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ABSTRACT Induction of broadly cross-reactive antiviral humoral responses with the
capacity to target globally diverse circulating strains is a key goal for HIV-1 immuno-
gen design. A major gap in the field is the identification of diverse HIV-1 envelope
antigens to evaluate vaccine regimens for binding antibody breadth. In this study,
we define unique antigen panels to map HIV-1 vaccine-elicited antibody breadth
and durability. Diverse HIV-1 envelope glycoproteins were selected based on genetic
and geographic diversity to cover the global epidemic, with a focus on sexually ac-
quired transmitted/founder viruses with a tier 2 neutralization phenotype. Unique
antigenicity was determined by nonredundancy (Spearman correlation), and anti-
gens were clustered using partitioning around medoids (PAM) to identify antigen di-
versity. Cross-validation demonstrated that the PAM method was better than selec-
tion by reactivity and random selection. Analysis of vaccine-elicited V1V2 binding
antibody in longitudinal samples from the RV144 clinical trial revealed the striking
heterogeneity among individual vaccinees in maintaining durable responses. These
data support the idea that a major goal for vaccine development is to improve anti-
body levels, breadth, and durability at the population level. Elucidating the level and
durability of vaccine-elicited binding antibody breadth needed for protection is criti-
cal for the development of a globally efficacious HIV vaccine.

IMPORTANCE The path toward an efficacious HIV-1 vaccine will require characteriza-
tion of vaccine-induced immunity that can recognize and target the highly geneti-
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cally diverse virus envelope glycoproteins. Antibodies that target the envelope gly-
coproteins, including diverse sequences within the first and second hypervariable
regions (V1V2) of gp120, were identified as correlates of risk for the one partially ef-
ficacious HIV-1 vaccine. To build upon this discovery, we experimentally and compu-
tationally evaluated humoral responses to define envelope glycoproteins representa-
tive of the antigenic diversity of HIV globally. These diverse envelope antigens
distinguished binding antibody breadth and durability among vaccine candidates,
thus providing insights for advancing the most promising HIV-1 vaccine candidates.

KEYWORDS humoral immunity, antibody, antigenicity, vaccine, HIV-1, diversity,
durability

HIV-1 has substantial genetic variability, with nine genetic subtypes (subtypes A to
H and J) and an increasing number of circulating recombinant forms (CRF01 and

CRF02) that differ in prevalence across geographic locations (1). A major goal for
development of an efficacious global HIV-1 vaccine is the elicitation of humoral
immune responses with substantial cross-clade coverage. Only one of the six HIV-1
efficacy trials to date (2) was partially efficacious (3), and correlates of HIV-1 infection
risk were binding antibody responses to the HIV-1 envelope glycoprotein (4). V1V2-
specific IgG antibodies correlated inversely with infection risk, and certain envelope
glycoprotein specificities of IgA correlated directly with infection risk in the RV144 trial
(3–6). V1V2 IgG binding antibodies were not broadly neutralizing but were capable of
multiple antiviral functions, such as antibody-dependent cellular cytotoxicity (ADCC),
virion capture, antibody-dependent phagocytosis, and tier 1 neutralization (7–9), and
were associated with coordinated Fc-mediated effector functions (6, 10). The RV144
vaccine regimen induced cross-clade breadth that was part of the immune correlates
analyses (4, 11–13), highlighting the need to develop standard antigen panels to
evaluate new vaccine candidates for improved breadth of immunity (14).

Effective vaccine-induced humoral immunity is targeted to sites of vulnerability on
the HIV-1 envelope glycoprotein, present on virus particles and/or infected cells. These
include epitopes that are the targets for either broadly neutralizing antibodies (bNAbs)
or non-bNAbs (15, 16) (i.e., antibodies that target epitopes including the CD4 binding
site [CD4bs], conformational C1/C2, V1V2 glycan, the V1V2 integrin binding motif [V2i],
V3/V4 glycan, gp120/gp41 interface, and the membrane-proximal external region
[MPER] and the immunodominant [ID] region of gp41). The number of different
vulnerable regions on the HIV-1 glycoprotein provides opportunities for diverse vaccine
strategies to be effective. However, the diversity among HIV-1 isolates presents a
challenge for vaccine candidates that aim to broadly target diverse circulating trans-
mitted/founder (T/F) HIV-1 strains (17).

Selected HIV-1 envelope glycoprotein and V1V2 antigen panels that adequately
represent HIV-1 global diversity, independent of subtypes, would substantially benefit
vaccine development. These selected antigen panels would enable rigorous and stan-
dardized cross-protocol comparisons among preclinical and clinical vaccine candidates
to assess vaccine-induced binding breadth. Well-characterized virus panels to assess
neutralization breadth have been developed (18–21); however, there are no well-
characterized envelope glycoproteins representing global HIV diversity designed for
evaluation of vaccine-elicited binding antibody responses. Here, we first sequence
selected and characterized an initial large set of antigens (multiclade panel of HIV-1
envelope glycoprotein antigens as gp120 and oligomeric gp140 proteins, V1V2 anti-
gens, and V2 hot spot peptides) for down-selection to an optimal panel of antigens that
provide broad coverage to map antibody responses with minimal redundancy. With
these global antigen panels, HIV-1 vaccine-elicited antibody breadth and durability
were then evaluated to determine the coverage of global circulating strains over time
after immunization.
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RESULTS
HIV-1 envelope glycoprotein selection. In order to down-select an optimal panel

