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Abstract: Lipidomics is a newly emerged discipline involving the identification and quantification
of thousands of lipids. As a part of the omics field, lipidomics has shown rapid growth both in the
number of studies and in the size of lipidome datasets, thus, requiring specific and efficient data analysis
approaches. This paper aims to provide guidelines for analyzing and interpreting lipidome data obtained
using untargeted methods that rely on liquid chromatography coupled with mass spectrometry (LC-MS)
to detect and measure the intensities of lipid compounds. We present a state-of-the-art untargeted
LC-MS workflow for lipidomics, from study design to annotation of lipid features, focusing on practical,
rather than theoretical, approaches for data analysis, and we outline possible applications of untargeted
lipidomics for biological studies. We provide a detailed R notebook designed specifically for untargeted
lipidome LC-MS data analysis, which is based on xcms software.

Keywords: lipidome; LC-MS; bioinformatics

1. Introduction

Lipids represent the hydrophobic fraction of small biological molecules with a molec-
ular weight below 1500 Da, known as metabolites [1]. Lipids play a crucial role in the cell,
tissue, and organ physiology, acting not only as structural components of the membranes
but also as signaling molecules and active members of various protein complexes. The
significance of lipids is highlighted by a large number of studies and diseases involving
the disruption of lipid metabolic enzymes and pathways, including neurological disorders,
such as Alzheimer’s or Parkinson’s diseases, as well as diabetes and cancer [2–8].

Over the last decade, the development of liquid chromatography coupled with mass
spectrometry (LC-MS) has enabled comprehensive measurements of lipidome composition,
yielding thousands of distinct MS peaks that represent individual lipid species. Such a
large number of different lipid species arises from multiple combinations of fatty acids with
base structures (Figure 1a,b). High-performance liquid chromatography (HPLC) covers
many lipid classes, including sterols, glycerolipids, glycerophospholipids, sphingolipids,
fatty acyls, and lipid headgroup derivatives.

Fatty acyls, containing a hydrocarbon chain that terminates with a carboxylic acid
group, represent a diverse group of fundamental biological lipids that are commonly
used as building blocks of more structurally complex lipids and precursors of biolog-
ically active lipids: prostaglandins, leukotrienes, and thromboxanes. Sterols, such as
cholesterol and its derivatives, are important components of cellular membranes, along
with glycerophospholipids: phosphatidylcholine, phosphatidylethanolamine, and phos-
phatidylserine. Glycerophospholipids, containing a phosphate group esterified to one of
the glycerol hydroxyl groups, are also involved in the metabolism and cell signaling, and

Metabolites 2021, 11, 713. https://doi.org/10.3390/metabo11110713 https://www.mdpi.com/journal/metabolites

https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0001-9268-3352
https://orcid.org/0000-0002-8174-9544
https://doi.org/10.3390/metabo11110713
https://doi.org/10.3390/metabo11110713
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/metabo11110713
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo11110713?type=check_update&version=1


Metabolites 2021, 11, 713 2 of 14

are especially abundant in neural tissues where alterations in their composition are linked
to various neurological disorders.

The lipid composition of the myelin sheath is distinctive, made of a high amount
of cholesterol and enriched in glycolipids, in the ratio of 40:40:20 (cholesterol, phospho-
lipids, and glycolipids, respectively) compared to most biological membranes (25:65:10).
In addition, some glycerophospholipids, i.e., phosphatidylinositols, can play the role
of membrane-derived second messengers. Glycerolipids, including mono-, di-, and tri-
substituted glycerols, function as an energy store and comprise the fat in animal tissues.
Sphingolipids, containing a long-chain base as their core structure, represent another es-
sential component of cellular membranes and include ceramides, sphingomyelins, and
glycosphingolipids, which play important roles in signal transduction and cell recognition,
especially in neural tissues.

While other experimental approaches can be applied in lipidomics research [7] (Figure 1c),
in this study, we focus on the LC-MS method, which has become the analytical tool of choice for
untargeted lipidomics because of its high sensitivity, convenient sample preparation, and broad
coverage of lipid species [9]. We present a detailed LC-MS data analysis workflow designed
specifically for untargeted lipidomics, which is based on the xcms software [10–12].

