
RESEARCH ARTICLE

iBLAST: Incremental BLAST of new sequences

via automated e-value correction

Sajal DashID
1,2*, Sarthok Rasique RahmanID

3,4, Heather M. Hines3,5, Wu-chun Feng2,6,7,8*

1 National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States

of America, 2 Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America,

3 Department of Biology, The Pennsylvania State University, University Park, PA, United States of America,

4 Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States of America,

5 Department of Entomology, The Pennsylvania State University, University Park, PA, United States of

America, 6 Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, United States

of America, 7 Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United

States of America, 8 Health Sciences, Virginia Tech, Blacksburg, VA, United States of America

* dashs@ornl.gov (SD); feng@cs.vt.edu (WF)

Abstract

Search results from local alignment search tools use statistical scores that are sensitive to

the size of the database to report the quality of the result. For example, NCBI BLAST reports

the best matches using similarity scores and expect values (i.e., e-values) calculated

against the database size. Given the astronomical growth in genomics data throughout a

genomic research investigation, sequence databases grow as new sequences are continu-

ously being added to these databases. As a consequence, the results (e.g., best hits) and

associated statistics (e.g., e-values) for a specific set of queries may change over the course

of a genomic investigation. Thus, to update the results of a previously conducted BLAST

search to find the best matches on an updated database, scientists must currently rerun the

BLAST search against the entire updated database, which translates into irrecoverable and,

in turn, wasted execution time, money, and computational resources. To address this issue,

we devise a novel and efficient method to redeem past BLAST searches by introducing

iBLAST. iBLAST leverages previous BLAST search results to conduct the same query

search but only on the incremental (i.e., newly added) part of the database, recomputes the

associated critical statistics such as e-values, and combines these results to produce

updated search results. Our experimental results and fidelity analyses show that iBLAST

delivers search results that are identical to NCBI BLAST at a substantially reduced computa-

tional cost, i.e., iBLAST performs (1 + δ)/δ times faster than NCBI BLAST, where δ repre-

sents the fraction of database growth. We then present three different use cases to

demonstrate that iBLAST can enable efficient biological discovery at a much faster speed

with a substantially reduced computational cost.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dash S, Rahman SR, Hines HM, Feng W-

c (2021) iBLAST: Incremental BLAST of new

sequences via automated e-value correction. PLoS

ONE 16(4): e0249410. https://doi.org/10.1371/

journal.pone.0249410

Editor: Marc Robinson-Rechavi, Universite de

Lausanne Faculte de biologie et medecine,

SWITZERLAND

Received: October 5, 2020

Accepted: March 17, 2021

Published: April 22, 2021

Copyright: © 2021 Dash et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The transcriptomic

raw sequence dataset is publicly available from

NCBI BioProject PRJNA716675 (accession ID

SRR14053705).

Funding: This work was supported in part by a

grant from the Institute for Critical Technology and

Applied Science (ICTAS) awarded to W.-c.F. (http://

www.ictas.vt.edu). Contributions from S.R.R. were

supported by the National Science Foundation (NSF)

DEB #1453473 awarded to H.M.H. (https://www.nsf.

gov/awardsearch/showAward?AWD_ID=1453473).

https://orcid.org/0000-0001-5308-914X
https://orcid.org/0000-0002-7889-9138
https://doi.org/10.1371/journal.pone.0249410
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249410&domain=pdf&date_stamp=2021-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249410&domain=pdf&date_stamp=2021-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249410&domain=pdf&date_stamp=2021-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249410&domain=pdf&date_stamp=2021-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249410&domain=pdf&date_stamp=2021-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249410&domain=pdf&date_stamp=2021-04-22
https://doi.org/10.1371/journal.pone.0249410
https://doi.org/10.1371/journal.pone.0249410
http://creativecommons.org/licenses/by/4.0/
http://www.ictas.vt.edu
http://www.ictas.vt.edu
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1453473
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1453473

Introduction

The utilization of a sequence similarity search tool is an indispensable step in most bioinfor-

matics research involving nucleotide or protein sequences. BLAST, short for Basic Local Align-

ment Search Tool, is a widely used tool capable of conducting a sequence similarity search for

a sequence of interest against a sequence database. BLAST relies on a heuristic approach for

searching and provides results based on the identification of regions of similarity between tar-

get and query sequences through a seed-and-extend based local alignment [1]. The number of

queries and the size of the reference database can significantly impact the execution time of

BLAST.

Hence, the fast accumulation of sequences in NCBI-curated databases have a profound

impact on the computational efforts required to perform sequence similarity searches. The

sequencing data that is stored in the NCBI database has grown tremendously over the years,

reportedly doubling the number of bases submitted to GenBank [2] every year over the last

three decades (1982-present) (S1 Fig in the S1 File). This rapid accumulation of sequence data

is one of the key factors responsible for transforming the field of genomics into one of the

most demanding big-data science disciplines [3].

Given expanding amount of data, providing fast and biologically valuable sequence align-

ment tools via high-performance computing (HPC) and algorithmic innovations has been a

highly active area of bioinformatics research, particularly in the context of rapidly expanding

databases. For example, several sequence alignment programs have relied on contributing

algorithmic improvements (e.g., HMMER [4], DIAMOND [5], CaBLAST [6]) while others

have focused on improving parallelization to take advantage of emerging high-performance

computing (HPC) platforms and programming paradigms (e.g., cuBLASTP [7], muBLASTP

[8], mpiBLAST [9], SparkBLAST [10], and SparkLeBLAST [11]). Both DIAMOND [5] and

CaBLAST [6] improve the execution time of sequence alignment by compressing the sequence

database. Specifically, DIAMOND reduces the amino-acid alphabet while CaBLAST com-

presses the sequences by sequence redundancy. All of these sequence similarity search tools

improve computational speed (i.e., reduce execution time) but sometimes at the cost of

reduced sensitivity. DIAMOND only achieves 91%- 99% sensitivity [5] while CaBLAST

achieves more than 99% sensitivity [6].

