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Noble metal nanomaterials, such as gold, silver, and platinum, have been studied

extensively in broad scientific fields because of their unique properties, including

superior conductivity, plasmonic property, and biocompatibility. Due to their unique

properties, researchers have used them to fabricate biosensors. Recently, biosensors

for detecting respiratory illness-inducing viruses have gained attention after the global

outbreak of coronavirus disease (COVID-19). In this mini-review, we discuss noble

metal nanomaterials and associated biosensors for detecting respiratory illness-causing

viruses, including SARS-CoV-2, using electrochemical and optical detection techniques.

this review will provide interdisciplinary knowledge about the application of noble metal

nanomaterials to the biomedical field.
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INTRODUCTION

Viruses are infectious pathogens that require hosts for parasitic entry and cause significant
disease due to their properties of propagation and genetic replication (Mokhtarzadeh et al.,
2017; Abid et al., 2021). Severe acute respiratory syndrome coronavirus (SARS-CoV-2), which
causes COVID-19, is raging rapidly worldwide because of the pandemic. Respiratory illness-
inducing viruses, such as SARS-CoV-2, influenza virus, and Middle East respiratory syndrome
coronavirus (MERS-CoV), have gained tremendous scientific interest due to their strong viability,
transmissibility, and fatalities associated with their infections. In biomedical fields, numerous
studies have been performed to diagnose and treat diseases caused by these viruses.

However, although treatments for previously existing virus infections have been developed,
there remain obstacles to the rapid development of specific drugs or vaccines that respond perfectly
to variants of respiratory illness-inducing viruses or newly discovered viruses (Srivastava et al.,
2021). Therefore, biosensing techniques are an interesting and suitable option for exploring
treatments of such infections; these treatments are aided by detecting the target virus for early
diagnosis of the pathogenic disease (Afsahi et al., 2018; Dronina et al., 2021).

A biosensor is a medical platform to detect environmental components or biocomponents
using numerous techniques, such as electrochemical detection using redox properties of materials,
fluorescence detection with fluorescent dyes, and surface-enhanced Raman scattering (SERS) by the
unique optical properties of materials (Goode et al., 2015). For early detection of the virus, several
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targets such as nucleic acids and proteins are used from biofluids
(Lee et al., 2018). Furthermore, to enhance the selectivity and
sensitivity of virus detection, various nanomaterials are used
because of their small size, increased surface area, conductivity,
and optical characteristics. Noble metal nanomaterials (e.g., gold,
silver, and platinum) have been widely used in biosensors because
of their high conductivity, biocompatibility, and stability (Wang,
2012).

Furthermore, they enable target virus detection directly
or indirectly with a rapid response. The excellent stability
of noble metal nanomaterials ensures the reproducibility of
virus detection results using biosensors. With these advantages,
biosensors comprising noble metal nanomaterials have been
used as a biosensing platform with high performance, including
high selectivity and sensitivity. In this mini-review, we focus
on noble metal nanomaterials that exhibit suitable electrical
and optical properties and provide detailed information on
electrochemical and optical biosensors comprising noble metal
nanomaterials aimed at detecting respiratory illness-inducing
viruses. recently developed novel biosensors for SARS-CoV-2
detection are explored in this mini-review. We expect this mini-
review to present the broad prospects of the use of biosensors
for the detection of respiratory illness-inducing viruses and assist
researchers with an advanced diagnostic system to overcome
the pandemic.

NOBLE METAL NANOMATERIALS FOR
BIOSENSORS

Noble metals are metallic elements (e.g., ruthenium, rhodium,
palladium, platinum, gold, and silver) with outstanding
resistance to high temperatures and chemical reactions
(Hämäläinen et al., 2014; Sow et al., 2020). Noble metal
nanomaterials have attracted scientific and technology research
because of their small size (0.1–100 nm) and unique chemical
and physical properties. For example, noble metal nanomaterials
have been used as catalysts to reduce pollutants from exhausts
because the surface of noble metal nanomaterials functions as the
active sites for redox molecules and increases catalytic activities
when the surface is in a zero-valent state (Hegde et al., 2009;
Wang and Gu, 2015). Furthermore, noble metal nanomaterials
have been used in biosensors because they can precisely and
accurately detect target biocomponents because of their quantum
mechanical properties due to their small size, biocompatibility,
and easy accessibility for modification (Doria et al., 2012; Zhu
et al., 2016; Craciun et al., 2017).