Figure 1. Lipid classes and lipidomics techniques discussed in this study. (a) Abbreviations and
LIPIDMAPS identifications of lipid classes [13]. (b) Examples of prominent representatives of lipid
subclasses [14]. (c) Experimental approaches that can be applied in lipidomics research. LC-MS
and GC-MS are based on the separation of different lipid categories using extraction and chromato-
graphic separation prior to mass analysis. Shotgun lipidomics omits chromatographic separation and
analyzes all lipid classes together, directly infusing them into the mass spectrometer. (d) Balancing
confounding factors between batches is an essential step of study design.

2. Experimental Design
2.1. Measurements of Lipidome Composition

LC-MS experimental workflow (Figure 1c) starts with sample preparation: homoge-
nization of tissue samples or aliquoting samples of biological liquids. After this step, it is
essential to add the isotope-labeled internal standards to the samples as early as possible



Metabolites 2021, 11, 713 3 of 14

to enable normalization for multiple potential sources of experimental biases at the data
analysis stage.

Therefore, the extraction buffer is spiked with internal standards. The choice of
standards depends on the lipids of interest and is selected according to the lipid class
characteristic of the studied samples. After stratified randomization, lipid extraction is
performed in batches of 48–96 samples. After every 23rd sample, a blank extraction sample
is inserted, consisting of an empty tube without a tissue sample. These blank samples
are essential for the analysis of the obtained LC-MS data because they serve as a baseline
for filtering out peaks resulting from the extraction or other technical contamination.
To achieve separation of the organic and aqueous phases, the samples are centrifuged, and
the lipid fraction is selected.

To prepare quality control (QC) samples, an aliquot of each sample is additionally
collected into a pooled sample. The mass spectra are then acquired for all samples processed
in one sequence without interruption in positive and negative modes using an LC-MS
system. QC samples are injected several times before initiating the run in order to condition
the column, several times after each batch of samples, and after the completion of the run.
QC samples are also injected after every ten samples to assess the instrument stability
and analyte reproducibility. In addition, several blank samples are injected at the very
beginning of the run and the very end of the run.

2.2. Study Design Considerations

The main limitation of LC-MS experiments is the small batch sizes compared to the
total number of samples in large study cohorts. Typically, a batch of samples for LC-MS
measurements includes 48–96 samples. At the same time, advanced studies tend to measure
lipidome composition in thousands of samples because of the relatively small effect sizes
compared to the technical and inter-individual variability associated with the confounding
factors, such as sex, age, postmortem interval (PMI), smoking status, and others.

Moreover, despite adding internal standards and QC samples, the batch effect might
still be visible even after thorough normalization. Thus, it is crucial to distribute samples
among batches in a way that enables comparisons between groups of interest within the
batch, and, most importantly, to avoid mixing the factor of interest with the batch covariate,
as well as with the measurement order, because both of these confounding covariates might
persist in the data after all normalizations and corrections.

In addition, it is essential to balance confounding factors between samples and controls
and to randomize samples and controls in batches (Figure 1d). Technical replicates might
be helpful for solving batch effect issues, but their use is not always practical in the case
of large sample cohorts. Even without technical replicates, LC-MS runs can take several
months as chromatographic separation takes about 30 min per sample, which, multiplied
by 10,000 samples, results in 208 days.

2.3. Materials

This workflow is demonstrated on a test dataset obtained with a Reversed-Phase
Bridged Ethyl Hybrid (BEH) C8 column reverse coupled to a Vanguard precolumn, using a
Waters Acquity UPLC system and a heated electrospray ionization source in combination
with a Bruker Impact II QTOF (quadrupole-Time-of-Flight) mass spectrometer. This untar-
geted lipidome LC-MS dataset consists of two sample groups (two samples per group) and
a blank sample, thus, containing five samples in total.

2.4. Equipment

While many tools can be employed for LC–MS data analysis [10–12,15–42] (Table S1),
this workflow is demonstrated with this suitable software combination:

• ProteoWizard cross-platform tool [43,44].
• xcms Bioconductor package (version 3.12.0) in the R environment [10–12].
• IPO Bioconductor R package (version 1.16.0) [45,46].
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• mixOmics Bioconductor R package (version 6.14.1) [47].

