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Relating population-code representations 
between man, monkey, 
and computational models

Nikolaus Kriegeskorte*
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Perceptual and cognitive content is thought to be represented in the brain by patterns of activity 
across populations of neurons. In order to test whether a computational model can explain a 
given population code and whether corresponding codes in man and monkey convey the same 
information, we need to quantitatively relate population-code representations. Here I give a 
brief introduction to representational similarity analysis, a particular approach to this problem. 
A population code is characterized by a representational dissimilarity matrix (RDM), which 
contains a dissimilarity for each pair of activity patterns elicited by a given stimulus set. The RDM 
encapsulates which distinctions the representation emphasizes and which it deemphasizes. 
By analyzing correlations between RDMs we can test models and compare different species. 
Moreover, we can study how representations are transformed across stages of processing and 
how they relate to behavioral measures of object similarity. We use an example from object 
vision to illustrate the method’s potential to bridge major divides that have hampered progress 
in systems neuroscience.
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CURRENT CHALLENGES 
FOR SYSTEMS NEUROSCIENCE
Two major challenges facing systems neuroscience 
today are (1) to relate computational brain the-
ory with its notions of parallel computation and 
population-code representation to the massive 
amounts of spatiotemporal brain-activity data 
that can be acquired with modern techniques 
including functional magnetic resonance imaging 
(fMRI) and invasive electrophysiological record-
ing and (2) to relate brain representations in ani-
mal models (including nonhuman primates) to 
human brain representations.

Perceptual and cognitive content is thought 
to be represented in the brain by patterns of 
activity across populations of neurons. Because 
population codes are combinatorial by nature, 
we need multivariate pattern-information analy-

sis to summarize the distributed evidence (across 
neurons, sites, voxels, or sensors) and reveal the 
information the code carries. Pattern-information 
analysis has recently gained momentum in fMRI 
and electrophysiology (e.g., Haxby et al., 2001; 
Spiridon and Kanwisher, 2002; Carlson et al., 
2003; Cox and Savoy, 2003; Hanson et al., 2004; 
Kriegeskorte, 2004; Mitchell et al., 2004; Haynes 
and Rees, 2005; Hung et al., 2005; Kamitani 
and Tong, 2005; LaConte et al., 2005; Mourao-
Miranda et al., 2005; Polyn et al., 2005; Kamitani 
and Tong, 2006; Kriegeskorte et al., 2006; Tsao 
et al., 2006; Kiani et al., 2007; Kriegeskorte et al., 
2007; Serences and Boynton, 2007; for reviews 
see Haynes and Rees, 2006; Norman et al., 2006; 
Kriegeskorte and Bandettini, 2007). However, 
the popular approach of pattern classifi cation, a 
specifi c variant of pattern-information analysis, 
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resentations (Figure 2) without the need for a 
spatial correspondency mapping (defi ning, for 
example, which neuron corresponds to which 
unit of a computational model). We can correlate 
RDMs to assess to what degree two representa-
tions are related. This allows us, for example, to 
assess which of a range of computational network 
models best fi ts the representation in a given brain 
region. We can also relate representations between 
different brain regions, as well as between dif-
ferent individuals and species. Moreover, we can 
relate different modalities of brain activity meas-
urement (e.g., single-cell recording and fMRI) for 
a given brain representation.

RSA provides a multivariate statistical frame-
work for visualizing and statistically comparing 
dissimilarity matrices, thus quantitatively relat-
ing complex representations between species 
and between brains and models (Figure 2), while 
treating each stimulus and each response chan-
nel as a unique entity. Computational models in 
this technique form an integral component of the 
analysis of brain-activity data. RDMs can be tested 
for relatedness and distinctness using randomi-
zation and bootstrap techniques (Kriegeskorte 
et al., 2008a). A set of RDMs characterizing brain 
regions and various model representations can 
be simultaneously related via second-level appli-
cation of multidimensional scaling (Fig. 9B in 
Kriegeskorte et al., 2008a).

RSA is an extension of pattern-information 
analysis. From pattern-information analysis, RSA 
inherits a sensitivity to fi ne-grained activity pat-
terns and the information they carry. Unlike con-
ventional pattern-information analysis, RSA can 
handle complex stimulus sets without the need to 
average across or group the stimuli. RSA enables 
us to perform experiments with many stimuli, 
while treating each stimulus as a unique entity.