Sequence similarity tools play a vital role in genome projects as annotations of assembled

sequences require the utilization of BLAST-like tools for homology assignment. In reality,

genome sequencing and annotation projects can be fairly long term, and thus, can require

multiple sequence updates, e.g., regular annotation updates [12, 13]. However, such updates

require executing sequence similarity search from scratch as BLAST uses similarity scores and

e-values that depend on the ever-increasing size of the database. For this reason, it is currently

required to discard the results of prior search efforts and rerun the entire search, which trans-

lates to irredeemable execution time, money, and computational resources. For bioinformatics

projects requiring large-scale sequence similarity searches, such as those involving many tran-

scriptomes from many taxa, the computational burden can be especially prohibitive. This

problem could be addressed by performing iterative taxon-specific searches rather than con-

ducting BLAST on the entire non-redundant (nr) database. However, adopting such an

approach has the same problem of needing to standardize e-values while adding new databases

to find the optimal identity of each query, as shown in Fig 1(B).

Currently, to the best of our knowledge, there exists no tool that can merge BLAST results

of databases that have been added to either temporally (adding new searches over time) or spa-

tially (combining results of two different searches).

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 2 / 16

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0249410

We provide a statistical approach to compose temporal and spatial BLAST search results
through a novel method of e-value correction. We derive how to do this mathematically and

provide a software application called iBLAST to implement this automated e-value correction.

By recycling previous BLAST search results, iBLAST provides substantial savings in execution

time and computational resources since iBLAST performs (1 + δ)/δ times faster than NCBI

BLAST, where δ represents the fraction of database growth. It enables taxon-specific BLAST

searches, including incremental addition of searches of biologically-relevant taxa. The iBLAST

tool consists of Python modules compatible with recent versions (since 2012) of NCBI BLAST

command-line tools and can run on all major operating systems with minimal cognitive and

installation overhead for NCBI BLAST users. This tool is thus especially useful for bioinfor-

matics projects involving large-scale sequence search tasks. We demonstrate the efficiency and

application of iBLAST using three case studies.

Methods

To perform an iBLAST search temporally, we only need to consider the newly arrived

sequences in the interval δt and perform a BLAST search against these sequences to get the

result Sδt, as shown in Fig 1(A). iBLAST then corrects the e-value scores for this incremental

result Sδt and the past result St by using the size of the database Dt+δt = Dt + Dδt. To perform an

iBLAST search spatially, as shown in Fig 1(B), iBLAST examines the search results from differ-

ent databases and corrects their e-values by using the size of the combined database DA[B[C =

DA [DB [DC. Then, iBLAST merges these search results with corrected e-values to obtain the

final search result SA[B[C.

In the remaining part of this section, we present the details of our e-value correction meth-

odology, the implementation details of iBLAST, and the fidelity and efficacy of iBLAST over

NCBI BLAST via three case studies.

Fig 1. Addition of new sequences. (A) BLAST search when new sequences are added to the database. At time t, the

database is Dt. In next δt interval, new sequences Dt+δt − Dt are added, and the database becomes Dt+δt. With the

traditional approach, the prior search result at time t cannot be reused, and we have to perform an entire BLAST

search against the entire Dt+δt database. (B) BLAST search when several taxon-specific databases are present and a

result against the combined database is needed. For three taxa, A, B, and C, we can perform individual BLAST searches

against the databases DA, DB, DC, respectively. If we want to obtain a search result against the combined database

DA[B[C, we need to merge the search results in a way that their e-values reflect the combined database size.

https://doi.org/10.1371/journal.pone.0249410.g001

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 3 / 16

https://doi.org/10.1371/journal.pone.0249410.g001
https://doi.org/10.1371/journal.pone.0249410

BLAST concepts and statistics

Core concepts of a BLAST result: Hit, HSP, score, and e-value. When we perform a

BLAST search against a sequence database with a query sequence, the BLAST program returns

the sequences producing significant alignment from the target database, which we refer to as

hits. Between the query and a hit sequence, there exist many pairwise locally-optimal gapped

local alignments, which we refer to as high scoring pairs or HSPs. The definitions of hits and

hsps are slightly different from those used by Althshul and colleagues [14], but follows the

structural definition from the XML output format produced by NCBI BLAST. In the XML out-

put format, the “Sequences Producing Significant Alignments” are presented as Iteration hits,

and the “significant alignments” are listed as HSPs, though these are gapped alignments. One

hit can consist of many HSPs. HSPs are scored using some statistical metrics when comparing

aligned symbols. The score for a hit is the score of the highest-scoring HSP that belongs to that

hit. The e-value for an HSP is computed using the score, the database size, and other statistical

parameters. The reported e-value of a hit is the e-value of the highest-scoring HSP of this hit

[15].

BLAST statistics for e-value computation. BLAST programs use two different types of

statistics for e-value computation: Karlin-Altschul statistics and Spouge statistics. Both of these

statistical formulae calculate e-value for the HSPs and hits. blastn and tblastx use Karlin-

Altschul statistics while blastp, blastx, and tblastn use Spouge statistics.

Karlin-Altschul statistics. Karlin-Altschul statistics [1, 16, 17] measures the e-value using

E = e−λ(S − μ) = Km0n0e−λS. This formula is adjusted for edge effect (see S1 File). Here m0 = m −
l, n0 = n − Nl, N is the number of sequences in the database, m is the actual length of the query,

and n is the actual length of the database.

The length adjustment l satisfies l ¼
a

l
ln ððKðm � lÞðn � NlÞÞÞ þ b. Here, α, β, K, and λ are

statistical parameters.

Spouge statistics. Spouge statistics [18] is developed on the Karlin-Altschul formula.

Instead of computing the length adjustment l and then using it to compute the effective

length of the database and query, Spouge statistics applies a finite-size correction (FSC).

Instead of estimating l, FSC estimates area = E[m − LI(y)]+[n − LJ(y)]+ as a measure of (m − l)
(n − Nl). The e-value E is then calculated as E = area × Ke−λS × db_scale_factor where

db scale factor ¼
n0

m0
.

Existing e-value correction software and their features. mpiBLAST [9], a parallel imple-

mentation of NCBI BLAST on a cluster, partitions the database and performs BLAST searches

against these partitions in parallel. For accurate e-value correction, mpiBLAST requires prior

knowledge of the entire database [9]. NOBLAST [19] corrects e-values when split databases

are in use and results need to be aggregated. However, it does not work with Spouge statistics.