3. Procedure of Data Analysis
3.1. Data Conversion

The LC-MS procedure results in an abundance of thousands of lipid species, measured
as ion counts for a specific mass-to-charge ratio (m/z) and retention time (RT). While it is
possible to store signals obtained by the MS instrument for all discrete m/z and RT values
in the ‘profile data’ mode, the resulting files can be as large as 5 Gb per sample. To reduce
this massive amount of data, MS instruments can export files in an alternative ‘centroid
data’ mode, storing a single representative signal per peak and producing much smaller
files, up to 400 Mb, without losing information relevant for further analysis.

Centroid data can be stored in multiple formats, depending on the MS instrument
type. However, for further processing (Figure 2a), the files should be converted into a
conventional mzXML format supported by most data analysis software, using the cross-
platform ProteoWizard tool [43,44] or MS instrument vendor software.

Figure 2. Schematic illustration of the LC-MS data analysis workflow. (a) Peak picking, alignment, and grouping are
followed by the imputation of missing values, filtering, normalization, and annotation of lipid features. IPO and NOMIS
abbreviations in the figure correspond to IPO [45,46] and NOMIS [48] tools, respectively. (b) An example of the peak
alignment procedure for a deuterium-labeled lipid PC(15:0/18:1). (c) Mass and retention time of lipids with manually
verified annotation based on a visually distinguishable ‘grid’ on this scatterplot. (d) A mean-difference plot visualizing
the relationship of lipid intensities between biological samples and blank samples. For each peak, the median log10
intensities are calculated among biological samples and among blank samples. Each circle represents the sample intensity
and the difference between the sample and blank intensities for a peak. The dashed red line shows the threshold of a
two-fold difference between the sample and blank intensities used for peak filtering. (e) An illustrative example of Principal
Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA) and sparse PLS-DA score plots. Each
data point on both plots corresponds to the coordinates of a single sample in a low-dimensional space.
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3.2. Data Import

To give practical guidance, we illustrate the further steps of LC-MS data processing
based on the xcms Bioconductor package (version 3.12.0) in the R environment [10–12],
which is probably the most widely used solution among a multitude of available tools for
MS data analysis.

However, before mzXML files can be imported into the R environment, they should be
organized into a folder structure reasonable for the study design because xcms will guess
the grouping of samples based on the subfolder structure and will align peaks between
samples according to the folder hierarchy. Thus, the folder structure affects the grouping of
peaks; the procedure matches MS peaks with similar m/z and RT across samples. mzXML
files corresponding to samples that are expected to be most similar to each other (e.g.,
technical replicates) should be placed into a subfolder.

These subfolders should, in turn, be organized into higher-order hierarchies according
to the study design and expectations about lipidome composition similarities between sam-
ples. Then, the data import can be performed with the readMSData command. In a detailed
R notebook available at https://github.com/Khrameeva-Lab/lipidomics_analysis_2021
(accessed on 11 October 2021), we provide an example of the code that creates the list of
files in the working directory, parses folder names to extract group labels for samples (i.e.,
mzXML files) stored in the folders, creates a metadata data frame, and finally, reads and
imports all mzXML files.

3.3. Peak Picking

Untargeted LC-MS experiments aim to identify the abundances of individual lipid
species characterized by unique m/z and RT values. To distinguish such peaks from back-
ground noise, a procedure of peak picking (i.e., MS peak detection) should be performed for
all samples, with the CentWaveParam command setting the parameters for the peak picking
procedure and findChromPeaks command performing peak picking for all samples. One of
the most important parameters for these commands is peakwidth that defines the minimum
and maximum possible MS peak width in RT dimension and can be adjusted based on
ion chromatograms for internal standards, which can be extracted from the dataset using
the chromatogram function. Another critical parameter is ppm, which defines the width of
the region in the m/z dimension where all consecutive data points are combined before
the peak detection procedure. It can be adjusted according to the mass accuracy of the
employed LC-MS system.

3.4. Peak Alignment

Next, peaks identified at the previous step in each sample separately should be
matched between samples. This is not a trivial task as chromatography can be affected by
multiple factors leading to shifts in RT between measurement runs. Thus, the alignment
procedure should be applied to adjust for these RT shifts from sample to sample (Figure 2b),
with the ObiwarpParam command setting the parameters for the alignment procedure and
adjustRtime command performing this procedure.

Of note, in this example, we use the Obiwarp algorithm [49], which is considered
to be optimal for the untargeted LC-MS data. It is based on the dynamic time warping,
which aims to make two samples as similar as possible via finding the best stretching of the
time dimension [50]. The default parameters define the reference sample for the alignment
as the one containing the largest number of peaks. The two most important parameters,
gapInit and gapExtend, control the penalties in the warping optimization algorithm.