The gold nanoparticle (AuNP) is a noble metal nanomaterial
studied for over 100 years (Giljohann et al., 2010). It
has unique properties, including high electrical conductivity,
biocompatibility, and stability (Sardar et al., 2009). Furthermore,
surface modification of the gold surface can be easily achieved
using a thiol group via the gold–thiol covalent attachment. These
properties provide a convenient functionalization approach
for AuNPs, particularly for their application in biomedical
fields (Choi et al., 2020). In the electrochemical biosensing
field, the fine electrical conductivity of AuNPs is useful

when the target biomolecules are present in a small amount
and the electrochemical signals from the redox reaction of
biosensor samples are extremely small. Because of the excellent
electrical conductivity of AuNPs, electrochemical biosensors
comprising AuNPs have been developed by many researchers
to achieve target biomolecule detection with high sensitivity
and selectivity.

Furthermore, optical properties, such as surface plasmon
resonance (SPR), differ depending on the structure of the
AuNP. For example, Au nanorods, Au nanocages, and hollow
Au nanospheres exhibit near-infrared absorption. In contrast,
AuNPs absorb visible SPR, and the SPR property is controlled
by the size of the AuNP (Guo and Wang, 2011). Given
that optical biosensors comprise materials with novel and
remarkable optical properties, AuNP is a promising material for
use in optical biosensors.

Like AuNP, the silver nanoparticle (AgNP) is a suitable
candidate for biosensors. Silver is a noble metal nanomaterial
with its first recorded medical use dating back to the eighth
century (Ravindran et al., 2013). The prior property of the
silver is an SPR property that can be applied to photonic and
sensor applications. Furthermore, the optoelectronic properties
of silver can be optimized for the size, shape, and composition of
AgNP because the optical properties originate from the collective
oscillations of electrons. Therefore, AgNPs have been modified
into various forms and compositions depending on the purpose
of their application.

For example, Liu et al. synthesized a sliver nanocluster
(AgNC) for label-free DNA detection (Liu et al., 2014). In this
study, two types of AgNCs were used as fluorophores because the
fluorescent properties of AgNCs were primarily sequence- and
structure-dependent. Each type of the AgNCs was tailored to two
different regions of a probe. Under the existence of target DNA,
the two different AgNCs exhibited opposite fluorescence signals,
such that the fluorescence signal from one AgNC increased when
that from the other AgNC decreased. Finally, the ratio of the
two different fluorescence signals could be used to detect the
target DNA with high sensitivity. Moreover, an Ag nanorod
with an aligned array was used to enhance the SERS signals
(Chaney et al., 2005). The optimal aspect ratio of the Ag nanorod
and arrangement of the nanoarray could successfully enhance
the signals.

Furthermore, numerous electrochemical biosensors use
AgNPs as a core component to enhance the detection
performance due to their high electrical conductivity (Shin et al.,
2017; Xu et al., 2019). However, there remains a disadvantage to
using AgNPs for in vivo applications because the high densities
of AgNPs exhibited toxicity during oxidation. Desireddy et al.
synthesized ultrastable AgNPs to enhance the biocompatibility
of AgNPs (Desireddy et al., 2013). The researchers developed a
new approach to synthesizing ultrastable AgNPs involving the
use of p-mercaptobenzoic acid to protect the ligand shell. The
synthesized ultrastable AgNPs demonstrated excellent stability
due to the Ag2S5 capping structure, a silver thiolate protecting
layer. As described, AgNPs could be a novel component for
various biomedical applications, including biosensors, because
of their fascinating optical and electrochemical properties
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and biocompatibility if they are modified or capsulated with
stable materials.