We provide a detailed explanation of these tools in Section “Existing e-value correction soft-

ware and their features” in the S1 File. Both tools (mpiBLAST and NOBLAST) provide exact

e-value statistics for Karlin-Altschul statistics when knowledge about the entire database is

available a priori. However, they are not useful when the database keeps changing or when two

different search results against two different instances of similar databases need to be aggre-

gated. Table 1 provides a high-level comparison between mpiBLAST, NOBLAST, and our

iBLAST.

Redundancy in data vs. redundancy in computation. Prior efforts to leverage redun-

dancy in data (e.g., DIAMOND and CaBLAST) have successfully accelerated BLAST but at the

cost of a small reduction in sensitivity. CaBLAST’s compressive algorithm achieves over 99%

sensitivity for the improved speed [6]. Different versions of DIAMOND have sensitivity in the

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 4 / 16

https://doi.org/10.1371/journal.pone.0249410

range 91.04% – 99% for various datasets [5]. In contrast, iBLAST aims to eliminate redundant

computation while maintaining 100% sensitivity.

e-value correction in an incremental setting

Correct e-value computation requires the actual database length (i.e., total number of bases/

residues) in both Karlin-Altschul statistics and Spouge statistics. While database-partitioning

parallel BLAST applications, like mpiBLAST and NOBLAST, require prior knowledge about

the total database length, iBLAST leverages the partial knowledge from a previous BLAST

search and combines it with the new sequence additions to the database to infer the total data-

base length and compute the adjusted e-value in relation to the updated database. The mpi-

BLAST and NOBLAST tools pass the actual database length to each of their parallel jobs, thus

forcing the statistics module to compute correct e-values from the beginning. For the iBLAST

search, whenever new data arrives to the database, the pairwise sequence search is automati-

cally refined in two steps. First, the search is only run on the databases constructed from new
sequences that have been added to the database. Second, the results generated from searching

the new sequences in the database are then merged with the saved results from the previous

BLAST search.

e-value correction for Karlin-Altschul statistics. Let nc represent the current database

length and nd represent the length of the newly arrived sequences for the database. Also, let Nc

be the number of sequences in the current database and Nd be the number of sequences in the

newly arrived part of the database. Then, we have

Actual length of the updated database : nt ¼ nc þ nd:

Total number of sequences in updated database : Nt ¼ Nc þ Nd:

The actual query length m does not change with the change in the database. However, we do

need to recompute the effective length l by solving the fixed-point equation for the new data-

base length using Eq (1).

l ¼
a

l
ln Kðm � lÞ ðnc þ ndÞ � ðNc þ NdÞ � lð Þð Þ þ b ð1Þ

Now, with the updated length adjustment l, we can either recompute the e-values for all the

matches or correct the e-values. To recompute all the e-values from scratch, we use Eq (2).

E ¼ e� lðS� mÞ ¼ Kðm � lÞððnc þ ndÞ � ðNc þ NdÞ � lÞe� lS ð2Þ

Alternatively, we can correct the e-values from the current values. First, we use l to recom-

pute the value of the effective search space. We then use the newly computed effective search

space to recalibrate the e-values for all the reported HSPs from the current and delta search

Table 1. Comparison of three different BLAST tools that explicitly deal with e-value statistics correction. iBLAST supports e-value correction across time and space

without requiring prior knowledge of the entire database while the other tools can perform e-value correction in limited scenarios.

Feature mpiBLAST NOBLAST iBLAST

E-value correction for Karlin-Altschul statistics ✔ ✔ ✔
E-value correction for Spouge statistics ✘ ✘ ✔

Aggregate search results against pre-planned database segments ✔ ✔ ✔
Aggregate search results against arbitrary database instances ✘ ✘ ✔

Reuse existing search results ✘ ✘ ✔

https://doi.org/10.1371/journal.pone.0249410.t001

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 5 / 16

https://doi.org/10.1371/journal.pone.0249410.t001
https://doi.org/10.1371/journal.pone.0249410

results. Assuming that Dpart is the partial effective search space and that Dtotal is the total effec-

tive search space, then the corrected e-value is given by

Etotal ¼ Epart þ Ke� lS � ðDtotal � DpartÞ ð3Þ

While both approaches require a constant number of arithmetic operations, the former

approach, i.e., recomputing all the e-values from scratch, requires fewer arithmetic operations.

e-value correction for Spouge statistics. For Spouge statistics, the value of area described

in Section “Spouge statistics” does not change since it is a function of the query length,

sequence length, and Gumbel parameters. However, the database scale factor does change, and

thus, we need to account for it. If the actual database lengths for the newly added part of the

database and the total database are npart and ntotal, respectively, then

Epart ¼ area� e� lS �
npart
m

and Etotal ¼ area� e� lS �
ntotal
m

So,

Etotal ¼ Epart �
ntotal
npart

ð4Þ

Therefore, based on this derivation, we only have to re-scale the e-values instead of using

Spouge’s e-value computational methods. Note: For re-scaling e-values that have been previ-

ously (and imprecisely) rounded to 0.0 by NCBI BLAST, re-scaling an e-value smaller than

e−180 that was previously (and imprecisely) rounded to 0.0 by NCBI BLAST results in an incor-

rect 0.0 value. In this less than 0.1% occurrences of an extremely small but non-zero e-value,

iBLAST ensures that this imprecise rounding does not occur.

Merging two search results with correct e-value statistics

Once we correct e-values for both the current search result and the new search result, we

merge the hits into a single sorted list. Because iBLAST reports some better scoring hits that

NCBI BLAST misses (explained in detail in Section “iBLAST finds better scoring hits that are

missed by NCBI BLAST”), reporting only max_target_seqs hits will result in missing some of

the lower-scoring hits from NCBI BLAST. So, we store and report 2 ×max_target_seqs hits. S3

Algorithm (in S1 File) documents the procedure to merge the hits from two results for the

same query. All statistical parameters dependent on total database size are re-calibrated to

recompute or re-scale the e-values. The hits are selected in the ascending order of their e-val-

ues (descending order of their scores). Additional details on recomputing and re-scaling e-val-

ues is provided in the S1 File (Section “e-value correction.”).

iBLAST implementation

We develop iBLAST for performing BLAST search as an extension to the NCBI BLAST code.