3.5. Peak Grouping

Finally, aligned peaks corresponding to the same lipid species should be grouped
across samples. We illustrate this step using the PeakDensity algorithm [10], which it-
erates through the slices of m/z values and groups peaks according to the RT, as peaks
representing the same lipid species are expected to cluster at the RT axis. Peak grouping

https://github.com/Khrameeva-Lab/lipidomics_analysis_2021
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can be performed using the PeakDensityParam command that sets the parameters for the
peak grouping procedure and the groupChromPeaks command that performs peak grouping
across all samples. The minFraction parameter defines the minimum proportion of samples
in which a peak has to be detected.

This is where the folder structure of mzXML files becomes important because xcms
calculates this proportion within a group of samples (i.e., within the lowest-hierarchy
subfolder). The minSamples parameter works similarly, except it defines the minimum
number of samples instead of the minimum proportion. The binsize parameter defines the
width of the bin in the m/z dimension in which peaks are grouped. The bw defines the RT
window used for the density function smoothing. Finally, the maxFeatures parameter limits
the maximum number of features defined in one bin.

3.6. Selection of Parameters for Peak Picking, Alignment, and Grouping

In this workflow, we provide parameter settings optimized for untargeted lipidome
LC-MS measurements on a Reversed-Phase Bridged Ethyl Hybrid (BEH) C8 column reverse
coupled to a Vanguard precolumn, using a Waters Acquity UPLC system and a heated elec-
trospray ionization source in combination with a Bruker Impact II QTOF mass spectrometer
(Bruker Daltonics, Germany). However, in addition to the MS system vendors, the choice
of parameters depends on multiple experimental conditions, such as the chromatographic
separation buffers and gradient, MS settings, and the ion polarity mode.

Thus, the peak picking, alignment, and grouping parameters should be customized
for the employed LC-MS system. One can start with the parameters recommended in the
literature for a similar LC-MS system or with the default parameters for findChromPeaks,
adjustRtime, and groupChromPeaks functions, and then manually adjust parameters one by
one until the most appropriate settings are found. To visually inspect the outcomes of the
parameter adjustment procedure, it is useful to plot a subset of well-known peaks (e.g.,
internal standards or known lipids) in the m/z versus RT coordinates (Figure 2c).

However, the manual choice of parameters is time-consuming and arbitrary. Therefore,
we recommend optimizing xcms parameters using the Bioconductor package IPO [45,46].
First, getDefaultXcmsSetStartingParams and getDefaultRetGroupStartingParams commands
set the range of possible parameter values for IPO to scan. Then, optimizeXcmsSet and opti-
mizeRetGroup commands optimize peak picking, retention time correction, and grouping
parameters within the specified ranges of possible parameter values. Finally, the writeR-
Script command returns the result of optimization in the form of an R script, which can be
directly used to process raw mzXML files with xcms.

3.7. Imputation of Missing Values

Errors in the peak picking procedure frequently result in missing values, which
can be imputed by the fillChromPeaks function integrating the signal that corresponds
to the area of missing peak in the raw data. Of note, this procedure does not impute
all missing values, while the absence of missing values is critical for downstream data
analysis methods, such as Principal Component Analysis (PCA). Zero values not filled
by the xcms imputation procedure can be further replaced using data-driven imputation
techniques, such as Random Forest (RF), k-Nearest Neighbors (KNN), and Singular Value
Decomposition (SVD) or simply by the limit of detection (LOD) value [51].

3.8. Data Export

Commands chromPeaks, featureDefinitions, and featureValues extract the data matrix,
where the peak intensity is defined as the integral of the area under the peak. The last
command produces a peak intensity matrix containing abundances of lipid species (rows)
in all samples (columns).
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3.9. Filtering of Peaks

MS peaks falsely duplicated during the xcms peak grouping procedure can be de-
fined using a 10 ppm mass threshold (calculated as m/z difference divided by m/z and
multiplied by 106) and 1 s retention time difference. RT and m/z thresholds should be
chosen to cover lipid classes of interest, e.g., from 1 to 18 min and from 120 to 1200 m/z in
this example. In addition, peaks containing a high number of missing values are typically
removed, as well as peaks with low median intensity and high variability in intensity
calculated as the coefficient of variance (CoV), standard deviation (SD), or interquartile
range (IQR).

