

selection. Finally, we choose the features with the largest
victory measure.

4. Experimental Results and Discussion

4.1. Data Set Descriptions. In this paper, we used the cancer
microarray data sets from the Plymouth University [31]. For
better performance and better evaluation of the proposed
approach, we applied 11 high dimensional microarray data.
These eleven data sets are briefly summarized in Table 1.

4.2. Evaluation Criteria. The criteria used to evaluate the
proposedmethod consist of accuracy, classification precision,



Advances in Bioinformatics 5

𝐹-measure, and stability criterion for feature selection algo-
rithm.

4.2.1. Accuracy of Classification. Classification accuracy is the
main criterion for evaluating the classification and predicting
the samples. The classification accuracy is as follows:

accuracy = (TP + TN)
(TP + TN + FN + FP)

. (14)

Accuracy is described in terms of true positives (TP), true
negatives (TN), false negatives (FN), and false positives (FP).

4.2.2. Precision, Recall, and 𝐹-Measure. The precision in (15)
and recall in (16) are two other evaluation criteria. 𝐹-measure
criterion in (17) is used to integrate precision and recall into
a single criterion for the comparison:

precision = TP
TP + FP

, (15)

recall = TP
TP + FN

, (16)

𝐹-measure = (2 × recall × precision
recall + precision

) . (17)

4.2.3. Robustness Measure. The robustness (stability) of a
feature selection algorithm can be evaluated based on the
ability to select repeated features, given various categories
under the same distribution [2]. Let 𝑆

𝑖
and 𝑆
𝑜
denote feature

subsets selected using the 𝑖th categories of resampled data
and the full data, respectively. For measuring the similarity
between two feature subsets, similarity index JC ∈ [0, 1] is
used which is defined as follows:

JC
𝑖
(𝑘) =


𝑆
𝑖
∩ 𝑆
𝑜


+ SC
𝑖

𝑘
, (18)

where |𝑆
𝑖
∩ 𝑆
𝑜
| is the number of common features between

𝑆
𝑖
and 𝑆

𝑜
, SC
𝑖
is the sum of the absolute correlation values

between different features from 𝑆
𝑖
and 𝑆

𝑜
, and 𝑘 is set size

of 𝑆
𝑖
and 𝑆

𝑜
. Assume 𝑚 categories of data are produced by

resampling and𝑚 feature subsets are selected.The robustness
or stability measure of the feature selection algorithm is
calculated by (19) as follows:

JC (𝑘) =
∑
𝑚

𝑖=1
JC
𝑖
(𝑘)

𝑚
. (19)

4.3. Classification Results. First, in preprocessing phase, the
features of data sets are normalized, but the SRCBT data is
not normalized because its features are small.Microarray data
sets are classified using KNN, SVM, Naive Bayes (NB), and
Classification and Regression Tree (CART) classifiers. The
Gaussian kernel function and standard deviation equal to 20
are used for SVM classifier in this study. We used 𝐾 = 3 for
KNN classifier, but since the classification result for 𝐾 = 3 is
not good for Lung Cancer data, we used 𝐾 = 1 for this data.
Among 11 data sets, only two Prostate Tumor and DLBCL
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Figure 4: KNN classification accuracy for 11 Tumors.
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Figure 6: KNN classification accuracy for 9 Tumors.
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Figure 7: KNN classification accuracy for Brain Tumor1.
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Figure 8: KNN classification accuracy for Leukemia1.
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Figure 9: KNN classification accuracy for Brain Tumor2.
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Figure 10: KNN classification accuracy for Leukemia2.
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Figure 11: KNN classification accuracy for Lung Cancer.
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Figure 12: KNN classification accuracy for SRBCT.
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Figure 13: KNN classification accuracy for Prostate Tumor.
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Figure 14: KNN classification precision for Prostate Tumor.
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Figure 15: KNN classification 𝐹-measure for Prostate Tumor.
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Figure 16: KNN classification accuracy for DLBCL.
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Figure 17: KNN classification precision for DLBCL.
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Figure 18: KNN classification 𝐹-measure for DLBCL.
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Figure 19: SVM classification accuracy for 11 Tumors.
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Figure 20: SVM classification accuracy for 14 Tumors.
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Figure 21: SVM classification accuracy for 9 Tumors.
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Figure 22: SVM classification accuracy for Brain Tumor1.
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Figure 23: SVM classification accuracy for Brain Tumor2.

data sets have two classes; therefore, precision and𝐹-measure
criteria are obtained only for these two data sets and for
other data sets only the accuracy criterion is examined. The
300 superior features of 11 Tumors, 14 Tumors, Leukemia1,
Leukemia2, and DLBCL data sets are selected using mutual
information criterion. For other data sets, Fisher ratio is
applied for prior feature selection.