of antigens that provide broad coverage of antibody responses with minimal redun-
dancy, we determined the uniqueness of each antigen for representing diverse immu-
nological space across combined sample sets. Envelope gp120 and gp140 antigens (12
clade A, 12 CRF01_AE, 26 clade B, 30 clade C, 3 CRF07_BC, and 2 group M consensus)
as well as V1V2 antigens (4 clade A, 8 CRF01_AE, 13 clade B, 14 clade C, and 3
CRF07_BC) were produced. The antigenicity of these HIV-1 proteins (Fig. 1A to D and
2A to E) was determined using samples from human and nonhuman primate vaccine
protocols, a panel of HIV-1 monoclonal antibodies (MAbs), and plasma and purified IgG
from HIV-1-positive subjects representing multiple HIV-1 clades (22). Samples from
multiple origins were used to provide broad coverage of antibody responses from both
infection and vaccination across subtypes. Samples from HIV-1 vaccinees and infected
individuals show cross-clade reactivity to gp120/gp140, and sera from infected subjects
overall had higher levels of IgG specific for gp120 and gp140 than sera from vaccine
recipients (Fig. 1A). In fact, based on RV144 responses, all Env gp120 and gp140
proteins exhibit a highly significant ability to detect a vaccine-induced response (mean
fluorescence intensity [MFI] difference ranged from an MFI of 115 to an MFI of 32,200;
P values of �10�8) compared to that of placebo; therefore, none of the antigens were
excluded from consideration based on the requirement for detecting vaccine-elicited,
Env-specific binding antibodies. Purified IgG from the Neutralization Serotype Discov-
ery Project (NSDP) (22) subjects show broad reactivity to the Env gp120/gp140 panel
(Fig. 1B). We also determined antigenicity of the Env gp120/gp140 panel with a
monoclonal antibody (MAb) panel made up of antibodies reactive to gp41, glycans,
CD4bs, V2, V3, and C5 as well as purified IgG from six HIV-1-positive subjects. This panel
of MAbs with various specificities demonstrated broad reactivity against the gp120 and
gp140 Env panels (Fig. 1C). Human and nonhuman primate (NHP) vaccinee and
HIV-1-positive sera also showed cross-clade IgG reactivity to the V1V2 antigen panel
(Fig. 2A), where reactivity to CRF01_AE strains appeared to be highest. The NHP sera
also tended to show higher reactivity to the V1V2 panel than sera of the human
vaccinees, despite being tested at a higher dilution factor (1:80 for NHP versus 1:40 and
1:50 for human). IgG3 from human vaccinee and NSDP sera showed less cross-clade
reactivity against this panel, where clade CRF01_AE appeared to be the most antigenic
(Fig. 2B). Purified IgG from HIV-1-positive patients (Fig. 2C), as well as the V2-specific
MAb panel (Fig. 2D), showed reactivity across clades. The difference in magnitudes was
significantly higher (difference ranged from an MFI of 76 to an MFI of 28,800; P values
of �10�4) in the RV144 vaccine recipients than in the placebo recipients for all V1V2
antigens; therefore, none of the 42 V1V2 antigens were removed from consideration for
down-selection based on that criterion. Spearman correlations of the IgG binding
response magnitudes for paired Env gp120 and gp140 (Fig. 1D) and V1V2 (Fig. 2E)
antigens within each subtype and also for pairs of antigens with mismatched subtype
indicate that they are diverse and unique envelope proteins. The initial selection of the
envelope sequences was based on sequence diversity, so the paucity of data points
above 0.85 is confirmation that the underlying antigen set for this project was sub-
stantially diverse.

To down-select panels of antigens such that each covers unique immunological
space, clustering of the binding magnitude data of all antigens was based on Spearman
correlations using the method of partitioning around the medoids (PAM) (Fig. 3A and
B). We selected the medoids, or central points, of the clusters generated by the PAM
algorithm. An additional criterion was to maximize subtype and geographic diversity in
the panels; thus, in some cases, an alternate to the medoid was selected to improve
cross-clade and/or geographic diversity. Figure 3A shows the PAM cluster heat map for
the Env gp120 and gp140 proteins across all sample sets, where 17 clusters were used
to generate gp120 and gp140 Env panels (Table 1). For purposes of antigen production,
51802.gp120 replaces the gp120 cluster 5 medoid envelope 191084.gp120. For gp140,
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nine clusters were used to generate a total of eight down-selected antigens. The
medoids of the singleton clusters 5 and 8 (denoted with an asterisk) were not selected
and were replaced by the cluster 3 antigen CH505TF and the cluster 9 antigen WITO,
respectively. For purposes of antigen production, RHPA4259 replaces the gp140 cluster
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FIG 1 Broad range of Env gp120/gp140 panel reactivity to HIV-1 antibody positive plasma/sera. Samples from the NSDP serum panel (purple), RV144 at wk 26
(green), and HVTN 096 at week 26 (orange) (A), purified IgG from NSDP subjects (B), and HIV-1 MAbs of various specificies as indicated in the legend (C) were
tested for IgG binding to Env gp120 and Env gp140 proteins using BAMA. Points are the median values by subject or MAb for the set of antigens within a clade.
Box plots show the 25th percentile (lower edge of the box), 50th percentile (horizontal line in the box), and 75th percentile (upper edge of the box). Whiskers
extend out from the box to the most extreme data point, which is no more than 1.5 times the interquartile range from the box. (D) Spearman correlations
between gp120 and gp140 antigens indicate diverse and unique envelope proteins. Spearman correlations (combined data from RV144, HVTN 096, NSDP, and
MAb) are shown for pairwise correlations within each subtype and then for pairs of antigens with mismatched subtype. The paucity of data points above 0.85
demonstrates that the initial antigen panel is highly diverse and nonredundant. AUC, area under the concentration-time curve; EC50, 50% effective
concentration.
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1 medoid B.63521. A heat map of the PAM clusters of V1V2 antigens is shown (Fig. 3B)
where 14 clusters were used to generate the V1V2 antigen panel. An alternative in
cluster 5 was selected to add a clade A from Uganda (replaced CRF01_AE from China).
Additionally, three vaccine strains were included in the panel of 16 V1V2 antigens
(Table 1), one of which was selected as a medoid of the singleton cluster 6 (96ZM651
[Zambia, cluster 6]). TV-1 (South Africa) and 1086 (Malawi) were added due to their
inclusion in current and upcoming vaccine trials. Individual antigen names are show in
Fig. S1 and S2 in the supplemental material.