As high-quality peaks typically have high variability among biological samples and
low variability among technical replicates (e.g., pooled QC samples), CoV, SD, and IQR are
usually calculated among pooled QC samples for each MS peak. A commonly used cut-off
for filtering based on CoV is 25%. However, recent studies argue that CoV, SD, and IQR
might be poor predictors of peak quality because they ignore biological variability [52].
The intra-class correlation coefficient (ICC) might be used instead as it simultaneously
considers technical and biological variability.

To account for possible extraction and other technical contaminations, the concentrations
in extraction blanks should be compared to the sample concentrations. MS peaks with less
than a two-fold difference between the sample average and extraction blanks average should
be discarded from the analysis. A mean-difference plot is a helpful way to visualize the
relationship between the sample and extraction blank lipid abundances (Figure 2d) [52].

3.10. Normalization

Several data normalization approaches can be applied to lipidomics data. The most
widely used ones operate by scaling all intensities in one sample by the same normalization
factor (biomass, internal standard, mean, median, and sum intensity of features) and do not
change the distribution of intensities. Typically, lipid intensities are normalized on either
spiked-in internal standards representing most of the main lipid classes or the wet weight
of the sample. Other normalization approaches change the distribution of intensities as
each peak in each sample has its own normalization factor.

For instance, quantile normalization [53] stretches the distributions of all samples to
make them similar, while the NOMIS approach [48] scales intensities by multiple internal
standards, applying each standard to a corresponding range of RT values. However, a
general assumption for all these normalization strategies is that most lipids are not affected
by the factor of interest. If this is not the case, the best option would be to look into the
raw data: if the desired effect is not visible in the raw data, it might be created by the
normalization procedure and is not reliable.

In a specific case of experimental design with multiple biologically different samples
from the same individual, the lipid intensities may be additionally normalized by the me-
dian abundance level within each individual to reduce individual-to-individual variability.
To estimate the variability, it is useful to calculate the variance explained by each known
covariate (e.g., sex, age, PMI, batch, individual, and others) using the manova function in R
for all lipids using the following model: Y ∼ Sex + Age + PMI + Batch + Individual.

If sex, age, PMI, and other known covariates account for less variance each than
the individual covariate, it suggests that there might be an additional hidden source of
individual-to-individual variability as the order of covariates in the model is important
for the calculation of the explained variance. Thus, we can transform our model into the
following one: Y ∼ Individual + Sex + Age + PMI + Batch. If sex, age, RIN, and other
known covariates account for a small proportion (e.g., less than 1%) of the variance in this
model, while the individual covariate explains a substantial proportion of variance, the
normalization by the median lipid abundance level within each individual is necessary
and sufficient.
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3.11. Annotation

The easiest way to annotate MS peaks is to match each peak with lipids from a
predefined database allowing mass difference with peak m/z below the given threshold
(e.g., 10 ppm). The lipid database can be downloaded from the Web (e.g., LIPIDMAPS [13],
SwissLipids [54]) or constructed for specific lipid classes by varying the chain lengths
and number of double bonds. All possible adducts—small ions that attach to or detach
from lipid molecules under the ionization step (e.g., H+, Na+, and NH4+) and make them
detectable by MS—should be considered.

Despite high precision, MS data frequently have a slight shift in the determined m/z-
values. This shift can be found and consequently accounted for as a mode of distribution
of directed annotation ppm values. For lipid classes with a sufficient number of detected
members, a visually distinguishable ‘grid’ on the m/z versus RT scatterplot (Figure 2c)
can be found that allows manual or semi-automatic filtering of MS peaks with RT not
matching the grid-like pattern, additionally using internal standard RT as an anchor point
when available. This manual filtration procedure is performed for positive and negative
ionization modes depending on the lipid class. Finally, the ionization mode and adduct for
which the lipid class has the highest relative intensities is used in further analysis.