RELATED APPROACHES IN THE LITERATURE
RSA is deeply rooted in the similarity analyses 
of mathematical psychology (e.g., Shepard and 
Chipman, 1970; for an introduction, see Edelman, 
1998). A key technique is multidimensional scal-
ing (Torgerson, 1958; Kruskal and Wish, 1978; 
Shepard, 1980). Laakso and Cottrell (2000) com-
pared representations in hidden units of connec-
tionist networks by correlating the dissimilarity 
structures of their activity patterns. A number of 
studies have applied similarity analyses to brain 
activity patterns (e.g., Edelman et al., 1998; 
Tagaris et al., 1998; Hanson et al., 2004; O’Toole 
et al., 2005; Bressler et al., 2007; Kiani et al., 2007; 
Lehky and Sereno, 2007; Formisano et al., 2008; 
Kay et al., 2008; Tzagarakis et al., 2009). While 
many early studies used similarity analyses as a 

requires the a priori defi nition of stimulus catego-
ries to be “decoded” from the response  patterns. 
Above-chance  decoding accuracy  indicates 
 category information carried by the population 
code. While this approach is very sensitive to small 
amounts of information about membership in 
the predefi ned categories, it does not address 
the two challenges of testing computational net-
work models with brain-activity data and relat-
ing representations between different species. 
Moreover, because the categories are predefi ned, 
this approach does not allow us to discover the 
stimulus dimensions that are best distinguished 
by a population code.

Here I review an alternative pattern- information 
technique that addresses these challenges. The 
technique is called representational similarity 
analysis (RSA; Kriegeskorte et al., 2008a), because 
it uses a continuous pattern-similarity measure 
to assess the similarity structure of the stimuli in 
a given population code. In contrast to pattern-
 classifi er analysis, it can relate brain representa-
tions to other brain representations, as well as to 
computational models and arbitrary multivari-
ate stimulus descriptions, with sensitivity to both 
linear and nonlinear relationships. In contrast 
to more general methods of estimating mutual 
information between stimulus and response pat-
terns (Kraskov et al., 2004), it works well for small 
numbers of stimulus repetitions (the typical sce-
nario in primate studies) and is mathematically 
and computationally very simple.

REPRESENTATIONAL SIMILARITY ANALYSIS
RSA starts by characterizing a given brain rep-
resentation by a dissimilarity matrix of stim-
ulus-evoked activity patterns. For each pair 
of stimuli, the representational dissimilarity 
matrix (RDM) contains an entry refl ecting the 
dissimilarity of the activity patterns associated 
with the two stimuli (Figure 1). Intuitively, an 
RDM describes which distinctions between 
stimuli are emphasized and which are deem-
phasized in a representation. The dissimilarity 
structure can be visualized by arranging the 
stimuli according to response pattern dissimi-
larity, such that stimuli are placed close together 
if they elicited similar response patterns, and far 
apart if they elicited dissimilar patterns. A tech-
nique that computes this type of representation 
is multidimensional scaling.

RDMs can equally be computed from measured 
brain activity patterns (irrespective of the species 
and measurement technique) and from activity 
patterns in computational network models. Using 
the RDM as the signature of each representation 
allows quantitative comparisons between rep-

Population code
A spatial or spatiotemporal pattern 
of brain activity across a population 
of neurons, which is interpreted 
to serve the function of representing 
(“coding for”) something external to 
the brain. The represented entity can be 
an object presently perceived through 
the senses, a remembered or imagined 
object, or an action, such as one that is 
currently in progress or a remembered, 
imagined, or intended action.

Pattern-information analysis
Multivariate analysis technique that 
aims to reveal the information carried 
by a population of neurons. A popular 
variant is pattern-classifi er analysis, 
which attempts to decode the stimulus 
from the response pattern. This 
approach typically requires grouping 
the stimuli into predefi ned categories.