For comparison, the classification accuracy is given
against the number of features. The 𝑥-axis is the number of
features which is considered up to 50 and the 𝑦-axis is the
classification accuracy. The proposed method is compared
with feature selection using Fisher’s ratio,mRMR, andCGFS-
SU. The mRMR algorithm is used as information criterion
algorithm for comparison. Fisher’s ratio method is a uni-
variate filter method for evaluating each feature individually
and the CGFS-SUmethod is proposed in [21] for cooperative
game based feature selection. For estimating the performance
of classification algorithms, tenfold cross-validation is used.



Advances in Bioinformatics 9

60

65

70

75

80

85

90

95

100

Cl
as

sifi
er

 ac
cu

ra
cy

 (%
)

SVM classifier

10 20 30 40 50
Number of features

Proposed method
Fisher

mRMR
CGFS-SU

Figure 24: SVM classification accuracy for Leukemia1.
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Figure 25: SVM classification accuracy for Leukemia2.
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Figure 26: SVM classification accuracy for Lung Cancer.
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Figure 27: SVM classification accuracy for SRBCT.
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Figure 28: SVM classification accuracy for Prostate Tumor.
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Figure 29: SVM classification precision for Prostate Tumor.
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Figure 30: SVM classification 𝐹-measure for Prostate Tumor.

60

65

70

75

80

85

90

95

100

Cl
as

sifi
ca

tio
n 

ac
cu

ra
cy

 (%
)

SVM classifier

10 20 30 40 50
Number of features

Proposed method
Fisher

mRMR
CGFS-SU

Figure 31: SVM classification accuracy for DLBCL.
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Figure 32: SVM classification precision for DLBCL.
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Figure 33: SVM classification 𝐹-measure for DLBCL.
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Figure 34: Stability results for 11-Tumors.

Figures 4–18 show the classification results for eleven data sets
using KNN classifier.

KNN classifier results show that the proposed method
has been improved in most cases compared to the other
methods of feature selection. For 11 Tumors data, the pro-
posed method has achieved the maximum accuracy of 74.73
percent. Also, the result of CGFS-SU method is almost the
same as the proposed method and is 74.08 percent, but
in 30 first features, its accuracy is less than the proposed
method. In 14 Tumors data, the results are low for all feature
selection algorithms. However, the proposed method has the
maximum accuracy of 48.34 percent and other methods have
much lower accuracy, which is due to the weak correlation
between selected features. However, it can be observed that
the proposed method achieves higher accuracy in all 50
features as compared to other methods.
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Figure 35: Stability results for 14 Tumors.
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Figure 36: Stability results for 9 Tumors.

The accuracy has been increased in SRBCT data, and
the proposed method and Fisher and mRMR algorithms
reached the maximum accuracy of 98.75 percent. Further-
more, the CGFS-SU method accuracy is 97.56 percent. In
Prostate Tumors data, it has been shown that the proposed
method achieved maximum accuracy among all feature
selection methods for all three evaluation criteria and for all
cases. For DLBCL data, the proposed method achieved the
maximum value for most cases for each of the three criteria,
and it reached the highest accuracy of 93 percent, precision of
91 percent, and 𝐹-measure of 88 percent compared to other
methods.This shows that the proposed method could reduce
interdependency between groups of features and is effective
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Figure 37: Stability results Brain Tumor1.
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Figure 38: Stability results for Brain Tumor2.

as compared with other algorithms. Figures 19–33 show the
classification results using SVM classifier on the evaluation
data sets.

The results ofmost data sets with SVMclassifier are better
compared to KNN classifier. In SRBCT data, the proposed
method reached the highest rate of accuracy of 100 percent for
10 to 40 features and also the mRMRmethod. But the CGFS-
SUmethod has lower accuracy and themaximum accuracy is
97.63 percent. Also, Fisher criterion is not much accurate and
itsmaximumaccuracy is 97.5 percent. Itmay be due to the fact
that the relationship between the features and target classes is
maximum for this data set and the mRMR method and the
proposed approach have been able to retain this relationship
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Figure 39: Stability results for Leukemia1.
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Figure 40: Stability results for Leukemia2.

between features. Also, in DLBCL data, the proposedmethod
is superior to the other approaches for all three criteria.

4.4. Stability Results. In the stability diagram, the 𝑥-axis
shows the number of features and the 𝑦-axis shows the
stability index. As denoted above, the stability index value is
between 0 and 1. For this criterion, features are normalized
except for the SRCBT data. Fisher ratio is applied to select
the prior 300 best features of all data sets. For estimating
the stability, we used tenfold cross-validation. The results of
stability are observed in Figures 34–44.

The stability values of the CGFS-SU and the proposed
methods are very close to each other and are slightly different.
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Figure 41: Stability results for Lung Cancer.
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Figure 42: Stability results for SRCBT.