Platinum (Pt) has gained interest as an excellent catalyst
because of its high stability in acid electrolytes and remarkable
catalytic property for hydrogen redox reactions. In addition
to the high cost associated with its rarity in nature, Pt—a
small particle that is not a bulk-form—is conventionally used
for chemical and biological applications. The Pt nanoparticles
(PtNPs) for the catalytic application are from 2 to 5 nm, and the
catalytic activity is particle-size dependent (Kinoshita, 1990). The
excellent catalytic property of PtNPs can support electrochemical
biosensors that use high oxygen redox activity (Garlyyev et al.,
2019).

Accordingly, researchers have studied and developed various
types of PtNPs and synthetic methods for controlling the shape
of PtNPs to use them in specific applications like biosensors. For
instance, Inaba et al. controlled the growth and shape formation
of PtNPs to enhance their electrochemical properties (Inaba
et al., 2006). In their research, cubic PtNPs were synthesized
fromK2PtCl4 solution with a sodium polyacrylate. Depending on
the reaction temperature, the molecular weight of polyacrylate,
and the Pt/polyacrylate ratio, the shape and size of PtNPs were
modified, affecting the electrochemical properties.

Furthermore, spherical, nanorod, and nanowire form of Pt
could be synthesized using preparative conditions (Ramirez et al.,
2007). Because the catalytic properties of PtNPs could be changed
by optimizing their shape and size, various types of PtNPs are
desirable for use in electrochemical biosensors (Yang et al., 2006;
Nguyen et al., 2019; Eom et al., 2020). Like other noble metal
nanomaterials, the optical properties of PtNPs are also affected by
their shape and size (Bigall et al., 2008). Accordingly, PtNPs have
been used in optical biosensors (Tata et al., 2018; Cheng et al.,
2019).

BIOSENSORS COMPOSED OF NOBLE
METAL NANOMATERIALS FOR
DETECTING VIRUS CAUSING
RESPIRATORY PROBLEMS

Because of the unique properties of noble metal nanomaterials,
they have been used in biosensors to detect viruses.
Electrochemical and optical sensors are powerful analytical
tools for real-time analysis of various samples (Majdinasab et al.,
2019). The excellent properties of noble metal nanoparticles are
suited for the design of optical and electrochemical biosensors,
such that many researchers have developed noble metal
nanoparticles and used them as an immobilization linker of bio-
receptors, signal enhancement material, and signal transducers
in biosensors for electrochemical and optical detection (Zhao X.
et al., 2020). Recently, many biosensors for virus detection have
been developed due to the coronavirus pandemic, and noble
metal nanoparticles are at the center of these developments.
In the following sections, we introduce various biosensors that
use noble metal nanoparticles (AuNPs, AgNPs, and PtNPs) for
detecting viruses that cause respiratory problems.

ELECTROCHEMICAL BIOSENSORS FOR
VIRUS DETECTION

Electrochemical sensing technology has been widely used in
biosensing due to its excellent properties of high sensitivity,
speed, and simplicity (Khan et al., 2020). These technologies, such
as cyclic voltammetry (CV), amperometry, and electrochemical
impedance spectroscopy (EIS), can analyze electrochemical
activities like the reduction and oxidation of biomolecules or
chemicals (Cho et al., 2020; Noori et al., 2020). Because these
sensing methods are based on electron transfer, it is essential
to increase electron transfer rates and electrode surface area
to enhance the electrochemical signal and increase sensitivity
(Shin et al., 2020; Zhang L. Y. et al., 2020). In this context,
the use of noble metal nanoparticles has received increasing
attention in electrochemical biosensors for several reasons. The
incorporation of noble metal nanoparticles in the biosensing
platform can enhance the electrical response signal because of
its attractive properties, such as high electrical conductivity, high
surface area, and effectiveness in adhering to biomolecules (Jo
et al., 2019; John et al., 2021).