It consists of Python wrapper scripts around the extended BLAST code and uses NCBI BLAST

programs as black-box routines. Fig 2 shows the software stack of iBLAST, which consists of

three major components: (1) user interface, (2) incremental logic, and (3) record database.

These modules interact with BLAST databases through the BLAST+ programs.

Command-line user interface. In our current version, we provide a command-line user

interface for iBLAST, which provides NCBI BLAST-like search options.

Incremental logic. This module decides whether to perform a new BLAST search based

on current results. Whenever the user requests a new BLAST search, this module checks for

any pre-existing search result.

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 6 / 16

https://doi.org/10.1371/journal.pone.0249410

If it does not find any pre-existing result, it performs a regular NCBI BLAST; but if there is

a pre-existing result, the module first compares the database instance from the time of the past

search with that of the present search. If there is any difference in the database size, this mod-

ule builds a delta database that consists of the difference in these two instances. For computing

the delta database, this module compares the lists of filenames of the two most recent instances

and constructs a database alias using the difference (see Section “Computing delta database” in

the S1 File for details). It then performs a new BLAST search only against the delta database

and merges the previous result with the new incremental result after statistical correction for

e-values. This module allows multiple updates to current searches with little extra time invest-

ment. The “Incremental logic” module contains four sub-modules: (1) SearchRecord lookup,

(2) Delta and past database creation, (3) Statistics, and (4) SearchRecord writer.

1. SearchRecord lookup. This sub-module looks for an existing search result with the help of

the record database.

2. Delta and past database creation. This sub-module constructs a delta database by compar-

ing the current database against the database’s past instance and performs a BLAST search

on the incremental database.

3. Statistics. This sub-module reads the past and the new incremental search results; it then

re-evaluates the e-values in both results and merges them according to their recomputed/

re-scaled e-values.

4. SearchRecord writer. This module writes the updated search result in one of the NCBI

BLAST formats.

Fig 2. Software stack of iBLAST. The user can initiate a search using the user interface. The search parameters are then passed to the “Incremental logic”

module. After performing an incremental search, this module’s back-end corrects the e-value statistics and merges the result. The “Incremental logic”

module looks into an external lightweight database module called the (Record database) to decide whether and how to perform the incremental search. For

the actual search and delta database creation, we use NCBI BLAST tools such as blastdbcmd, blastdbalias, blastp, and blastn.

https://doi.org/10.1371/journal.pone.0249410.g002

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 7 / 16

https://doi.org/10.1371/journal.pone.0249410.g002
https://doi.org/10.1371/journal.pone.0249410

Whenever the user initiates a BLAST job, the above “Incremental Logic” module first

checks if a current search result is available. A delta database consisting of the newly added

sequences is constructed if there is a search result against an outdated BLAST database. A

BLAST search is then performed against the delta database (i.e., incremental database). In the

final stage, the e-values of the two search results are corrected and the incremental search

results are merged. The frequency of this incremental search and re-computation depends on

two quantities: the rate of database update by NCBI and the rate at which a research project

performs a BLAST search.

Record database for storing incremental search results. Whenever the user performs a

BLAST search, iBLAST saves meta-information (e.g., the size of the database and a list of the

filenames) about the instance of the database and the search result in a lightweight SQLite

database. We design iBLAST to save a minimalist index structure and size information that

requires only a few bytes of storage. We keep the search parameters along with the search

results as well. iBLAST does not save any redundant copy of any part of the actual sequence

database. It stores only the most recent result for a specific query and a database, which keeps

the storage overhead to a minimum.

Case studies

To demonstrate the efficiency and benefits of using the iBLAST program over standard NCBI

BLAST, we analyze different scenarios on actual nucleotide and protein sequence datasets as

case studies. Our first case study tests the accuracy of iBLAST sequence searches compared to

NCBI BLAST. The second case study assesses the value of adding new searches temporally to

old ones for large, and the last case study assesses how this method can be used to add taxon-

specific searches together to save on computational time.

Case study I: Method verification. We explore the scenario where hits from a collection

of 100 query sequences are updated to account for the growth of NCBI sequence databases

across the duration of the project. To demonstrate the application’s use for BLAST programs

that use Karlin-Altschul statistics, we ran blastn against a nucleotide database (growing subsets

of NCBI nt) for 100 nucleotide sequences from Bombus impatiens To demonstrate its utility on

BLAST programs that use Spouge statistics, we ran blastp against a non-redundant protein

database (a growing subset of NCBI nr) for 100 protein sequences from Bombus impatiens
assembly. Source of these data is available at the S1 File (Section “Data source for case study I”).

We demonstrate iBLAST’s fidelity and performance over three time periods for case study

I, as shown in Fig 3(A). The instances for nucleotide database changes through time as follows:

• Time 0: The nucleotide database comprises 44.5% of the fully available nt database. Both

NCBI BLAST and iBLAST search on the same database.

• Time 1: The nucleotide database comprises 62.7% of the nt database. While NCBI BLAST

searches 62.7% of nt, iBLAST searches only 18.2% of nt. The database grew by 40.8% (=

(62.7 − 44.5)/44.5) from time 0.

• Time 2: The nucleotide database comprises 84.1% of the nt database. While NCBI BLAST

searches 84.1% of nt, iBLAST searches only 21.4% of nt. The database grew by 34.1% (=

(84.1 − 62.7)/62.7) from time 1.

For this case study, we also similarly applied NCBI BLAST and iBLAST to an evolving nr

database. That is, the instances of the protein database change over time (in a similar way to

the nt database, as captured by Fig 3(A)). Specifically, the nr database comprises 35.4%, 47.5%,

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 8 / 16

https://doi.org/10.1371/journal.pone.0249410

and 60.0% of nr at times 0, 1, and 2, respectively. The protein database grew by 34.1% (i.e.,

(47.5 − 35.4)/35.4) and 26.3% (i.e., (67.5 − 35.4)/48) by times 1 and 2, respectively, from the

earlier time periods. Table 2 provides detailed information about the evolving protein database

instances as well as the e-value and hit performance of NCBI BLAST and iBLAST, respectively.

Additional details on the creation of the incremental database can be found in Section “Cre-

ating experimental databases” in the S1 File.