Representational similarity analysis
An extension of pattern-information 
analysis, in which each stimulus 
(or experimentally induced mental 
state) is treated as a unique entity 
and the relationships between all pairs 
of stimulus-evoked activity patterns are 
jointly analyzed to reveal the nature of 
the population code and test competing 
computational or conceptual models.

Representational dissimilarity matrix
A square matrix indexed horizontally 
and vertically by the experimental 
stimuli and containing an entry for 
each stimulus pair, which refl ects the 
dissimilarity of the response patterns 
evoked by the two stimuli. An RDM 
can serve as a signature of a population 
code. It encapsulates which stimulus 
distinctions are emphasized and which 
are deemphasized by the representation. 
Pattern similarity can be characterized 
by either a similarity or a dissimilarity 
measure. We prefer dissimilarity 
measures, because they can be 
interpreted as distances in a space, 
where a distance of 0 indicates identical 
representations.
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KEY FEATURES OF RSA
REVEALING THE FOREST, 
WHILE HONORING THE TREES
A large proportion of neurophysiological studies 
has focused on either single-cell electrophysio-
logical or regional-average fMRI responses. This 
approach is not optimally suited for revealing 
the information content of population codes, 
which are inherently combinatorial and multi-
variate. While single-cell analyses honor the trees 
(the individual neurons), they do not optimally 
reveal the forest in that they can miss weak wide-

data-driven approach to discover the inherent 
dimensions of behavioral and neural data, some 
more recent  studies have used  similarity-based 
methods in more  hypothesis-driven ways to 
relate brain, behavior, and models (e.g., Op de 
Beeck et al., 2001; Kayaert et al., 2005; Aguirre, 
2007; Haushofer et al., 2008; Kriegeskorte et al., 
2008a,b). We have proposed that RSA can serve 
as a general framework for testing computational 
and conceptual models and relating population-
codes between species and measurement modali-
ties (Kriegeskorte et al., 2008a).

Figure 1 | Computation of a representational dissimilarity matrix. For each pair of experimental stimuli, the response 
patterns elicited in a brain region or model representation are compared to determine the stimuli’s representational 
dissimilarity. The dissimilarity between two patterns can be measured as 1 minus the correlation (0 for perfect 
correlation, 1 for no correlation, 2 for perfect anticorrelation). These dissimilarities for all pairs of stimuli are assembled 
in the representational dissimilarity matrix (RDM). Each cell of the matrix then compares the response patterns elicited 
by two images and the matrix is symmetric about a diagonal of zeroes. To visualize the representation, we can arrange 
the stimuli according to response-pattern dissimilarity, such that stimuli are placed close together if they elicited similar 
response patterns and far apart if they elicited dissimilar response patterns. The color of each connection line here 
indicates whether the response-pattern difference was signifi cant (red: p < 0.01; light gray: p ≥ 0.05).
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stimulus classes implies assumptions that can bias 
the results. Classifi er analyses shares this feature 
of predefi ned stimulus classes with the more con-
ventional fMRI approach of analyzing the average 
responses for a small number of stimulus classes 
(typically two to fi ve classes). RSA, in contrast, 
allows us to treat each of a large number of stimuli 
as a unique entity.

EXPLOITING LARGE PARAMETERIZED 
OR UNPARAMETERIZED STIMULUS SETS
Although RSA can be applied to a wide range of 
conventional experimental designs, the benefi ts 
of RSA will be greatest for condition-rich experi-
mental designs, i.e., designs that distinguish a 
fairly large number of experimental conditions. 
In perceptual experiments the conditions will 
typically correspond to stimuli. One way of 
enriching the stimulus set is by systematically 
varying one or a number of stimulus parameters. 
The more stimuli we include in the experiment, 

spread and combinatorially coded information. 
While regional-average responses reveal one 
aspect of the forest (the regional-average activa-
tion level), they do not honor the trees (the fi ne-
grained pattern of activity) and therefore also 
fail to reveal combinatorially coded informa-
tion. By comparing the patterns of activity for 
each stimulus pair, RSA combines information 
across multiple response channels (thus reveal-
ing the forest), but it does not require averaging 
of activity patterns across space or time (thus 
honoring the trees). RSA shares this feature with 
other  pattern- information analyses.