But we have seen that the proposed method reached the
maximum stability in 11 Tumors, 14 Tumors, Brain Tumor2,
and Lung Cancer data sets. This shows that the proposed
method is much more robust than the other feature selection
approaches. However, the CGFS-SU method achieved the
maximum stability only for Brain Tumor2 data. The stability
of other feature selection methods has significant differences
with the CGFS-SU and the proposed method; that is, the
stability of mRMR method is approximately equal to these
methods only for Brain Tumor2 data. Table 2 shows the
maximum accuracy and average accuracy of feature selection
methods on evaluation microarray data using KNN, SVM,
NB, and CART classifiers.
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Table 2: Maximum values of accuracy and average accuracy of feature selection methods on eleven microarray data sets.

Data set Classifier Accuracy Proposed approach CGFS-SU Fisher mRMR

11 Tumors

𝐾NN Max 74.73 74.08 71.79 74.11
Average 71.16 70.02 65.39 56.26

SVM Max 79.86 81.01 75.94 79.37
Average 77.07 76.34 70.36 63.59

Naive Bayes Max 84.96 82.67 77.58 83.16
Average 74.75 77.62 69.83 72.46

DecisionTree Max 64.37 62.05 60.35 61.07
Average 61.64 60.20 56.05 50.33

14 Tumors

𝐾NN Max 48.34 44.73 47.11 41.86
Average 44.99 40.08 43.13 35.66

SVM Max 46.07 48.35 47.06 45.76
Average 42.13 44.33 39.42 41.67

Naive Bayes Max 45.22 41.18 40.92 37.23
Average 43.87 40.19 59.8 37.04

DecisionTree Max 46.05 43.81 41.25 37.98
Average 41.67 39.90 37.98 33.76

9 Tumors

𝐾NN Max 53.33 56.66 45 61.66
Average 48.66 48.33 41.99 49.46

SVM Max 55 56.66 51.66 56.66
Average 52.33 52 44.66 51.66

Naive Bayes Max 53.33 56.18 51.8 48.32
Average 52.87 51.9 50.35 46.90

DecisionTree Max 50 48.33 41.66 46.66
Average 42 40.66 37 42

Brain Tumor1

𝐾NN Max 90 90 83.33 90
Average 88 88.22 80.44 88.66

SVM Max 93.33 92.22 82.22 94.44
Average 85.33 86.44 71.11 87.77

Naive Bayes Max 85.55 82.22 85.55 84.44
Average 83.77 81.11 81.11 82.44

DecisionTree Max 78.44 71.11 72.44 70.22
Average 80 73.33 74.44 72.22

Brain Tumor2

𝐾NN Max 74 74 68 74
Average 70.4 66 65.2 66

SVM Max 84 84 80 84
Average 80 75.6 74 75.6

Naive Bayes Max 82 80 68 80
Average 73.2 68.8 63.2 68.8

DecisionTree Max 60 56 60 54
Average 50 52.40 53.20 50.40

Leukemia1

𝐾NN Max 91.60 90.35 91.78 91.60
Average 89.14 86.75 87.60 88.10

SVM Max 93.21 96.07 94.46 93.03
Average 92.82 92.10 88.17 90.78

Naive Bayes Max 97.32 97.32 94.64 97.14
Average 94.46 95.89 92.89 95.28

DecisionTree Max 91.78 87.85 87.67 90.35
Average 90.32 85 81.82 88.71
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Table 2: Continued.