Case study II: Updating a query re-annotation of a novel transcriptomics dataset. Our

second case study mimics a typical scenario in a transcriptome re-annotation project where a

transcriptome is BLAST-ed after a certain period of time as a part of a re-annotation pipeline.

This case study uses a novel dataset not yet available on the NCBI BLAST database—a de novo
assembled transcriptome of the venom gland of an Oak gall wasp (see below)—and thus, the

identity of the assembled sequence was unknown, and the sequence was not available to

BLAST to itself.

Fig 3. Experimental design of three case studies. (A) Case study I: Incremental addition of sequences in the nt database over three time periods. (B) Case

study II: Incremental addition of sequences in the nr database over two time periods. (C) Case study III: Incremental search of taxon-specific databases.

https://doi.org/10.1371/journal.pone.0249410.g003

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 9 / 16

https://doi.org/10.1371/journal.pone.0249410.g003
https://doi.org/10.1371/journal.pone.0249410

As shown in Fig 3(B), we conduct a BLAST search for the same query set for database

instances at two time instances (S3 Table in S1 File):

• Time 0: The database comprises 67.6% of the non-redundant database nr (nr accessed on

August 2018). Both tools perform the search on this same 67.6% of the database.

• Time 1: The database comprises 100% of the non-redundant database nr. While NCBI

BLAST performs a search on 100% of nr, iBLAST only needs to search 32.4% of nr as it can

reuse the search results from time 0. iBLAST merges the result from time 0 with the incre-

mental search result after e-value correction.

We constructed these two database instances by combining database parts using the blas-

tdb_aliastool utility packaged with BLAST+.

Given the number of queries from the de novo assembled transcriptome, it would take a few

months to complete the search on a single processor core. We ran this experiment with 640

cores distributed across 20 compute nodes (where each node contained dual 16-core Intel

Xeon processors, i.e., E5-2683 v4), partitioning the 17, 927 queries into 20 query files and

assigning each file per node. Given that each node would run a subset of queries against the

same database, there is no need to recompute the statistics for these results before we merge

them.

Distributing workload across nodes. The workload across all the nodes should be rela-

tively balanced so that computation for each of the 20 query files finishes roughly simulta-

neously. To ensure such load balancing, we partitioned the queries using the following

strategy. We randomize the order of the queries and partition them so that each partition has

roughly the same number of residues. We compare this strategy against the straightforward

approach of partitioning the queries in a linear order by putting roughly the same number of

queries in each partition.

Case study III: Taxon-based incremental approach. Our third case study presents a spe-

cial case of using a taxon-based incremental approach to obtain a fast, cost-effective, and bio-

logically relevant results for sequence similarity. To achieve this goal, we examine the genes

contained within an assembled transcriptome of the venom gland of a gall wasp of oak trees,

the hedgehog gall wasp (Acraspis erinacei), a taxon lacking a closely related species with a

genome in the nr database. Gall wasps are a group of parasitic wasps that inject their eggs into

plant tissues and induce changes in plant development. These changes result in constructing a

niche for the gall wasp by inducing predictable modifications of plant tissues that both protect

the wasp from the environment and feed the developing wasp. Genes important for inducing

changes in the plant’s development are thought to be produced in the female venom gland

during oviposition [20]. We performed separate BLAST searches of the hedgehog gall wasp

Table 2. Case study I: Fidelity of iBLAST in three consecutive time periods. blastn search was performed on nucleotide sequence databases (nt). At any time instance,

the Past database size is the size of the database from the previous time instance. The Present database size is the database size at the present time instance. Delta is the incre-

mental database growth from the previous time instance to the current time instance. NCBI BLAST must be performed on the entire Present database size, while iBLAST

only needs to be performed on Delta.

NCBI BLAST iBLAST

Time Search Data-base Database Size Delta = Present-Past e-value Match Hit Match

Past Present

t0 blastn nt 0 80,740,533,243 80,740,533,243 100% 100%

t1 blastn nt 80,740,533,243 113,749,495,340 33,008,962,097 100% 100%

t2 blastn nt 113,749,495,340 152,471,828,601 38,722,333,261 100% 100%

https://doi.org/10.1371/journal.pone.0249410.t002

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 10 / 16

https://doi.org/10.1371/journal.pone.0249410.t002
https://doi.org/10.1371/journal.pone.0249410

venom gland against transcriptomes of the closest relatives to gall wasps with curated genomes

including three fairly equidistant taxa [21]—the parasitic wasp Nasonia vitripennis, the honey

bee Apis mellifera, and the ant Harpegnathos saltator,—as well as the more distant model

insect, Drosophila melanogaster, upon which many insect gene annotations are based. We also

performed BLAST searches against the transcripts of an oak tree, Quercus suber, to determine

if some genes belonged to the host as well as a model plant, the soybean, Glycine max.

Using iBLAST, we performed a blastp search individually against each of the databases and

merged the results using the statistics module from iBLAST. After this initial search, we then

added to this analysis all remaining Hymenopteran species using iBLAST to assess the impact

of adding more taxa on the top BLAST hits and further demonstrate the potential of iBLAST

to add taxa progressively, as shown in Fig 3(C). We performed a blastp search against those

seven subsets’ merged database to determine whether the same hits would have been found

from our concatenated incremental analysis as from a combined single-instance run. These

results were further compared with blastp results obtained by searching the complete nr data-

base, allowing us to determine how well we captured the full dataset with this taxon sub-sam-

pling approach. Data collection methods for the gall wasp transcriptomes are provided in the

S1 File (Section “Data collection for case studies II and III”).

Results

We created a tool called iBLAST for e-value correction and incremental BLAST search in the

temporal and spatial domain. The incremental search can be implemented using the software

available at https://github.com/vtsynergy/iBLAST following instructions available in the S1

File (Section “iBLAST software allows the user to perform incremental BLAST search with

minimal overhead”). The findings of the three case studies demonstrate the efficacy and utility

of iBLAST.

Case study I: Method verification and performance

Verification. In case study I, we validate whether we can achieve the same results from a

single NCBI BLAST search as from the iBLAST. As shown in Table 2 and S4 Table in S1 File,

iBLAST delivers the same results as NCBI BLAST with a 100% e-value match and 100% hit

match.