TREATING EACH INDIVIDUAL STIMULUS 
AS A UNIQUE ENTITY
Pattern-information analyses based on multivari-
ate classifi ers reveal population-code information 
by classifying response patterns according to a 
small number (usually 2) or predefi ned stimu-
lus categories. The necessary predefi nition of the 

Figure 2 | Integrated analysis of population codes in man, monkey and models. Humans, monkeys, 
and computational models are presented with the same particular stimulus images so as to obtain representational 
dissimilarity matrices (Figure 1). This allows us to compare the representations between putative functionally 
homologous regions and to test which computational models can explain each brain region’s representation.
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the code carries. Relating the representations 
at the level of the RDMs obviates the need for 
a spatial  correspondency mapping: Since the 
RDMs are indexed (horizontally and vertically) 
by the stimuli, they can be directly compared. In 
an intuitive sense, what we are comparing is the 
represented information, not the activity patterns 
themselves. In particular, RSA can reveal the rela-
tionships between:

• representations in different regions of the same 
brain (“representational connectivity”),

• corresponding brain regions in different 
subjects (“intersubject information”),

• corresponding brain regions in different spe-
cies (e.g., humans and monkeys),

• and different modalities of brain-activity data 
(e.g., cell recordings and fMRI voxels).

ALLOWING TESTS OF CONCEPTUAL 
AND COMPUTATIONAL MODELS
So far computational network models of complex 
brain information processing have typically been 
related to brain-activity data mainly at the level 
of verbal theory. Sometimes neurometric func-
tions with very few parameters are used to make 
a quantitative link. Using brain-activity data to 
directly fi t computational models has been pur-
sued as well, but only for models of lower-level 
single-cell responses, not for network models of 
complex higher-level functions. RSA allows us to 
test complex computational network models by 
means of massive spatiotemporal brain-activity 
data. To this end, a computational model needs 
to be able to process the experimental stimuli 
presented to the subjects, such that its internal 
population code can be characterized by an RDM 
to be compared to the RDM from brain activity. 
Moreover, RSA can also be used to test conceptual 
models that are not computationally specifi ed as 
long as they make predictions as to which stimu-
lus distinctions a population code emphasizes and 
which it deemphasizes. A categorical model, for 
example, might predict that evoked activity pat-
terns are similar within and dissimilar between 
the stimulus categories.

RELATING BRAIN AND BEHAVIOR
RSA can relate population codes to behavioral 
measures of stimulus similarity. The dissimilar-
ity values can come from explicit similarity judg-
ments or from reaction times or confusion errors 
in comparison tasks (Shepard et al., 1975; Cutzu 
and Edelman, 1996, 1998; Edelman et al., 1998; 
Op de Beeck et al., 2001; Kiani et al., 2007). A close 
match between the RDM of a brain region and 

the fewer repeated measurements we will typi-
cally be able to perform for each stimulus. For 
large stimulus sets, the response estimate for 
any single stimulus will be very noisy. However, 
the relationship between stimulus parameters 
and brain activity can be stably estimated by 
combining evidence across stimuli: We simply 
correlate a brain region’s RDM with an RDM 
based on one or multiple stimulus parameters 
(or with an RDM predicted by a computational 
model), so as to obtain a single fi t parameter, the 
correlation between the two RDMs. Note that 
this correlation combines the evidence across 
stimuli and across response channels (e.g., sin-
gle neurons or fMRI voxels). However, response 
patterns are not averaged across either stimuli 
or response channels.

Parameterized designs are ideal for RSA as 
model RDMs can be computed directly from 
the stimulus parameters. A pattern- classifi cation 
approach would require a grouping of the 
stimuli. RSA can naturally handle continuously 
parameterized stimulus sets. However, RSA is 
not limited to either grouped or parameter-
ized stimulus sets. Random stimulus sets can 
be analyzed using computational models (or 
any measured uni- or multivariate stimulus 
descriptions) to provide the reference RDMs. 
The example application described below uses 
an unparameterized design.