Cross-validation. Next, we utilized a cross-validation method to determine the size
of the eventual down-selected panel. Cross-validation tested whether the PAM selec-
tion method was optimal compared to random selection or selection by reactivity
(most, least, or spectrum) for the Env gp120/gp140, V1V2, and V2 peptide panels (Fig.
3C to E). For all panel sizes examined (K � 1 to 20), the PAM algorithm for selecting a
panel performed better than the comparator selection methods (n � 1 [Fig. 3C to E];
n � 6 [data not shown]). Utilizing the PAM selection method and cross-validation (Fig.
3C), 8 gp120 and 8 gp140 envelope proteins were chosen; the panel size K � 8 was
based on the cross-validation analysis. These envelope proteins comprise subtypes A,
CRF01_AE, B, CRF07_BC, and C from diverse geographic regions and include circulating
T/F strains (Table 1). The 16 down-selected V1V2 antigens are shown in Table 1. These
V1V2 antigens cover subtypes AE, A, B, BC, and C from diverse geographic regions. The
cross-validation method allowed selection of an antigen panel size that was a balance
between panel size and our ability to represent the diversity of circulating virus strains.
Phylogenetic trees were created for the Env gp120 antigens (Fig. 4A), Env gp140
antigens (Fig. 4B), and gp70 V1V2 antigens (Fig. 4C). These trees show considerable
sequence diversity for all of the proteins tested as well as the down-selected antigens
(Fig. 4, in bold).

Linear V2 IgG. Since IgG responses to a linear V2 hot spot correlated with decreased
risk of HIV-1 infection in the RV144 trial (23), we also evaluated a series of cross-clade
V2 peptides for utility in assessing linear V2 IgG breadth. Thirty-eight of 59 V2 peptides
reacted positively to samples from vaccinated participants while none of the placebo
samples were positive to any of the V2 peptides. Therefore, only the 38 peptides with
at least some vaccine-induced positive reactivity were included in the down-selection
process. Thirty-one V2 peptides with at least one positive responder in HIV-1 vaccinees
(n � 77) were considered for the PAM clustering algorithm. The PAM analysis also was
used to select 12 V2 peptide sequences of multiple clades (Table 2). Five down-selected
V2 peptides had low (median MFI �100) but detectable vaccine-induced reactivity (test
for an increase in MFI over baseline was significant, and none of the V2 peptides had
positive responses in the 18 RV144 placebo samples tested). One of these V2 peptides,
RV144_V2_B, had a 42.9% response rate in the combined RV144 and HIV Vaccine Trials
Network (HVTN) 096 sample set. The highest response rates and median MFI were to
subtype C 1086 V2 peptide and subtype AE C3347. The down-selected V2 peptides,
despite low reactivity for some peptides, may be important for detecting greater
cross-clade responses in future vaccine regimens to compare to the vaccine regimens
tested here. The 12 down-selected V2 sequences, in concert with five additional
subtype-specific V2 sequences (e.g., AE peptide RV144_V2_AE that correlated with
decreased risk of HIV-1 infection in RV144 and four clade C V2 peptides for

FIG 2 Legend (Continued)
for IgG3 binding to Env V1V2 proteins by BAMA. The MFI at the lowest dilution factor for each sample set for NSDP (1:40), RV144 (1:40),
and HVTN 096 (1:40) is shown. (C) Purified IgG from NSDP subjects were tested for binding to Env V1V2 proteins by BAMA. Values for
the area under the curve (AUC) of titrated IgG are shown. Points are the median value by subject or MAb for the set of antigens within
a clade. Box plots show the 25th percentile (lower edge of the box), 50th percentile (horizontal line in the box), and 75th percentile
(upper edge of the box). Whiskers extend out from the box to the most extreme data point, which is no more than 1.5 times the
interquartile range from the box. (D) Purified V1V2-specific MAbs were tested for binding to Env V1V2 by BAMA. Fifty percent effective
concentration (EC50) titers of titrated IgG are shown. (E) Spearman correlations based on combined data from RV144 (IgG and IgG3),
HVTN 096 (IgG and IgG3), NSDP (IgG and IgG3), AUP 512 (IgG), and HIV-1 MAbs are shown for pairwise correlations within each subtype
and then for pairs of antigens with mismatched subtypes.
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additional coverage of clade C diversity, i.e., CAP45_2V2, 1086C V2, DU156_12V2,
and 706101641A7 V2), have value in assessing V2 IgG diversity elicited by HIV vaccines.

Diverse epitope exposure of HIV-1 envelope and V1V2 glycoproteins. To probe
the epitope exposure of the selected envelope glycoproteins, monoclonal antibodies
with defined specificities were utilized to characterize antigenicity of the gp120, gp140
(Fig. 5A), and V1V2 envelope glycoproteins (Fig. 5B). These MAbs were generated from
HIV-1-infected individuals (including broad neutralizers) and from vaccinees (including
V2i-specific MAbs representative of the RV144 antibody correlate) (4, 12, 24). Most of

1

2

3

4

5

6

7
8

1

2

3
4

6

7

9

+

5*

8*

gp
12

0
gp

14
0

M A B C CRF01_AE CRF07_BC

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

*

+

+

+

A B C CRF01_AE CRF07_BC

0.2 0.4 0.6 0.8 1.0

B

1 3 5 7 9 11 13 15 17 192 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1.0

PAM method
Most reactive
Least reactive
Spectrum of reactivity
Random selection

C

M
ea

n 
ad

ju
st

ed
 R

−
sq

ua
re

d

Panel Size (K)

1 3 5 7 9 11 13 15 17 19 21 23 252 4 6 8 10 12 14 16 18 20 22 24

0.4

0.5

0.6

0.7

0.8

0.9

1.0

PAM method
Most reactive
Least reactive
Spectrum of reactivity
Random selection

D

M
ea

n 
ad

ju
st

ed
 R

−
sq

ua
re

d

Panel Size (K)

1 3 5 7 9 11 13 15 17 192 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1.0

PAM method
Select 1 (each cluster)
Random Selection

Panel Size (K)