• blastn: Sequence alignment using blastn was performed on nt databases (nucleotide

sequences). In all three time periods, iBLAST finds all the same hits and in the same order as

NCBI BLAST does for blastn, including 3, 964 hits at time t0; 4, 150 hits at time t1, and 4, 924

hits at time t2, thus validating iBLAST with respect to Karlin-Altschul statistics (Table 2).

• blastp: Sequence alignment using blastp was performed on nr (non-redundant protein

sequences) databases. For each of these three time periods, iBLAST reports the same hits in

the same order as NCBI BLAST for blastp. The numbers of reported hits in these three time

periods for blastp are 45, 154 hits; 46, 356 hits; and 46, 869 hits, respectively, thus validating

iBLAST with respect to Spouge statistics (S4 Table in S1 File).

Performance. For a δ increase in database size, iBLAST performs (1 + δ)/(δ) times faster

than NCBI BLAST. Fig 4 shows the time saved for both blastp and blastn, respectively, using

iBLAST, resulting in a speedup ranging between approximately three- and five-fold.

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 11 / 16

https://github.com/vtsynergy/iBLAST
https://doi.org/10.1371/journal.pone.0249410

Case study II: Large-scale alignment tasks on novel datasets

We performed searches using iBLAST and NCBI BLAST, where a newly obtained gall wasp

(Hymenoptera: Cynipidae) transcriptome dataset was utilized as queries in two time periods

across which there was a 48% increase in the nr database (S5 Table in S1 File). In both time

periods, iBLAST reports the same hits in the same order as an NCBI BLAST run.

For this increase in the database size, iBLAST is 3.1 times faster than NCBI BLAST. Relative

to the total execution time of 134 minutes, the time needed for e-value correction and merging

the results is minimal, i.e., less than a minute using only 20 cores. Overall, NCBI BLAST com-

pletes the alignment search in 24, 862 seconds (6 hours, 54 minutes) on average, while iBLAST

completes the search in only 8, 009 seconds (2 hours, 14 minutes). The merge time for each of

these tasks is 40 seconds on average. This computational efficiency matches our projected

speedup (1+ 0.48)/0.48 = 3.08.

We observed the effect of query partitioning on load balancing (see Section “Distributing

workload across nodes”). Our approach to partition the queries based on the number of resi-

dues shows superior load-balancing over the traditional strategy to partitioning the queries

based on the number of queries. We elaborate on this point further in the S1 File (Section

“Load-balancing via query partitioning”).

Case study III: Taxon-specific searches to expedite informatics

To examine the fidelity of iBLAST while merging multiple (taxon-specific) databases, we first

compared the iBLAST merged results from multiple individual BLAST (blastp) searches on

seven biologically relevant taxa separately to results obtained when a BLAST search was per-

formed against a database combining all the sequences belonging to these taxa simultaneously.

The result exhibits 100% fidelity. Then, as presented in Table 3, we compare the merged

BLAST results of individual taxon-level database search with the BLAST results obtained in

case study II (time period 1), where the same queries were searched against the entire nr data-

base to better understand the relative time savings vs. accuracy of taxon-guided approaches.

The taxon-specific approach is much more time-efficient and computationally inexpensive as

Fig 4. Performance comparison between NCBI BLAST and iBLAST for case study I. (A) Performance comparison

between regular blastn and incremental blastn at 3 periods when nt database is growing over time, using 100

nucleotide queries. For 40.8% and 34.0% increase in the database size, iBLAST performs 2.93 and 3.03 times faster

respectively. (B) Performance comparison between regular blastp and incremental blastp at 3 periods when nr database

is growing over time, using 100 protein queries. For 34.1% and 26.3% increase in the database size, iBLAST performs

4.33 and 4.98 times faster respectively.

https://doi.org/10.1371/journal.pone.0249410.g004

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 12 / 16

https://doi.org/10.1371/journal.pone.0249410.g004
https://doi.org/10.1371/journal.pone.0249410

it searched much smaller-sized databases. 8.12% of the top hits obtained from a search of nr

were found by searching only the initial set of 6 taxa, which comprise only 0.35% of nr.

Although this number is low, the identity of high-scoring hits is likely to be similar even if the

best taxonomic hit to a query sequence was not retrieved, as gall wasps do not have any close

relatives currently hosted in NCBI databases but rather many equidistant relatives. Given this,

we then added in sequences of the rest of Hymenopteran species to see if this improves the

number of shared top hits. With this analysis, we conducted BLAST search on only 1.17% of

the total nr yet obtained 87.75% similarity in top hits to a full nr BLAST. This result demon-

strates the potential of performing more taxon-guided approaches to save on the costs of large-

scale BLAST searching jobs. Performing the analysis in this way has also enabled improved

curation of hits by taxon, which facilitates better biological interpretation of these results.

iBLAST finds better scoring hits that are missed by NCBI BLAST

While iBLAST finds all the hits reported by NCBI BLAST in the same order of appearance,

iBLAST reports several better scoring hits that NCBI BLAST misses in all the case studies. Since

case study II covers the most number of hits, we quantified these missed hits for this case

study. NCBI BLAST misses 1.57% (13171 out of 837942 top hits) of the better scoring hits.

Command-line NCBI BLAST uses a search parameter max_target_seqs in an unintended way

where instead of reporting all the best max_target_seqs hits, it has a bias toward first max_tar-
get_seqs hits. A comprehensive discussion about this issue was carried out by Sujai Kumar

(https://gist.github.com/sujaikumar/504b3b7024eaf3a04ef5/) and two other teams of research-

ers [22, 23]. In this process, it misses some of the better scoring hits that are discovered in a

later phase of the search. (Details can be found in Section “Explanation for NCBI BLAST miss-

ing many top hits” of the S1 File) This is an extra advantage of iBLAST over NCBI BLAST.

Since the former works on smaller databases and then combines the results instead of search-

ing a single large database, it has more candidate hits to choose from for reporting final hits.