OBVIATING THE NEED FOR A SPATIAL 
CORRESPONDENCY MAPPING
Using measured brain-activity patterns to evalu-
ate computational network models is  complicated 
by the need to defi ne the correspondency between 
the units of the model and the channels of the 
brain-activity data, e.g., single-cell recordings. 
A one-to-one mapping between model units 
and data channels may not exist, and even if it 
did it would be diffi cult to defi ne. Similar cor-
respondency problems complicate relating 
activity patterns between different modalities of 
brain-activity measurement (e.g., single neurons 
and fMRI voxels), and between regions within 
a subject and between subjects and species. For 
example, a precise neuron-to-neuron mapping 
is unlikely to exist even between corresponding 
functional regions in two members of the same 
species. At the neuronal scale, we expect represen-
tations to be subject-unique – like fi ngerprints. 
However, population codes in corresponding 
functional regions are nevertheless expected to 
serve the same function – like fi ngers. Although 
sensitive to the fi ne-grained pattern, the RDM 
usefully abstracts from individual coding idi-
osyncrasies and encapsulates the information 
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 dissimilarity  structures are correlated between 
species,  suggesting that IT places visual objects 
in a similar continuous object space in both spe-
cies. IT object similarity was not well accounted 
for by several  computational models designed 
to mimic either low-level or IT-level features 
(Figure 4; Riesenhuber and Poggio, 2002; Serre 
et al., 2005; see also supplement of Kriegeskorte 
et al., 2008b).

We suspect that a computational model would 
have to be explicitly trained to distinguish con-
ventional categories (like the prefrontal stage in 
Serre et al., 2007) or to emphasize semantic fea-
tures (McClelland and Rogers, 2003) in order to 
account for the representational dissimilarities we 
observed in human and monkey IT. Interestingly, 
inconsistencies between the species were also 
apparent. Exploratory RSA suggested a conspe-
cifi c face representation, in which human faces are 
better distinguished by human IT and monkey/
ape faces by monkey IT (Fig. S4 in Kriegeskorte 
et al., 2008b).

Taken together, the pattern-similarity based 
analyses of Kiani et al. (2007) and Kriegeskorte 
et al. (2008b) went beyond previous studies by 
suggesting that the IT representation is inher-
ently categorical in both man and monkey and 
that the inherent category structure matches 
between the species. The results pose a challenge 
to the non-categorical shape-space view of IT. 
Importantly, the RDMs provide rich empirical 
constraints for computational models. The good 
match additionally suggests that similar popula-
tion-code information can be revealed by single-
cell recordings and fMRI when each modality is 
analyzed for multivariate pattern information. 
Moreover, these studies encourage the view that 
the macaque brain might provide an appropri-
ate model of the human brain not only for early 
sensory processing, but also at the higher level 
of categorical object representations. One inter-
pretation is that evolution and individual devel-
opment leave primate IT with representational 
features that emphasize behaviorally important 
categorical distinctions. The major distinctions, 
animate–inanimate and face–body, are so basic 
that their conservation across species appears 
plausible. The interspecies match of both cat-
egory and within-category structure suggests an 
IT code common to human and monkey, which 
combines a categorical and a continuous repre-
sentation of objects.

LIMITATIONS OF RSA
Several limitations deserve consideration 
when applying these methods and interpreting 
their results.

the behavioral  dissimilarity matrix would suggest 
that the regional  representation might play a role 
in determining the behavior measured.

COMBINING DATA- AND HYPOTHESIS-DRIVEN 
ANALYSIS
RSA has a data-driven component, e.g., the visual-
ization of the response-pattern relationships using 
multidimensional scaling. It shares this feature 
with the early similarity analyses of mathemati-
cal psychology, which it is based upon. However, 
RSA becomes distinctly hypothesis-driven when 
 testing computational or conceptual models. 
We can gradually move from the data-driven, 
exploratory pole toward the hypothesis-driven, 
confi rmatory pole by bringing in more and more 
assumptions. Theoretical assumptions can moti-
vate averaging within groups of response patterns 
for more stable estimates. They can also moti-
vate the defi nition of a wide or more restricted 
space of theoretical models that predict RDMs. 
The exploratory pole allows us to discover major 
variance-explaining factors that a confi rmatory 
analysis would have missed. The confi rmatory 
pole grants us greater power to decide between 
models as it benefi ts (at the risk of bias) from the 
strong assumptions made.