M
ea

n 
A

dj
us

te
d 

R
−

sq
ua

re
d

E

FIG 3 Heat map of PAM clusters of envelope and V1V2 antigens and cross-validation. (A) Heat map of gp120 and gp140 envelopes. Gray bars to the left
show 17 clusters with expected differential clustering of gp120 and gp140 antigens. The medoid or a representative(s) of each cluster is numbered,
forming the antigen panel for each antigen class (gp120 and gp140). The medoid number that matches the antigen name is indicated in Table 1. Color
bars at the top and to the right indicate the clade of each antigen. Antigens are grouped by class and then by PAM cluster. Most clusters were dominated
by a single clade, but there was mixing (data not shown), with considerable diversity among antigens. Medoids of singleton clusters 5 and 8 (marked with
asterisks) for gp140 were replaced by cluster 3 antigen CH505TF (marked with a plus sign) and cluster 9 antigen WITO, respectively, for the down-selected
gp140 panel. (B) Heat map of PAM clusters of V1V2 across sample sets. Color bars at the top and to the right indicate the clade of each antigen. The medoid
of each cluster is numbered and listed as the top antigen. The cluster 5 alternate and nonmedoid vaccine strains are labeled with plus signs. The cluster
5 medoid is marked with an asterisk. (C to E) Cross-validation plots for gp70 V1V2 (C), Env gp120 and gp140 (D), and linear V2 (E) for determination of
panel size for each antigen type. Cross-validation determined that the PAM selection method is better than either random selection or selection by
reactivity (most, least, or spectrum). All panels are based on the n � 1 cross-validation approach.
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the Env gp120 proteins (the eight-antigen panel as well as the vaccine panel and
consensus gp120) bind to bNAbs and non-bNAbs specific for the CD4bs, carbohydrate
moieties, V2i, V3 crown, and V3 glycans, suggesting that these structures are exposed
and antigenic on gp120. Likewise the eight-antigen gp140 panel and the consensus
gp140 panel show even greater levels of binding to MAbs specific for these epitopes
and also, with the exception of Con S gp140 (which has a deleted gp41 immunodom-
inant region), bind very well to antibodies against the gp41 immunodominant region,
and some show binding to the gp41 MPER bNAb, 2F5. Notably, the V2q MAbs (PG16,
PG9, and CH01 MAbs) showed weak and/or limited binding to all of the panels (Fig. 5A),
while V2i MAbs (830A and 2158 MAbs) showed strong cross-clade binding to the panel
they were tested against: the V1V2 antigen panel (Fig. 5B). The antigenic diversity
intrinsic to the selection of these V1V2 antigens allowed a range of binding reactivities
to both broadly neutralizing and non-broadly neutralizing antibodies. Antigenicity of
the HIV-1 gp120 envelope proteins was determined by surface plasmon resonance
(SPR) with a panel of MAbs recognizing the CD4 binding site, the V3 crown, V3 glycan,
conformational C1-C2 region, and V2i and V2p (Fig. 5C). The envelope gp120 proteins
display a diversity of recognition by these MAbs. Although all are recognized by C1-C2
conformational and V3-glycan MAbs, A244 has the best antigenicity for the V2p MAb

TABLE 1 Down-selected Env gp120 and gp140 antigens and down-selected V1V2 antigens

Antigen group or name Medoid Subtype Country of origin
Gender of
source

Mode of transmission
or contact

Fiebig
stage(s)c Year

gp120 Enva

51802_D11gp120 5 A Kenya Male Homosexual I 2009
A244 D11gp120 6 CRF01_AE Thailand Male Homosexual VI 1990
254008_D11gp120 7 CRF01_AE Thailand Male Homosexual II 2009
BORI_D11gp120 1 B USA Male Homosexual II 1990
TT31P.2792_D11gp120 3 B Trinidad/Tobago Female Heterosexual II 1998
B.6240_D11gp120 8 B USA Male Unknown II 1995
CNE20_D11gp120 2 CRF07_BC China (Xinjiang) Unknown Heterosexual VI 2007
BJOX002_D11gp120 4 CRF07_BC China (Beijing) Male Intravenous drug use I-II 2007

gp140 Enva

9004S.gp140C 4 A Uganda Female Heterosexual IV 2007
AE.01.con_env03 gp140CF 6 Consensus AE
SC42261_gp140 7 B Trinidad/Tobago Male Heterosexual IV 1995
WITO4160.gp140C 9 B USA Male Heterosexual II 2000
RHPA4259_C7.gp140C 1 B USA Female Heterosexual I-IV 2000
1086C gp140C 2 C Malawi Male Heterosexual I-II 2004
C.CH505TF_gp140 3� C Malawi Male Heterosexual IV 2008
BF1266_gp140C 3 C Malawi Unknown Breastfeeding I-II 2002

V1V2 Envb

gp70-191084_B7 V1V2 5� A Uganda Female Heterosexual IV 2007
gp70-C2101.c01_V1V2 3 CRF01_AE Thailand Female Heterosexual ND 1999
gp70-CM244.ec1 V1V2 4 CRF01_AE Thailand Male Heterosexual VI 1990
gp70-700010058 V1V2 1 B USA Male Unknown III 2006
gp70-RHPA4259.7 V1V2 11 B USA Female Heterosexual I-IV 2000
gp70-62357.14 V1V2 12 B USA Male Unknown II 1996
gp70_B.CaseA_V1_V2 13 B USA Male Homosexual VI 1988–1989
gp70-TT31P.2F10.2792 V1V2 14 B Trinidad/Tobago Female Heterosexual II 1998
gp70-BJOX002000.03.2 V1V2 7 CRF07_BC China (Beijing) Male Intravenous drug use I-II 2007
gp70-7060101641 V1V2 2 C South Africa Male Heterosexual III 2007
gp70-Ce1086_B2 V1V2 4� C Malawi Male Heterosexual I-II 2004
gp70-96ZM651.02 V1v2 6 C Zambia Male Unknown VI 1996
gp70-001428.2.42 V1V2 8 C India Female Heterosexual IV 2000
gp70-CAP210.2.00.E8 V1V2 9 C South Africa Female Heterosexual IV 2005
gp70-BF1266_431a_V1V2 10 C Malawi Unknown Breastfeeding I-II 2002
gp70-TV1.21 V1V2 13� C South Africa Male Heterosexual VI 1998

aDown-selected Env gp120 and gp140 antigens: 8 gp120 and 8 gp140 envelope proteins were down-selected by the PAM analysis and cross-validation. These
envelope proteins comprise subtypes A, AE, B, BC, and C from diverse geographic regions and include circulating T/F strains.

bDown-selected V1V2 antigens: 16 V1V2 antigens were down-selected based on the PAM analysis and cross-validation. These V1V2 antigens cover subtypes AE, A, B,
BC, and C from diverse geographic regions.

cND, not determined. �, antigen selected as alternative to cluster medoid.
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from the RV144 clinical trial (i.e., CH58 MAb), consistent with previous results (25), and
TT31 and 6240 gp120 Env have the best antigenicity among this panel for CD4bs MAbs.
The diverse antigenic characteristics of this panel will enable evaluation of immune sera
for multiple epitope specificities.