Discussion

In this paper, we have introduced iBLAST, an incremental local-alignment tool that enables

combining multiple search results with e-value correction. iBLAST delivers results that com-

prehend those of NCBI BLAST. Our statistical correction facilitates novel ways of performing

sequence alignment tasks and incorporating domain knowledge. For a δ fraction increase in

the database size, iBLAST can perform (1 + δ)/δ times faster than NCBI BLAST (i.e., 10%

growth in database size will yield an 11-fold speedup for iBLAST over NCBI BLAST). We

Table 3. Potential for taxon-guided searches enabled by iBLAST. Comparison of merged BLAST results from multiple individual BLAST searches with a separate

BLAST search conducted against a completed nr database shows that biologically relevant taxa can be added incrementally to obtain similar results to nr by searching

against a much smaller database size.

Species NCBI taxon id %nr sequences covered Number of nr top hits covered %nr top hits covered

Nasonia vitripennis (jewel wasp) 7425 0.02% 853 4.84%

Apis mellifera (honey bee) 7460 0.02% 207 1.17%

Harpegnathos saltator (Jerdon’s jumping ant) 10380 0.03% 347 1.96%

Drosophila melanogaster (fruit fly) 7227 0.08% 6 0.034%

Quercus suber (cork oak) 58331 0.09% 0 0.00%

Glycine max (soybean) 3847 0.11% 22 0.12%

Rest of Hymenoptera 7399 0.83% 14281 80.98%

Total multiple 1.17% 15476 87.75%

https://doi.org/10.1371/journal.pone.0249410.t003

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 13 / 16

https://gist.github.com/sujaikumar/504b3b7024eaf3a04ef5/
https://doi.org/10.1371/journal.pone.0249410.t003
https://doi.org/10.1371/journal.pone.0249410

should note that for a small increase in the database size (which is the most likely scenario

between two searches), iBLAST delivers a large speedup factor. Furthermore, iBLAST discov-

ers better hits than NCBI BLAST. While iBLAST finds 100% of the hits that NCBI BLAST

reports in the same order, iBLAST also reports many additional high-scoring hits that NCBI

BLAST misses due to an early approximation used by the heuristic search algorithm in NCBI

BLAST.

With the expansion of genetic (sequencing) data available in NCBI, the computational time

for large-scale analyses becomes increasingly burdensome, resulting in analyses that take

months to complete with a substantial cost, both financially and with respect to “time to solu-

tion.” This problem is aggravated by cheaper sequencing technology leading to ever-larger

genome assembly/transcriptomics projects with substantially more samples to analyze. Our

iBLAST tool can help relieve this cost burden. Utilization of iBLAST can enable frequent itera-

tive updates for re-annotation of genome and transcriptome assemblies at a much lower cost

(with respect to computational time and financial cost), which is useful given the rapid changes

in the nr databases across the duration of a project or its aftermaths. We can add specific data-

sets of interest to previous searches, such as scenarios involving the availability of new genome

releases or conducting large phylogenetic studies. As demonstrated in the final case study, we

can use the program in transcriptomic or metagenomics projects by merging the results of

knowledge-guided BLAST searches only on biologically relevant groups. The approach used in

that case study enables iterative exploration by taxon and facilitates BLAST results’ curation.

Our iBLAST software can work as a wrapper around other fast BLAST implementations

and provide multiplicative speedup on the wrapped applications’ speedup. iBLAST’s improved

runtime performance is due to the incremental nature of its algorithm. So, it will be
1þ d

d
times faster for a δ-fractional growth compared to other non-incremental optimized imple-

mentations of BLAST such as cuBLASTP if the former is used as a wrapper around the latter.

These other tools have varying degrees of sensitivity compared to NCBI BLAST. mpiBLAST

[9] produces similar search results, CaBLAST’s compressive algorithm [6] achieves over 99%

sensitivity for the improved speed, and various versions of DIAMOND have sensitivity in the

range 91.04% − 99% for various datasets [5]. iBLAST achieves 100% sensitivity and can

improve other tools’ sensitivity.

A similar approach can benefit other sequence similarity tools and their various implemen-

tations if the statistics for correcting the respective statistical significance values (analog to e-

value) of the results are available. We aim to develop a standard pipeline for other popular

sequence-similarity search tools to combine results through a framework for automated statis-

tical correction in future work. Through its statistical correction formulas and software stack,

iBLAST presents the potential to make other sequence similarity-search tools faster by utilizing

past search results and incorporating domain knowledge in a period when sequence database

is growing exponentially.

Supporting information

S1 File.

(PDF)

Acknowledgments

We like to thank Andy Deans and István Mikó for their contributions to the data collection

and Istvan Albert and Ramu Anandakrishnan for providing valuable feedback on earlier ver-

sions of the manuscript. We also thank Yang Pu and Jingwei Zhang for working on the initial

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0249410.s001
https://doi.org/10.1371/journal.pone.0249410

model of iBLAST concerning Karlin-Altschul statistics. Computation for this research were

performed on Virginia Tech’s Advanced Research Computing (VT ARC) and Pennsylvania

State University’s Institute for CyberScience Advanced CyberInfrastructure (ICS-ACI).

Author Contributions

Conceptualization: Sajal Dash, Sarthok Rasique Rahman, Heather M. Hines, Wu-chun Feng.

Data curation: Sarthok Rasique Rahman.

Formal analysis: Sajal Dash, Sarthok Rasique Rahman.

Funding acquisition: Heather M. Hines, Wu-chun Feng.

Investigation: Sajal Dash, Wu-chun Feng.

Methodology: Sajal Dash, Sarthok Rasique Rahman, Wu-chun Feng.

Project administration: Sajal Dash, Wu-chun Feng.

Resources: Sarthok Rasique Rahman, Heather M. Hines, Wu-chun Feng.

Software: Sajal Dash.

Supervision: Sajal Dash, Heather M. Hines, Wu-chun Feng.

Validation: Sajal Dash, Sarthok Rasique Rahman.

Visualization: Sajal Dash, Sarthok Rasique Rahman.

Writing – original draft: Sajal Dash, Sarthok Rasique Rahman, Heather M. Hines, Wu-chun

Feng.

Writing – review & editing: Sajal Dash, Sarthok Rasique Rahman, Heather M. Hines, Wu-

chun Feng.