Data set Classifier Accuracy Proposed approach CGFS-SU Fisher mRMR

Leukemia2

𝐾NN Max 93.21 95.89 87.50 93.21
Average 91.25 90.82 83.10 87.53

SVM Max 94.64 93.03 87.67 93.21
Average 92.07 90.25 79.14 90.99

Naive Bayes Max 70.71 69.28 51.07 59.64
Average 69.89 64.39 47.67 54.89

DecisionTree Max 88.75 90.17 85.89 87.67
Average 86.53 86.03 77.60 84.21

Lung Cancer

𝐾NN Max 89.69 89.66 85.76 90.11
Average 84.82 87.84 84.17 84.32

SVM Max 93.66 93.57 92.66 93.61
Average 91.06 91.90 89.19 83.36

Naive Bayes Max 96.09 96.57 91.69 66.07
Average 92.35 92.55 90.57 60.12

DecisionTree Max 88.16 86.28 83.28 87.26
Average 85.42 85.17 81.86 79.46

SRCBT

𝐾NN Max 98.75 97.56 98.75 98.75
Average 96.80 94.13 96.25 97

SVM Max 100 97.63 97.5 100
Average 99 94.13 94.88 98.52

Naive Bayes Max 98.75 98.75 100 98.75
Average 97.27 95.33 94.88 95.75

DecisionTree Max 87.91 85.41 89.16 88.05
Average 82.55 83.55 85.08 80.08

Prostate Tumor

𝐾NN Max 90.36 84.45 92.27 83.54
Average 87.70 84.03 85.43 81.89

SVM Max 93.36 92.27 92.27 88.45
Average 89.38 90.14 91.49 81.25

Naive Bayes Max 91.27 85.45 82.45 79.45
Average 90.12 82.03 80.85 77.45

DecisionTree Max 91.27 80.36 82.36 76.27
Average 87.07 78.36 78.92 73.41

DLBCL

𝐾NN Max 93.39 88.03 86.78 88.39
Average 90.67 86.03 85.53 84.21

SVM Max 96.07 92.32 90.71 83.21
Average 92.92 88.14 86.67 78

Naive Bayes Max 91.96 93.57 84.46 83.03
Average 87.10 90.64 83.21 79.71

DecisionTree Max 83.21 81.78 82.58 81.78
Average 81.39 78.60 80.78 78.53

According to Table 2, it can be seen that the proposed
method achieved the highest accuracy among all the algo-
rithms inmost cases. Also, results of the average classification
accuracy show that the proposed method has improved
the average accuracy between 1 and 5 percent as compared
with the CGFS-SU method, also between 2 and 14 percent
as compared with the Fisher ratio method, and between 1
and 14 percent as compared with the minimum redundancy
maximum relevance approach. In Table 3, average stability

± standard deviation of four feature selection methods is
shown.

In these experiments, if the average stability is high and
the standard deviation is low, the approach is more robust.
It is observed that, among the eleven microarray data sets,
the stability of the proposed method is more than the other
feature selection methods on eight data sets and the stability
is less than the CGFS-SU method only on three data sets.
Furthermore, the results of these experiments show that
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Table 3: Average stability ± standard deviation stability of the evaluated feature selection approaches.

Data set Proposed method CGFS-SU Fisher mRMR
11 Tumors 0.9954 ± 0.0044 0.9939 ± 0.0015 0.6872 ± 0.0668 0.8956 ± 0.0149
14 Tumors 0.9956 ± 0.0026 0.9944 ± 0.0030 0.6029 ± 0.0940 0.8712 ± 0.0279
9 Tumors 0.9790 ± 0.0065 0.9736 ± 0.0096 0.4557 ± 0.0472 0.6451 ± 0.1400
Brain Tumor1 0.9873 ± 0.0053 0.9790 ± 0.0037 0.6548 ± 0.0636 0.8132 ± 0.0090
Brain Tumor2 1 ± 0 1 ± 0 0.5548 ± 0.0358 0.9863 ± 0.0097
Leukemia1 0.9750 ± 0.0117 0.9768 ± 0.0098 0.8212 ± 0.0130 0.7975 ± 0.0483
Leukemia2 0.9826 ± 0.0029 0.9697 ± 0.0048 0.8695 ± 0.0345 0.6203 ± 0.1538
Lung Cancer 0.9947 ± 0.0092 0.9869 ± 0.0027 0.6517 ± 0.0398 0.8743 ± 0.0372
SRCBT 0.9214 ± 0.0375 0.9378 ± 0.0240 0.7707 ± 0.0362 0.8463 ± 0.0317
Prostate Tumor 0.9235 ± 0.0250 0.9551 ± 0.0066 0.7876 ± 0.0165 0.7462 ± 0.0655
DLBCL 0.9766 ± 0.0094 0.9569 ± 0.0161 0.6719 ± 0.0700 0.7748 ± 0.0543

0.4

0.5

0.6

0.7

0.8

0.9

1

Ro
bu

stn
es

s i
nd

ex

10 20 30 40 50
Number of features

Proposed method
Fisher

mRMR
CGFS-SU

Figure 43: Stability results for Prostate Tumor.

the proposed method has improved the average stability
between 0.001 and 0.01 as compared with the CGFS-SU
method, between 0.1 and 0.5 as compared with the Fisher
ratio method, and between 0.01 and 0.3 as compared with the
minimum redundancy maximum relevance method.

5. Conclusion and Future Work

This paper proposed a feature selection approach for robust
gene selection of microarray data. In the proposed method,
a cooperative game theory method is introduced to evaluate
the weight of each feature considering the complex and
inherent relationships among features andQualitativeMutual
Information (QMI) measure is used for more robust feature
selection.The idea used for the stability is to use Fisher ratio as
a utility in calculating QMI. The results on eleven evaluation
microarray data sets show that the proposed method is an
effective and stable method for reducing the dimensions of
data and is able to reach relative improvement as compared
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Figure 44: Stability results for DLBCL.

to the other feature selection methods. As future works, we
propose to calculate the weight of each feature using fuzzy
Shapley value or fuzzy Banzhaf power index.
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