Distinct vaccine-elicited binding antibody breadth. We previously demonstrated
that V1V2 IgG3 correlated with decreased HIV-1 risk (5) and that the V1V2 IgG antibody
breadth was a component of the RV144 immune correlate of risk (12). Here, we
assessed whether total IgG and IgG3 antibody responses to the down-selected V1V2
envelope proteins were significantly different between the one partially efficacious
vaccine regimen, RV144, and a nonefficacious vaccine regimen, VAX003, that contained
the same protein immunogens (Fig. 6). For V1V2 total IgG responses, additional protein
immunization in VAX003 increased the breadth of the V1V2 IgG responses greater than
the V1V2 IgG response of RV144 (Fig. 6A). In contrast, the V1V2 IgG3 breadth response
was lower in VAX003 after both protein immunizations, with evidence of continued
protein boosting driving down the V1V2 IgG3 response (Fig. 6B).
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Heterogeneity of V1V2 IgG durability. We next evaluated the utility of the V1V2
panel in assessing the durability of a vaccine-elicited response in RV144. Samples
from weeks 0, 26, 52, 78, 104, 130, 156, and 182 were tested for total IgG specific
for 42 V1V2 antigens, and durability of these responses was evaluated at each time
point from week 52 to week 182. At the peak of the response (week 26), IgG
responses to V1V2 showed cross-clade binding, with the highest response magni-
tude directed toward CRF01-AE V1V2 proteins (Fig. 7A). IgG responses to CRF01-AE
V1V2 antigens tended to be higher than baseline responses for each visit from
weeks 52 to 182 in contrast to IgG responses to V1V2 antigens from other clades,
as shown by the longitudinal fold change (Fig. 7B). This pattern is likely due to the
presence of CRF01-AE immunogens in the canarypox ALVAC prime and protein
boost. A similar pattern is also reflected in the IgG responses to the 16 down-
selected V1V2 antigens listed in Table 1 at week 26 (Fig. 7C and D). Longitudinal
fold change across all 42 V1V2 antigens for each subject was calculated and plotted
in rank order (Fig. 8A), and a dichotomy of V1V2 IgG response durability was
observed at a durability score of 1.25. Also shown are the differences in response
magnitudes over time between those with a high durability score (i.e., greater than
1.25) (Fig. 8B) and a low durability score (i.e., less than 1.25) (Fig. 8C).

Finally, we evaluated the correlation between various summary measures (baseline
visit MFI, peak MFI, longitudinal fold change, and fold drop) from the IgG V1V2
responses in RV144 vaccinees. Pairwise scatter plots of geometric mean MFI responses
from 42 V1V2 antigens across vaccinees (Fig. 7D) show that peak MFI and longitudinal
fold change are highly correlated (R � 0.85). Peak MFI also correlates well with fold
drop (R � 0.94), and longitudinal fold change correlates well with fold drop (R � 0.79).
Baseline MFI values, although not highly correlated, indicate a weak relationship with
peak, longitudinal fold change, and fold drop (R � 0.40 to 0.63). These same predictive
patterns for all four summary measures are also found with the IgG responses observed
to the 16 down-selected V1V2 proteins. To determine whether the durability of the
V1V2 IgG response was related to the overall antibody response to the vaccine strain

TABLE 2 Down-selected V2 peptides

V2 peptide namea Subtype
Country of
origin Sequence Median MFI (range)f Significanceg

Response
rate (%)h

06RUSPR163IorII3 V2 A Russia LRDKRKTVHSLFYKLDIVSM <100 (<100, 461.5) *** 18.2
191084_B7 V2 A Uganda LRDRKKKVNALFYKLDIVQI <100 (<100, 1,794.8) ** 9.1
9004SS V2 A Uganda VRDKKQKVYSLFYKLDVVPI 539.2 (<100, 19,049.5) ** 22.1
RV144_V2 AE AE Consensusd,e TELRDKKQKVYALFYKLDIVQ 263 (�100, 10,414.5) *** 65.8
C3347.c11 V2 AEb Thailand LKDKKQKVHALFYKLDIVPI 4,042 (106.5, 26,312.8) *** 66.2
254006P00Ra V2 CRF01_ AE Thailand LRDKKKKVHALFYKLDIVSI 154.8 (<100, 2,390.5) *** 59.7
RV144_V2_B B Consensusd TSIRDKVQKEYALFYKLDVVP <100 (<100, 1,778.8) *** 42.9
WITO4160.33 V2 B United States IRDKIQKEYALFYKLDIVPI <100 (<100, 1,372.5) * 3.9
REJO4541.67 V2 Bb United States PRDKIQKEYAIFYKQDVVPI 1,457.5 (<100, 28,982.0) * 10.4
BF1266 V2 C Malawi IKDKKKKENALFYRLDVVPL 164.5 (<100, 14,228.5) * 18.2
Ce704010042_2E5 V2 C South Africa LRDKKQRVHALFYRLDIVPL 182.6 (<100, 2,974.5) *** 52.6
RV144_V2_C C Consensusd TEIRDKKQKVYALFYRLDIVP 104.8 (<100, 12,080.0) *** 48
1086C V2 C Malawi LKDKKHKVHALFYKLDVVPL 1,375.5 (�100, 15,841.8) *** 73.7
CAP45_2 V2 C South Africa LRDKKQKAYALFYRPDVVPL 639 (�100, 23,388.8) ** 19.5
Du156_12 V2 C South Africa LRDKKQKVYALFYRTDVVPL 243 (�100, 14,130.8) ** 22.1
7060101641A7 V2 C South Africa IRDKKHKVQALFYKLDIVPL 184.8 (�100, 8,749.8) ** 23.4
96ZM651 V2 Cc Zambia LKDKKKNVYALFYKLDIVSL <100 (<100, 119.5) * 2.6
aThe PAM analysis selected 12 V2 peptides (in bold).
bNAb reference strain.
cVaccine strain.
dConsensus peptides are described in references 23 and 68.
eThe RV144_V2 AE peptide and four subtype C antigens that correlated with decreased risk of HIV-1 infection in RV144 (4, 23) have been included as part of the
panel.

fReactivity of each peptide is shown by the median and range of MFI values at peak time points across 77 HVTN096 and RV144 vaccine recipients.
gSignificance codes for P values from one-sided Wilcoxon signed-rank test of the null hypothesis that the MFI values were unchanged after vaccination versus the
alternative that the MFI values increased are as follows: *, P value between 0.01 and 10�5; **, P value between 10�5 and 10�9; ***, P value less than 10�9.