References
1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of

molecular biology. 1990; 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

2. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, et al. GenBank. Nucleic

Acids Research. 2017; 46(D1):D41–D47. https://doi.org/10.1093/nar/gkw1070 PMID: 27899564

3. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big data: astronomical or geno-

mical? PLoS biology. 2015; 13(7):e1002195. https://doi.org/10.1371/journal.pbio.1002195 PMID:

26151137

4. Eddy SR. Profile hidden Markov models. Bioinformatics (Oxford, England). 1998; 14(9):755–763.

https://doi.org/10.1093/bioinformatics/14.9.755

5. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nature methods.

2014; 12(1):59.

6. Loh PR, Baym M, Berger B. Compressive genomics. Nature biotechnology. 2012; 30(7):627. https://

doi.org/10.1038/nbt.2241

7. Zhang J, Wang H, Lin H, Feng Wc. cuBLASTP: Fine-grained parallelization of protein sequence search

on a GPU. In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium, IEEE;

2014. p. 251–260.

8. Zhang J, Misra S, Wang H, Feng Wc. muBLASTP: database-indexed protein sequence search on multi-

core CPUs. BMC bioinformatics. 2016; 17(1):443. https://doi.org/10.1186/s12859-016-1302-4

9. Darling AE, Carey L, Feng WC. The design, implementation, and evaluation of mpiBLAST. Los Alamos

National Laboratory; 2003.

10. de Castro MR, dos Santos Tostes C, Dávila AM, Senger H, da Silva FA. SparkBLAST: scalable BLAST

processing using in-memory operations. BMC bioinformatics. 2017; 18(1):318. https://doi.org/10.1186/

s12859-017-1723-8

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 15 / 16

https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/gkw1070
http://www.ncbi.nlm.nih.gov/pubmed/27899564
https://doi.org/10.1371/journal.pbio.1002195
http://www.ncbi.nlm.nih.gov/pubmed/26151137
https://doi.org/10.1093/bioinformatics/14.9.755
https://doi.org/10.1038/nbt.2241
https://doi.org/10.1038/nbt.2241
https://doi.org/10.1186/s12859-016-1302-4
https://doi.org/10.1186/s12859-017-1723-8
https://doi.org/10.1186/s12859-017-1723-8
https://doi.org/10.1371/journal.pone.0249410

11. Youssef K, Feng Wc. SparkLeBLAST: Scalable Parallelization of BLAST Sequence Alignment Using

Spark. In: 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing

(CCGrid). Melbourne, Victoria, Australia; 2020.

12. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O’Neill K, et al. RefSeq: an update on pro-

karyotic genome annotation and curation. Nucleic acids research. 2017; 46(D1):D851–D860. https://

doi.org/10.1093/nar/gkx1068

13. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence

(RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic

acids research. 2015; 44(D1):D733–D745. https://doi.org/10.1093/nar/gkv1189 PMID: 26553804

14. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-

BLAST: a new generation of protein database search programs. Nucleic acids research. 1997;

25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389 PMID: 9254694

15. NCBI. The Statistics of Sequence Similarity Scores; 2019. https://www.ncbi.nlm.nih.gov/BLAST/

tutorial/Altschul-1.html.

16. Karlin S and Altschul SF. Methods for assessing the statistical significance of molecular sequence fea-

tures by using general scoring schemes. Proceedings of the National Academy of Sciences. 1990;

87(6):2264–2268. https://doi.org/10.1073/pnas.87.6.2264

17. Altschul SF, Bundschuh R, Olsen R, Hwa T. The estimation of statistical parameters for local alignment

score distributions. Nucleic Acids Research. 2001; 29(2):351–361. https://doi.org/10.1093/nar/29.2.351

18. Park Y, Sheetlin S, Ma N, Madden TL, Spouge JL. New finite-size correction for local alignment score

distributions. BMC research notes. 2012; 5(1):286. https://doi.org/10.1186/1756-0500-5-286

19. Lagnel J, Tsigenopoulos CS, Iliopoulos I. NOBLAST and JAMBLAST: New Options for BLAST and a

Java Application Manager for BLAST results. Bioinformatics. 2009; 25(6):824–826. https://doi.org/10.

1093/bioinformatics/btp067

20. Vårdal H. Venom gland and reservoir morphology in cynipoid wasps. Arthropod structure & develop-

ment. 2006; 35(2):127–136. https://doi.org/10.1016/j.asd.2006.05.002

21. Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, et al. Evolutionary history of the

Hymenoptera. Current Biology. 2017; 27(7):1013–1018. https://doi.org/10.1016/j.cub.2017.01.027

PMID: 28343967

22. Shah N, Nute MG, Warnow T, Pop M. Misunderstood parameter of NCBI BLAST impacts the correct-

ness of bioinformatics workflows. Bioinformatics. 2018; p. bty833. https://doi.org/10.1093/

bioinformatics/bty833

23. González-Pech RA, Stephens TG, Chan CX. Commonly misunderstood parameters of NCBI BLAST

and important considerations for users. Bioinformatics. 2018;. https://doi.org/10.1093/bioinformatics/

bty1018

PLOS ONE iBLAST: Incremental BLAST of new sequences via automated e-value correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249410 April 22, 2021 16 / 16

https://doi.org/10.1093/nar/gkx1068
https://doi.org/10.1093/nar/gkx1068
https://doi.org/10.1093/nar/gkv1189
http://www.ncbi.nlm.nih.gov/pubmed/26553804
https://doi.org/10.1093/nar/25.17.3389
http://www.ncbi.nlm.nih.gov/pubmed/9254694
https://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html
https://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html
https://doi.org/10.1073/pnas.87.6.2264
https://doi.org/10.1093/nar/29.2.351
https://doi.org/10.1186/1756-0500-5-286
https://doi.org/10.1093/bioinformatics/btp067
https://doi.org/10.1093/bioinformatics/btp067
https://doi.org/10.1016/j.asd.2006.05.002
https://doi.org/10.1016/j.cub.2017.01.027
http://www.ncbi.nlm.nih.gov/pubmed/28343967
https://doi.org/10.1093/bioinformatics/bty833
https://doi.org/10.1093/bioinformatics/bty833
https://doi.org/10.1093/bioinformatics/bty1018
https://doi.org/10.1093/bioinformatics/bty1018
https://doi.org/10.1371/journal.pone.0249410