The effectiveness immobilization of biomolecules on noble
metal nanoparticles is crucial in the electrochemical biosensor
because the electrochemical signal is highly dependent on
chemicals or biomolecules that function as transducers, signal-
inducers, and capturing agents for target biomolecules (Zhang
et al., 2020). the interaction between the thiol group of
biomolecule and the surface of a noble metal nanoparticle
have been widely used in electrochemical biosensors because
of the effectiveness in adhering the target biomolecule to the
surface of the nanoparticle. For example, Zhao et al. reported
an ultrasensitive electrochemical detection technology using
p-sulfocalix[8]arene functionalized reduced graphene oxide with
AuNPs, toluidine blue, and the labeled signal probe (Au@SCX8-
RGO-TB) for targeting the RNA of SARS-CoV-2 (Zhao et al.,
2021). Through the coordination of AuNP-sulfhydryl groups, the
signal probe and other materials were immobilized with AuNPs
anchored on the material surface. The RGO-SCX8-Au and the
Au@Fe3O4 probe constructed a super-sandwich structure using
the viral RNA and probe’s DNA fragments. The magnetism of
the Au@Fe3O4 nanoparticle helped separate the super-sandwich
structure from the solution. The separated Au@SCX8-RGO-TB
via viral RNA was dropped on the carbon-three electrode screen-
printing carbon electrode (SPCE). In Au@SCX8-RGO-TB,
toluidine blue functioned as an electrochemical signal-inducing
molecule. By analyzing the signal of separated Au@SCX8-RGO-
TB using differential pulse voltammetry (DPV) which is one of
the electrochemical detection methods, the amount of viral RNA
can be analyzed (Figure 1A). This biosensor demonstrated high
specificity and sensitivity, in which the limit of detection (LOD)
of the clinical specimen was 200 copies/mL without reverse
transcription and nucleic acid amplification.

AuNPs have the characteristic of electrostatic interactions or
physisorption with a protein; therefore, they can be used to
immobilize antibodies on the electrode. With these properties, a
fluorine-doped tin oxide electrode with AuNPs and SARS-CoV
antibody was fabricated. When the SARS-CoV spike protein was
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FIGURE 1 | Fabrication process of electrochemical and optical biosensors for detection of viruses causing respiratory illness and principle of detection of the viruses.

(A) Extracted viral RNA was captured with a capture probe on AuNPs and collected using magnetic nanoparticles. The viral RNA was electrochemically detected on a

screen-printed carbon electrode composed of graphene oxide, mediator, and probes (Zhao et al., 2021). (B) Influenza virus was captured between antibodies in

sandwich-structured biosensor composed of Pt-porous zinc oxide-hemin and AuNPs. The influenza virus was electrochemically detected through the catalytic

oxidation of p-NP after catalytic reaction of p-NPP inside the Pt-porous-zinc oxide hemin structure (Yang et al., 2016). (C) The influenza virus was detected by the

colorimetric biosensor. In the presence of target DNA from the influenza virus, negative charged AgNPs were well-dispersed because of the hybridization of probe and

target DNA, with a bright color. In contrast, the AgNPs were aggregated with probe DNA in the absence of target DNA, which cause the solution color to darken

(Teengam et al., 2017). (D) The influenza virus was optically detected using quenching effect. When the influenza virus was capture by the antibodies, the intensity of

QDs immobilized AuNPs decreased by steric hindrance (Nasrin et al., 2020).
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immobilized on the electrode by the antibody-antigen reaction,
the peak current of the electrode was increased. Based on the
results, the biosensor successfully detected SARS-CoV spike
protein with LOD= 7.8× 10−1 pg/mL using DPV (Mahari et al.,
2020).

AgNPs interact with viruses, such as influenza. Through this
well-investigated antiviral activity phenomenon, the interaction
between AgNPs and viruses can be used for low-level detection
of virus based on the inherent electrochemical activity of the
virus–metal nanoparticle interaction in the solution (Galdiero
et al., 2011). For example, Sepunaru et al. developed an influenza
electrochemical biosensor using the interaction between AgNPs
and the virus. Because of the oxidation of AgNPs, the AgNP-
modified virus exhibited an enhanced electrochemical signal
compared to the virus. With the AgNP-tagged virus, the
electrochemical biosensor in their research can rapidly detect the
influenza viruses at a single virus level (Sepunaru et al., 2016).