hThe response rate is based on positivity, defined as a 3-fold increase in the peak value compared to the baseline response (blank-subtracted MFI value) and a
threshold of 100.
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A244 gp120, the RV144 vaccine immunogen, a Spearman correlation (Fig. 7E) was
performed. Vaccinees with a high V1V2 durability score were significantly more likely to
have higher durability of the A244 gp120 response than vaccinees with a low V1V2
durability score (Fig. 7E). Differences in V1V2 IgG response durability were not depen-
dent on gender, where 42% of women were in the high group versus 32% of men (P �

0.74, Fisher’s exact test). When stratified by age, there was also no significant effect on
durability (�20 versus 21 to 25 versus �26 years of age; P � 0.63, Cochran-Armitage
trend test). The heterogeneity among vaccinees in the vaccine-elicited antibody dura-

FIG 5 Antigenicity of selected gp120, gp140, and V1V2 antigens. (A) Diverse antigenicity of selected envelope proteins shown by trapezoidal curve fit for the
area under the curve of MAbs (n � 14). Non-broadly neutralizing and neutralizing MAbs (glycan patch, CD4bs, V1V2 apex, V2p, V3 crown, V3 glycan, gp41
immunodominant, and gp41 membrane-proximal external region [MPER]) were titrated starting at 20 �g/ml by HIV-1 IgG BAMA, and area under the curve (AUC)
titers are shown. The heat map indicates relative binding affinity (from red to green according to the legend on the figure; gray, values that could not be
calculated and are indicated as �100 negative binding). (B) Binding affinity (Kd, dissociation constant, in nanomolars) of gp70-V1V2 proteins to V1V2 apex
bNAbs (PG9 and CH01), to V2p (CH58), and to V2i MAbs (830A and 2158). In the down-selected panel (bold font), two antigens were selected that had reactivity
with the V1V2 apex bNAbs PG9 and/or CH01. Thus, the antigen panel is capable of detecting the spectrum of V2-specific antibodies that target epitopes from
the V2 strand C (V2p), the integrin binding motif in V2 (V2i), and the quaternary epitope at the apex of the trimer (V2q). (C) Antigenicity of HIV-1 envelope gp120.
Values shown are Kd values in nanomolars and were measured for each envelope gp120 against a panel of monoclonal antibodies that included CH106 and
VRC01 (CD4bs), 697D (V2i), CH58 (V2p), A32 (C1-C2, 19b [V3 crown]), and PGT128 MAbs (V3-glycan). Each MAb was directly immobilized in duplicate on adjacent
spots on the same sensor chip, and binding titrations were performed on a Biacore 4000 instrument. Env gp120s were run at a concentration range between
1 and 50 �g/ml. Kinetic rates were measured following curve fitting analysis using the Langmuir 1:1 model, and Kd data shown are representative of two
measurements.
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bility is striking, and the differences in the magnitude of the antibody responses to the
diverse V1V2 envelope glycoproteins suggests that a continued goal of vaccine im-
munogen design is to improve antibody levels and durability with a focus on breadth
of responses.

DISCUSSION

An efficacious HIV-1 vaccine will likely require vaccine-induced immunity that can
broadly recognize diverse circulating HIV-1 isolates. Elicitation of high-titer and durable
antibodies that target diverse envelope glycoproteins, including the first and second
hypervariable regions (V1V2) of gp120 (12, 24), is a critical goal for vaccine develop-
ment. A limitation for the field has been the lack of identified and characterized HIV-1
envelope glycoproteins that could be utilized to interrogate vaccine-elicited immunity
of vaccine candidates. We identified HIV-1 envelope and V1V2 glycoproteins with
antigenic, genetic, and geographic diversity representing the global epidemic of acute/
early sexually acquired HIV-1 infections. Analysis of human HIV-1 vaccine trials with
these envelope glycoproteins revealed that HIV-1 IgG breadth can distinguish among
vaccine regimens and therefore may be informative in immune correlates analyses (26,
27). Notably, the immune heterogeneity among individual vaccinees was evident when
antibody responses were analyzed in longitudinal samples from RV144 against these
diverse envelope and V1V2 proteins.

The vast majority of envelope antigens selected for this analysis added unique
information on binding diversity, likely resulting from the initial selection from the Los
Alamos database of HIV-1 envelope antigens by sequence evaluation based on enve-
lope diversity. Panel sizes were selected based on a balance of antigenic coverage and
panel size. The down-selected Env panels consist of 8 gp120 proteins, 8 gp140 proteins,
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and 16 V1V2 antigens representing multiple clades and geographic regions. We
produced all envelope antigens in 293 F cells for the purposes of a consistent com-
parison in this study. The selection of the producer cell line can influence the resulting
protein antigenicity. For example, some V2 MAbs can show a preference for binding to
envelope glycoproteins produced in GnT1� cells, consistent with the influence of
glycans on V2 recognition (28). Trimeric V1V2 scaffolds as described by Gorman et al.
(29) will also be informative reagents to further measure the fine specificity and
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conformational dependence of vaccine-elicited V1V2 responses. These HIV-1 envelope
glycoproteins provide broad coverage for evaluating breadth and depth of binding
antibody responses among HIV-1 vaccine regimens for both preclinical and clinical
HIV-1 trials. The larger initial selection of antigens also represents considerable diversity,
such that each of the antigens in the larger panel could be utilized for more intensive
characterization of breadth within subtype or geographic region for particular studies.
These reagents are designed for use in antibody Fc effector assays such as antibody-
dependent phagocytosis (9, 30) and/or antibody-dependent cellular cytotoxicity assays
(31). We note that the assays and reagents described here focus on antibody-antigen
binding interactions relevant to the evaluation of antibody effector functions beyond
neutralization. Related work by some of us characterized neutralization of envelope-
pseudotyped viruses with similar sequences that are tier 2 and less neutralization
sensitive than tier 1 isolates (32). The antigens selected as part of this current study
were selected on the basis of extensive antigenic characterization independently of the
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neutralization properties of the corresponding Env-pseudotyped viruses, except that
some are derived from tier 2 Envs. The strength of this panel is its application to
non-broadly neutralizing antibody evaluation, e.g., as in RV144. The gp120 and gp140
antigens described here do not fully resemble the native trimeric structures of func-
tional Env spikes targeted by neutralizing antibodies. Binding assays with newly
developed native trimers may be predictive of neutralization; thus, future work on the
association of antibody binding to native trimers and neutralization breadth may
provide further insights. However, an added value of these newly developed HIV-1
envelope glycoproteins is to support B cell lineage design (33) to screen unmutated
common ancestors (UCAs)/reverted unmutated ancestors (RUAs) and intermediates of
bNAb lineages to identify potential protein immunogens to drive a B cell lineage from
the naive or intermediate B cell down the path to a bNAb.