EXAMPLE APPLICATION: MATCHING IT 
REPRESENTATIONS IN MAN AND MONKEY
Monkey inferior temporal (IT) cortex used to 
be conceptualized (e.g., Tanaka, 1996) and mod-
eled (e.g., Serre et al., 2007) as a representation 
of a continuous shape space. In the human, by 
contrast, the homologous cortical extent was 
thought to be organized by category. However, 
the categorical structure was assumed in the 
design of the classical human experiments (e.g., 
Kanwisher et al., 1997), rather than discovered 
from the data. Two recent studies (Kiani et al., 
2007; Kriegeskorte et al., 2008b) investigated the 
similarity structure of IT response patterns to 
real-world object images in monkey and human. 
Kriegeskorte et al. (2008b) compared the IT rep-
resentations in the two species using RSA. In the 
humans, the measurements were performed with 
fMRI, in the monkeys with electrode recordings 
(experiment from Kiani et al., 2007).

The comparison revealed a striking match 
between the IT representations in both species 
(Figure 3). Moreover, the representations appear 
inherently categorical in that response patterns 
cluster according to conventional categories. IT 
emphasizes the same major categorical distinc-
tions in both species. The animate– inanimate 
and face–body distinctions explain most vari-
ance. Even within stimulus categories, the 
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Figure 3 | Relating representations between man and monkey. 

(A) Representational dissimilarity matrices for monkey and human IT cortex 
reveal matching representations in the two species. Human data is from 
316 bilateral inferior temporal voxels selected by their visual-object response 
in an independent data set. Monkey data is from 674 IT single cells isolated 
in two monkeys (Kiani et al., 2007). (B) Stimulus arrangements refl ecting 
IT response-pattern dissimilarity in monkey and human with fi ber-fl ow 
visualization of the interspecies relationship. The experimental stimuli have 
been arranged such that their pairwise distances approximately refl ect 
response-pattern dissimilarity (multidimensional scaling, dissimilarity: 
1 minus correlation, criterion: metric stress). The analysis does not presuppose 

any categorical structure, but the arrangement quite cleanly divides animates 
and inanimates as well as faces (including human and nonhuman faces) 
and bodies. Colors code for conventional category: face (red), body (magenta), 
natural object (blue), artifi cial object (cyan). The connecting fi bers serve to 
visually relate individual stimuli between the two arrangements. In addition, 
the thickness of the fi bers can be used to visualize relational statistics. Here 
the thickness of each fi ber refl ects to what extent the corresponding stimulus 
is inconsistently represented in monkey and human IT. The interspecies 
inconsistency of stimulus i is defi ned as (1 − ri)

2, where ri is the correlation 
between the vectors (for human and monkey) of the 91 dissimilarities between 
stimulus i and the other stimuli. For details, see Kriegeskorte et al. (2008b).
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Figure 4 | Testing computational and conceptual models. 
(A) RDMs for three model representations (computed as in Figures 1 and 3). 
Each model predicts a unique similarity structure that can be compared 
to that of an actual brain region. (B) Comparison between the RDM 
for human IT (Figure 3) and a range of models. Each bar indicates the deviation 
between the RDM of human IT and that of a model or other brain region. 
The deviation is measured as 1 minus the Spearman correlation between 
RDMs. Text-label colors indicate the type of representation: neuroscientifi cally 
motivated computational model (blue), naive computational model (black), 
conceptual model (green), brain representation (red). Error bars indicate 

the standard error of the deviation estimate (from bootstrap resampling). 
The number below each bar indicates the p value for a test of relatedness 
between the RDM of human IT and that of the model or other region. 
The black line indicates the noise fl oor, i.e., the expected deviation between 
the empirical reference RDM (with noise) and the underlying true RDM 
(without noise). The light red line indicates the expected retest deviation 
between the RDM for human IT that would be expected if the experiment 
were repeated with different subjects (both matrices affected by noise). 
This analysis has not previously been published, but the method follows 
Kriegeskorte et al. (2008a,b).
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Figure 5 | The representational dissimilarity matrix as a hub 

that relates different representations. A number of representational 
relationships (gray text along the perimeter) can be established 
via the representational signature provided by the RDM. In particular, 
we arbitrarily chose the example of fMRI to illustrate the relationships 
that can be established within a single modality of brain-activity 
measurement: subject-to-subject, region-to-region, and human-to-monkey. 