The high surface area of nanoparticles and conductivity of the
metals themselves help increase electrochemical signals. Layqah
and Eissa developed a MERS-CoV electrochemical immuno-
sensor using an array of AuNP-modified carbon electrodes
(Layqah and Eissa, 2019). In their research, AuNPs functioned
as a signal enhancer by increasing the electrode surface area and
electron transfer rate. With the square wave voltammetry (SWV)
technique, this biosensor can detect from 0.001 to 100 ng/mL
of MERS-CoV (with the LOD = 0.4 pg/mL) in a short period
(20min). Similarly, AgNPs were used for detecting the influenza
virus because AgNPs are a type ofmetal nanoparticle that exhibits
good electrochemical behavior, including long-term stability.

However, using only AgNPs to label the biomolecules causes
low sensitive results. Huang et al. enhanced the signal by
developing a biosensor for detecting the influenza virus using
nanocomposite composed of antibodies, AgNPs, graphene, and
chitosan. In their research, the nanocomposite was used as a
signal probe to increase an electrochemical signal by enlarging
the surface area and immobilization rate of signal-inducing
materials. In the presence of influenza viruses, the signal probe
was immobilized on the electrode surface by a sandwich-type
immuno-reaction consisting of antibodies on the signal probe,
viruses, and antibodies on the electrode. The biosensor analyzed
the electrochemical signal of the signal probe and detected the
influenza virus in the range of 1.6 × 10−3-6 ng/mL with a low
detection limit of 1.6 pg/mL using linear sweep voltammetry
(LSV), which is an electrochemical analysis method (Huang et al.,
2016).

both AuNPs and AgNPs amplify signals with similar
properties in electrochemical measurements, but they have
some differences. As an example of loading DNA on the
surface of nanoparticles, AuNPs are well-separated with both
low and saturated loading of DNA. In contrast, AgNP
exhibited a substantial agglomeration, with both low and
high loading of DNA (Malecka et al., 2021). Furthermore,
Malecka et al. reported that AgNPs required lower DNA
loading than AuNPs for the most accurate DNA detection.
Accordingly, AgNPs can be a candidate as a biosensor component
given their cost-effectiveness, whereas AuNPs can be preferred
for their easy handling and high stability. Consequently, if

AuNPs and AgNPs are used for electrochemical sensors,
the material must be determined according to the needs
and characteristics.

Of the noble metal nanoparticles, PtNPs have been used
in probes of electrochemical biosensors because of their broad
range of electrocatalytic activity, such as in oxidation reactions
(Li and Baek, 2020). For instance, Yang et al. used PtNPs’
catalytic oxidation of 1-naphthol (1-NP) for detecting the
influenza virus using a sandwich immunoassay (Yang et al.,
2016). Briefly, they developed PtNPs and hemin modified
porous ZnO sphere (Pt-pZnO-hemin). The nanocomposite
was functionalized with alkaline phosphatase (ALP) and
anti-influenza-antibody (Ab/ALP/Pt-pZnO-hemin). When the
influenza existed, the Ab/ALP/Pt-pZnO-hemin was immobilized
on the surface of antibody/Au modified electrode via the
sandwich structure. The immobilized nanocomposite displayed
cascade reactions and demostrated electrochemical signal. First,
ALP catalyzed the conversion of 1-naphthyl acid phosphate
(p-NPP) into an electrochemical active 1-naphthol (p-NP). Pt-
hemin catalyzed the conversion of p-NP to 2-hyodroxy-1,4-
naphthoquinone in the presence of H2O2. From these reactions,
electrochemical signal was generated and amplified by cascade
reactions according to the amount of immobilized Ab/ALP/Pt-
pZnO-hemin on the electrode via influenza. By using the
biosensor composed of Ab/ALP/Pt-pZnO-hemin, an amplified
electrochemical signal from catalytic oxidation of 1-NP by PtNPs
was observed, and the influenza virus was detected from a
range of 1.0 × 10−3-60 ng/mL (LOD = 7.6 × 10−1 pg/mL)
(Figure 1B).