To characterize selected HIV glycoproteins, we included vaccine trials containing
multiple subtypes (i.e., subtypes A, B, and C) in addition to the one partially efficacious
subtype AE vaccine regimen. Although these vaccine regimens elicited diverse anti-
body specificities targeting a range of conformational epitopes and linear epitope
specificities, not limited to V1V2 specificities, HIV-positive sera were included to cover
antibody diversity not elicited by current vaccine regimens. The diversity of the antigen
panels was confirmed by the broad reactivity to both non-broadly neutralizing (non-
bNAbs) and broadly neutralizing MAbs (bNAbs). One caveat is that the assessment of
antigenic diversity is dependent on the panel of MAbs and the serum/plasma utilized
for these measurements. Future studies that define polyclonal sera and MAbs corre-
lated with protection from HIV-1, as well as sera from vaccine regimens other than the
poxvirus regimens analyzed here, will enable a next-generation panel that can be
utilized to benchmark vaccine candidates toward the induction of protective antibody
effector functions.

Vaccine regimens with improved antibody durability are critically needed (34). In
RV144, vaccine efficacy was 60.5% through the first 12 months post-initial vaccination
(35) but declined to 31% at 42 months (3). Immune responses that correlated with
decreased risk of HIV-1 declined over time postvaccination, with HIV-1 V1V2 IgG3
responses demonstrating the greatest early decline (5). The V1V2 IgG correlate of risk
had stronger estimated association with infections closer to the time of the last
vaccination than against infections occurring much later. As a result, there is a focus on
developing new vaccines that can increase V1V2 IgG and IgG3 antibody breadth and
durability toward improving vaccine efficacy (36, 37). Here, we identified differences in
V1V2 antibody breadth across vaccine regimens and among individual vaccinees.
Interestingly, VAX003 vaccinees at visit 9 had increased V1V2 total IgG breadth com-
pared to that of RV144 by visit 9; however, the reverse was true for V1V2 IgG3 breadth.
This is consistent with the idea that repeated protein boosts may skew the IgG subclass
distribution away from IgG3 (5, 10, 38, 39). Further studies are needed to understand
the mechanisms (e.g., host genetics, preexisting immunity, and immune activation)
underlying the heterogeneity observed in vaccine-elicited responses and to determine
how to overcome this heterogeneity to achieve high efficacy and sustained antibody
durability at the population level.

MATERIALS AND METHODS
Sequence selection. Envelope glycoprotein sequences were selected from the Los Alamos National

Laboratory (LANL) database based on genetic and geographic diversity to represent the global epidemic,
with emphasis on transmitted/founder and acute/early sexually acquired HIV-1 infections and with
viruses from the tier 2 neutralization phenotype (21, 40).

Envelope protein (gp120, gp140, and V1V2) production. Envelope proteins for down-selected
antigens were expressed in 293F cells and consisted of a multisubtype panel of gp120 (n � 61) and
gp140 (n � 24) antigens from predominantly acute/early sexually acquired HIV-1 infections and from tier
2 neutralization phenotype viruses (see Table S1 in the supplemental material). Additional sequences
from intravenous (i.v.) drug use and mother-to-child transmission/breastfeeding were also included. The
HIV-1 Env proteins were expressed by transient transfection and purified to �90% or best possible purity
by using Galanthus nivalis lectin column chromatography and by fast protein liquid chromatography
(FPLC) if necessary. The purified HIV-1 Env recombinant proteins were quality control (QC) tested by
sequence identity confirmation by mass spectrometry, SDS-PAGE, and Western blotting under reducing
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and nonreducing conditions and by Western blotting by an HIV-1 Env antibody such as 3B3. Additionally,
bioburden, endotoxin, and mycoplasma assays were performed. Expression levels of two gp120 proteins
(Q23 and SF162) were compared in different cells lines (293F cells, CHO and GnT1� cells) to determine
the cell substrate for optimal antigenicity and production. Antigenicity was determined by surface
plasmon resonance with a panel of MAbs (and with a set of 18 serum samples that were part of a
previously published Neutralization Serotype Discovery Project [NSDP]) (22). For the purposes of this
study, gp70-scaffolded V1V2 proteins (41) were produced in Expi293 cells based on 42 antigens with
sequences from acute/early sexually acquired HIV-1 infections from tier 2 neutralization phenotype
viruses. The subtype C 1086 V1V2 and V2 tag proteins were produced as previously described (7).

Serum and plasma specimens. Serum and plasma from HIV-1-infected patients, human vaccinees,
and rhesus macaque vaccine studies were utilized for assessing antigenicity of envelope reagents. For
HIV-1-infected patients, 18 serum samples from a Neutralization Serotype Discovery Project (22) were
titrated with six 5-fold serial dilutions starting at 1:50. An additional set of seven purified IgG samples
selected (seven individuals) were titrated at six 5-fold concentrations starting at 50 �g/ml. NSDP-purified
IgG and serum were obtained from different patients and were selected based on specimen availability
to increase the pool of well-characterized infected samples. Samples from 19 placebo recipients and 38
vaccinees from the RV144 cohort (subtype AE canarypox prime and subtype AE/B protein boost) (4) were
analyzed at a 1:40 dilution at baseline (week 0), peak immunogenicity visit (week 26), and then at
follow-up time points to examine durability (visits 52, 78, 104, 130, 156, and 182). In addition, to evaluate
a combined subtype C/AE vaccine, samples from 39 vaccinees from HVTN 096 (subtypes AE and C;
DNA/NYVAC/AIDSVAX) were analyzed at six 5-fold serial dilutions starting at 1:50 at week 26. Samples
from 84 vaccinees from VAX003 (42) (subtype AE/B protein only) were later examined to assess the utility
of the down-selected antigen panel for distinguishing between vaccine regimens. Rhesus macaque
vaccine samples obtained from 38 animals from a DNA/NYVAC protein immunization (AUP 512) (43) were
analyzed at peak immunogenicity (week 26) at 6-fold serial dilutions starting at 1:80.