Note that all these relationships are diffi cult to establish otherwise 
(gray double arrows). Dissimilarity matrices can also be used to characterize 
behavior (not shown), using explicit dissimilarity judgments, confusion 
frequencies, or choice reaction times. RSA thus promises to contribute 
to a more quantitative integration of the three major branches of systems 
neuroscience: behavioral experimentation, brain-activity measurement, 
and computational modeling.
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However, the particular problem of relat-
ing population codes in a pattern- similarity 
framework deserves further attention. 
Basic statistical inference on the relatedness 
between two RDMs can be performed using 
a randomization test (e.g., Kriegeskorte et al., 
2008a) and random-effects inference based 
on descriptive RSA results for each subject 
is straightforward. However, more complex 
statistical methods remain to be developed or 
adapted for brain-activity data, for example 
frequentist and Bayesian methods for com-
paring relative RDM fi ts of several models.

CONCLUDING REMARKS
The key idea of RSA is to relate different popula-
tion codes by comparing their RDM signatures. 
Making the link at the level of the RDMs com-
bines three attractive features: (1) the RDM is a 
conceptually well-motivated summary descrip-
tion that abstracts from coding idiosyncrasies of 
individual brains or models to encapsulate what 
the population code “cares” about, (2) despite 
summarizing across the activity pattern, the 
RDM is an information-rich signature of the 
population code [e.g., 96 × (96 − 1)/2 = 4560 
entries for 96 stimuli], (3) since RDMs are 
indexed by the stimuli they can be directly 
compared, thus obviating the need for a spatial 
correspondency mapping between the activity 
patterns in brains and models or in different 
regions or species. For these reasons, the RDM 
can serve as a hub that relates  representations 
from a wide variety of sources (Figure 5). These 
features suggest that RSA can contribute to a 
more integrated systems neuroscience, where 
representations are quantitatively related 
between regions, individuals, and species, and 
where computational models form an integral 
component of data analysis so as to help us 
understand both content and computation of 
neuronal population codes.
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(1) RSA abstracts from the selectivities of indi-
vidual measured channels (e.g., neurons or 
voxels) so as to reveal the information in the 
population code. To what extent the informa-
tion is concentrated in a few highly selective 
channels or distributed over the investigated 
brain region is a question that requires com-
plementary analyses.

(2) RSA covers a wide spectrum between 
data-driven (e.g., stimulus arrangements from 
multidimensional scaling) and hypothesis-
driven analyses (e.g., testing a computational 
model by checking if its predicted RDM fi ts 
the data). At the hypothesis-driven end, it can 
be used to test if stimuli from two predefi ned 
categories elicit the same or different response 
patterns – thus addressing the same concep-
tual question as pattern-classifi er analysis. The 
reference RDM in this case would contain a 
0 for all pairs of stimuli in the same category 
and a 1 for all pairs in different categories. 
The RDM correlation would then essentially 
address if response patterns elicited by stimuli 
in different categories tend to be more differ-
ent. However, this might be a less sensitive 
method of detecting subtle category informa-
tion (e.g., in the sense of linear separability) 
than classifi er analysis.

(3) RSA requires the choice of a pattern-
 dissimilarity measure. Several studies sug-
gest that correlation distance works well 
in practice (Haxby et al., 2001; Kiani et al., 
2007; Kriegeskorte et al., 2008a). Correlation 
distance is insensitive to differences of the 
spatial-mean activity level and the vari-
ability of the activity across each activity 
pattern. Alternative dissimilarity measures 
include the Euclidean distance, the abso-
lute spatial-mean activation difference, and 
more complex measures like the Mahalanobis 
distance, or the pairwise discriminatory 
information. The appropriate interpreta-
tion of the results will depend on the chosen 
dissimilarity measure.

(4) There is a rich literature on mathematical 
methods for analyzing similarity data (e.g., 
Borg and Groenen, 2005) and statistical 
learning techniques rely on closely related 
concepts (e.g., Schölkopf and Smola, 2002). 
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