OPTICAL BIOSENSORS FOR VIRUS
DETECTION

Optical phenomena including colorimetry, fluorescence, and
SERS have been used in various fields due to advantages such
as relatively less complicated instrumentation, ease of use, and
cost-effectiveness. Because these advantages are suitable for a
point-of-care test (POCT) system, many researchers used optical
phenomena for the biosensor to detect target biomolecules (Lee
et al., 2019; Maddali et al., 2020). Accordingly, the optical
properties of noble metal nanoparticles are desirable in the field
of biosensors.

In optical biosensors, the specific colors of noble nanoparticles
have been widely used because their colors can be detected with
the naked eye (Pham et al., 2020). Also, low-cost instrumentation,
such as a smartphone camera, is required for more sensitive
detection. AuNPs, AgNPs, and PtNPs have red, brown, dark
brown colors, respectively. However, the colors of noble metal
nanoparticles are not always constant. The colors of particles
depend on the particle size or agglomeration of particles.
For example, the color of the AuNPs changes from red to
purple when the AuNPs are agglomerated. The phenomenon
can be applied for detecting SARS-CoV-2 using antibodies
(spike/membrane/envelope antibodies of SARS-CoV-2)-
functionalized AuNPs (f-AuNPs) (Ventura et al., 2020). When
SARS-CoV-2 interacted with f-AuNPs as an antigen-antibody
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reaction, f-AuNPs were agglomerated on the surface of the
virus, resulting in a color change. This colorimetric detection
method detected extremely low viral load with the detection
limit approaching that of real-time PCR.

Althoughmost studies use AuNPs that change color distinctly,
the color change of AgNPs according to the agglomeration is also
applied to detecting DNA because AgNPs exhibited improved
colorimetric sensitivity, resulting from a higher extinction
coefficient than AuNPs. Teengam et al. used pyrrolidinyl peptide
nucleic acid (acpcPNA)-induced AgNPs aggregation to enable
the colorimetric biosensors to detect target DNA extracted
from MERS-CoV (Teengam et al., 2017). Without the target
DNA, acpcPNA illustrates a positive charge that causes it to
agglomerate with negative charged AgNPs. However, in the
presence of the target DNA, the formation of anionic DNA–
acpcPNA complex produced a negative charge. As a result
of electrostatic repulsion, AgNPs produced a detectable color
change according to the target DNA. With the proposed method,
the MERS-CoV target DNA could be detected with detection
limits of 1.53 nM (Figure 1C).

In the development of biosensors, the color of noble metal
nanoparticles has been used not only to change color but also
to use color itself as a probe. However, biosensors, which used
the color of the noble metal nanoparticles themselves, have
limited detection sensitivity. PtNPs have a dark brown color with
relatively high visual contrast, but the color of PtNPs is not as
vivid as AuNPs. Therefore, there is a need to enhance the color
signal of noble metal nanoparticles for the sensitive detection
of analytes.

Matsumura et al. enhanced the color signal by developing
signal-enhanced Pt-latex nanoparticles to detect the influenza
virus and applied them in an immunochromatographic test
(ICT). The color of PtNPs can be enhanced by a latex
organic nanocomposite, with a more vivid color than PtNPs.
Consequently, the noble metal-organic nanocomposite-based
biosensor exhibited higher sensitivity than the bare noble metal
nanoparticle-based biosensor (Matsumura et al., 2018).

Noble metal nanoparticles also exhibit a localized SPR (LSPR)
property induced by the collective oscillation of electrons in
resonance with the incident light frequency. Because of the
LSPR property, the noble metal nanoparticles have been used
for the signal enhancement of fluorescent inorganic quantum
dots (QD) influenced by the adjacent metallic nanoparticles.
Due to the easy fabrication process, high sensitivity, and
high fluorescence enhancing effect, noble metal nanoparticle-
based LSPR-fluorescence-biosensor has been developed in virus
sensing fields.