Binding antibody assays. Antibody titers and the magnitude of IgG and IgG3 binding were assessed
by binding antibody multiplex assay (BAMA) under Good Clinical Laboratory Practice (GCLP) compliance
with antigen tracking (Levey-Jennings) as previously described (4, 5, 44). Antigenicity was assessed with
multiclade vaccine sera (RV144 and HVTN 096) (subtypes A, B, C, and AE), HIV-1-positive sera (NSDP)
(subtypes A, B, C [CRF07_BC], and CRF01_AE), rhesus macaque vaccine samples (AUP 512), and a panel
of well-characterized MAbs consisting of the following: V3 MAbs 2219 (45, 46), 3074 (47), 3869 (47), 838-D
(48), PGT128 (49), and 2557 and 447-52D (50); V2 MAbs 1357-D (A) (51, 52), 1361 (51, 52), 1393A (53), 2297
(54), 697-30D (55–57), 830A (53, 58, 59), PG16 and PG9 (60–62), and CH58 (7); glycan MAb 2G12; C2 MAb
847-D (53); C5 MAbs 1331-160 (63), 670-30D (57), and 858-30D (57); CD4bd MAbs 1008-30D, 1570D10,
654-30D, and 729-30D (64, 65); gp41 MAbs 126-7D1 (66), 167-D (67), 181D (67), 240D (67), 246D (66), and
50-6910 (66). A sample was called positive if both the peak response (blank-subtracted MFI value) was
greater than 100 and the ratio of the peak to baseline response was greater than 3.

SPR. Antigenicity was determined by surface plasmon resonance (SPR) with a panel of MAbs and
soluble CD4 as previously described (25).

Generating candidate panels. The strategy for generating panels of antigens from the available
representative circulating strains followed a three-step process. The first step was to exclude antigens
that did not capture a vaccine-induced response based on either (i) differentiation between treatment
groups postvaccination or (ii) differentiation between pre- and postvaccination samples (4). In the second
step we scaled the data for each of the antigens that passed the first requirement; scaling, as described
below, was done separately by serologic data set and antigen class (Env, V1V2, or V2 peptide). The scaling
step was necessary since the outcome magnitudes were not comparable across serologic sets and
isotypes. Three factors influenced the scale of the various outcomes. One factor was the origin of the
immune response which was generated either by vaccination or natural infection. A second factor was
how samples were assayed (either single dilution or in a dilution or concentration series). The third factor
was isotype measured (total IgG or IgG3). To scale responses across each serologic set and isotype, we
ranked the response to each antigen for each serologic set and isotype combination and then scaled the
ranks to have a uniform distribution between 0 and 1. After scaling the responses, we combined the
results to produce a single outcome for each antigen. Once the outcomes were placed on a common
scale, we summarized the data within each antigen class as a matrix of Spearman rank correlations
between all pairs of antigens. From each correlation matrix we generated a distance matrix using 1 minus
the correlation. In the final step we used the method of partitioning around medoids (PAM) from the
cluster package in R (M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik, Cluster Analysis
Basics and Extensions. R package version 2.0.5) based on the distances computed in the second step to
form K-clusters where K ranged from 1 to 25. For each K, the proposed panel of size K was defined as the
K medoids identified by the PAM algorithm. In some cases the medoid was replaced by another antigen
within the cluster based on external criteria such as geographic diversity or purposes of antigen
production.

Cross-validation. We used cross-validation to assess panel performance and choose the panel size.
Our method for cross-validation followed these steps: step 1, randomly select one holdout antigen; step
2, run the PAM method to select K antigens from the remaining antigens; step 3, compute adjusted
R-squared value for the linear model that predicts the binding affinity to the holdout antigen predicted
by (a) the K medoids from the PAM clustering algorithm, (b) K randomly selected antigens, (c) K most
reactive antigens, (d) K least reactive antigens, or (e) K antigens representing the spectrum of antigen
reactivity; step 4, repeat steps 1 to 3 for each antigen within an antigen class and compute the mean
adjusted R-squared value for each selection method and each panel size K.
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To assess the performance of the PAM-based panel selection to random selection and selection
based on antigen reactivity, we compared the mean adjusted R-squared values between methods across
a range of panel sizes. To pick a panel size, we looked for panel size with a mean adjusted R-squared
value of approximately 0.8 or a point of diminishing returns where an increase in the panel size
represented only a small increase in the mean adjusted R-squared value. We additionally ran the
cross-validation algorithm using n � 6 holdout antigens. In this case we randomly drew six antigens
10,000 times and computed the adjusted R-squared value for the linear model that predicts the mean
binding affinity of these six antigens using the K-selected antigens selected in step 3a to 3e. Additionally,
to assess the performance of panels that were based partially on the PAM method and partially on
external criteria, we ran cross-validation studies that selected antigens based on one randomly selected
antigen from each of K clusters defined by the PAM algorithm.

Assessment of V1V2 IgG binding durability in RV144 vaccinees. Mean fluorescence intensity
(MFI) for 42 V1V2 antigens (41 gp70 constructs and 1 tag construct) plus the gp120 construct
A244gp120Δ11/293F monomer was measured at weeks 0, 26, 52, 78, 104, 130, 156, and 182. MFI values
below 100 were set to 50 for all plots and calculations. For each antigen/participant combination, four
summary measures were defined based on one or more time points: (i) baseline MFI (week 0), (ii) peak
MFI (week 26), (iii) longitudinal fold change (defined as the geometric mean MFI fold change over
baseline for weeks 52 through 182), and (iv) fold drop (defined as the MFI at week 26 divided by the MFI
at week 52, thus a higher fold drop represents a greater decrease in binding). The V1V2 durability score,
a participant-level summary of the longitudinal fold change, was defined as the geometric mean
longitudinal fold change over the 42 V1V2 antigens; durability score by clade was defined as the
geometric mean longitudinal fold change over all V1V2 antigens within a clade.
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