For example, Nasrin et al. used the surface plasmon effect of
AuNPs for the fluorescent detection of the influenza virus (Nasrin
et al., 2020). When the distance between the QD and AuNP was
the optimal length of the linker peptide, AuNPs could enhance
the fluorescent properties of QDs due to the surface plasmon
effect of AuNPs.When the virus was bound to the linker peptides,
the fluorescence activity was quenched by steric hindrance on the
LSPR behavior. Nasrin et al. used this method and detected the
influenza virus in a range of 10−14-10−9 g/mL with a detection
limit of 1.7× 10−2 pg/mL (Figure 1D).

SERS is a powerful tool for detecting viruses because
it enables label-free, highly sensitive detection. Noble metal
nanomaterials have been used as a SERS-active probe because
of their unique SPR property inducing substantial SERS
enhancement (Lee and Choi, 2019). Maneeprakorn et al.
used star-shaped AuNPs (AuNS), which had multi-arms
and surface roughness for detecting the influenza A virus
(Maneeprakorn et al., 2016). Because the feature of AuNS
enables high SERS performance due to their tunable surface
plasmon and multiple sharp branches, AuNS combined with
Raman active molecule (4-amino thiophenol) and influenza A
nucleoprotein specific antibody nanoparticle was used as a SERS
signal reporter and detection probe. Based on the probe, a
sensitive SERS-based lateral flow immune-chromatographic test
system was developed. This biosensor demonstrated excellent
sensitivity in detecting the influenza A virus with an LOD
of 6.7 ng/mL.

Although AgNPs have less chemical stability than AuNPs,
AgNPs are more plasmonically active than AuNPs and produced
a strong SERS signal (Hassan et al., 2021). Therefore, in SERS-
based biosensing techniques, many researchers have applied
AgNPs for the sensitive detection of targets. Liu et al. developed a
SERS-based lateral flow immunoassay (LFIA) to detect the SARS-
CoV-2 antibodies (IgM/IgG) using SiO2@AgNPs (Liu et al.,
2021). In the research, the Ag shell on SiO2 core (SiO2@AgNP)
coated with Raman dye was fabricated to obtain a strong
signal reporter, and SiO2@AgNPs exhibited high stability and
fine SERS signals because of its high monodispersity. After the
SARS-CoV-2 spike protein was modified on SiO2@AgNPs, the
NPs were simultaneously captured on two zones at the LFIA
biosensor—anti-human IgM and IgG antibodies immobilized,
respectively—using antibody-antigen reactions. Based on the
analysis of SERS intensity of two zones, two zones with anti-
human IgM/IgG antibodies on the biosensor demonstrated
excellent SERS intensity via SiO2@AgNPs in the presence of
SARS-CoV-2 antibodies.

Table 1 summarizes noble metal nanoparticle-based
biosensors for detecting viruses, particularly those causing
respiratory problems. Noble metal nanoparticles are
highly attractive sensing materials for detecting viruses.
Given the unique properties of noble metal nanoparticles,
they have the potential to develop further in the field of
biosensing technologies.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

This mini-review summarizes noble metal nanomaterials
with unique properties and their applicability in developing
biosensors for detecting respiratory illness-inducing viruses. The
fabricated biosensors composed of noble metal nanomaterials
demonstrated excellent biosensing abilities, including high
sensitivity, selectivity, and stability. The detection of previous
respiratory illness-inducing viruses that caused epidemics and
attempts to detect SARS-CoV-2 using developed biosensors were
demonstrated. Even though there are no specific treatments
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TABLE 1 | Noble metal nanomaterials and their application to virus biosensors.

Core noble metal nanomaterials Techniques Target virus Analyte Limit of detection References

AuNPs Electrochemical (DPV) SARS-CoV-2 Nucleic acids (RNA) 200 copies/mL Zhao et al., 2021

Electrochemical (DPV) SARS-CoV-2 Protein 7.8 × 10−1 pg/mL Mahari et al., 2020

Electrochemical (SWV) MERS-CoV Protein 0.4 pg/mL Layqah and Eissa, 2019

Optical (Fluorescence) Influenza virus Protein 1.7 × 10−2 pg/mL Nasrin et al., 2020

Optical (SERS) Influenza virus Protein 6.7 × 103 pg/mL Maneeprakorn et al., 2016

AgNPs Electrochemical (LSV) Influenza virus Protein 1.6 pg/mL Huang et al., 2016

Optical (Colorimetry) MERS-CoV Nucleic acids (DNA) 1.53 nM Teengam et al., 2017

Optical (SERS) SARS-CoV Protein 1 pg/mL Liu et al., 2021

PtNPs Electrochemical (DPV) Influenza virus Protein 7.6 × 10−1 pg/mL Yang et al., 2016

Optical (Colorimetry) Influenza virus Protein 2.5 × 10−2 HAU/mL Matsumura et al., 2018

for SARS-CoV-2 thus far, early diagnosis with rapid detection
using the developed biosensors could decrease the contagion and
fatalities associated with SARS-CoV-2. the biosensing platform
comprising noble metal nanomaterials can be used to make other
biosensors by exchanging the probe of biosensors. This suggests
the immediate applicability of well-developed biosensors to
newly discovered viruses and their variants if their targets and
probes are studied.

Noble metal nanomaterials have unique properties for
accurate and sensitive biosensing. However, there are
limitations associated with their application. First, there are
difficulties in synthesizing the noble metal nanomaterials,
with morphology control of the noble metal nanomaterials
for the application dependent on the fabrication method. For
instance, with soft and nanoimprint lithography, ultra-small
nanoparticles can be synthesized with a simple process.
However, lithography techniques are not cost-effective
and are challenging during the large-scale production
of densely packed nanostructures (Khan et al., 2019).
To mass produce the biosensors for virus detection, this
disadvantage would be an obstruction and would slow down
biosensor development. For example, most of the recently
commercialized biosensors for COVID-19 are paper-based
biosensors (Choi, 2020). Considering the urgency of COVID-19,
paper-based biosensors with user-friendly, cost-effective, and
simple fabrication methods are preferred over other types
of biosensors.

Furthermore, some noble metal nanomaterials (e.g., silver)
exhibit toxicity and low biocompatibility with biosamples—a
significant obstacle for the further application of biosensors
composed of the noble metal nanoparticles, such as in vivo
applications. The hybridization of noble metal nanomaterials
with other components such as carbon-based materials and
other 2D materials may help overcome this limitation. For
instance, carbon-based materials are also suitable for use in
biosensors due to their biocompatibility and excellent electrical
and optical abilities (Wu et al., 2011; Nguyen et al., 2020; Zhang
Y. et al., 2020). Other 2D materials, such as transition metal
dichalcogenide materials, can enhance biosensor performance

due to their electrical properties (Yoon et al., 2019; Zhao P. et al.,
2020). Furthermore, enhancing sensing signal through material
hybridization can increase the sensitivity of biosensors using
only a small amount of essential biomaterials—the primary cost
burden for large-scale production.

Thus far, nanohybrids composed of noble metal
nanomaterials and other biosensor components have
been developed to improve their sensing performance and
biocompatibility. Noble metal nanomaterials are critical core
materials for fabricating biosensors that detect not only viruses
but also other target biocomponents using various sensing
techniques. Furthermore, there is a developmental potential
in broad aspects for the noble metal nanomaterials using
various applications, such as the hybridization of noble metal
nanomaterials with other materials or controlling the structure
of noble metal nanomaterials. We believe that improvements in
biosensors comprising noble metal nanomaterials will enable
the early diagnosis of major new diseases, including respiratory
illnesses causing an epidemic or a pandemic, more efficiently and
help promote wellness globally.
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