Our annotation approach results in Level 3 identification (“putatively characterized
compound classes”) according to the Metabolomics Standards Initiative guide [55]. Namely,
all lipid species are determined on a ’tentative structure’ level relying on MS1 data ex-
clusively. Proposed structures do not distinguish positional isomers (sn-attachment of
fatty acids), carbon–carbon double bond positions (e.g., 18:2(n-6,n-9)) for unsaturated
lipids and double bond geometry (cis- or trans-configurations). Proposed lipid annotations
correspond to bulk lipid formulas (e.g., PE O-36:2) or ’bond type level’ [56] due to the
high-resolution nature of MS measurements. Discrimination between ether-linked lipids
(plasmanyl- and plasmenyl-species) may be performed by elution order on reversed-phase
chromatographic systems.

4. Results
4.1. Visualization of LC-MS Data

LC-MS data analysis workflow results in normalized and annotated MS peaks, which
can be further visualized. Lipid features are extremely different in amplitude and demon-
strate heteroscedasticity—biological and technical variance are higher for features with
high intensity. Thus, centering and scaling of intensities has to be performed prior to
visualization as it equalizes the contributions of features to the separation of samples in
multivariate space and makes the features comparable.

Lipid intensities can be scaled by the minimum and maximum values. However,
this procedure is sensitive to outliers and is, thus, undesirable. Better approaches involve
scaling by the standard deviation (SD) or by the root of SD (Pareto-scaling). The centering
procedure is based on subtracting the mean or median intensity from all values. Finally,
log transformation is typically applied because it has a scaling-like effect making features
more comparable and helps to reveal multiplicative relations between features.

Principal Component Analysis (PCA) is a multivariate approach widely used to
visualize lipidomics data, perform sample-level quality control, and explore differences in
the lipidome profiles between sample groups [57]. The main objective of PCA is to project
the original multivariate data to the low-dimensional space while preserving as much
information about the original data as possible. A set of uncorrelated variables forming
this new low-dimensional space is called Principal Components (PCs).

Principal components are ranked according to the proportion of variance explained in
decreasing order so that PC1 always explains the most considerable variation of the original
data. In the case of lipidomic data, new PCs represent vectors of the linear combination
of original features. For a lipidome matrix, where features are in rows and samples are
in columns, the set of PCs can be calculated using the prcomp function in R. Once PCs are
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calculated, one can proceed to the graphic representation of the method plotting the most
informative PCs against each other (Figure 2e).

In this PCA plot, samples with similar lipidomic profiles tend to appear close together
in a new reduced space, forming clusters. Thereby, it is possible to capture sample-specific
differences between experimental conditions, assess group variances, and obtain an estimation
of the data quality. The ability of PCA to identify outlier samples makes its application
essential for the correct interpretation of conducted experiments prior to statistical analysis.
Some noteworthy implementations of the PCA method in lipidomics studies include analyses
of lipid profiles in drug-resistant prostate cancer [58], early Alzheimer’s disease [59,60], and
coronary heart disease [61].

Partial Least-Squares Discriminant Analysis (PLS-DA) is a calibration algorithm that
has become incredibly popular in the field of lipidomics [62–65]. In contrast with the
classic PCA technique, PLS-DA can be considered as a “supervised” method and might
be especially useful when dealing with a dataset for which a class membership for each
sample is known. The general idea of PLS-DA is to project predictor variables and response
variables to new low-dimensional space while preserving, in the first PLS component, as
much covariance between them as possible.

A PLS-DA model in its standard variant can be constructed and subsequently vi-
sualized using plsda and plotIndiv functions from the mixOmics R package [47]. Lipid
names, along with their scores of contribution into the first component, might be extracted
from the model using the selectVar command. Of note, there is a sparse version of the
PLS-DA method (sPLS-DA) that performs variable selection on a subset of all possible
covariances [66,67].

While PLS-DA is widely accessible and may be helpful in many cases, it also has
several drawbacks, e.g., the problem of overfitting or dependence on the distribution
within sample classes [67–71]. Gromski et al. have investigated the efficiency of PLS-DA
for the classification and feature selection problems and concluded that it has a rather low
prediction accuracy for a small number of predictor variables compared to LDA, SVM, and
RF-based approaches [71]. Therefore, one should be especially cautious when applying
PLS-DA for the mass-spectrometry data analysis.

4.2. Applications of Untargeted Lipidomics

The main benefit of untargeted LC-MS approaches lies in their ability to measure many
components simultaneously in complex lipid mixtures in an unbiased way. By contrast
to shotgun lipidomics, which omits the chromatography step, untargeted LC-MS offers
accurate separation and detection of lipids spanning a wide range of classes. Targeted
LC-MS measurements are more sensitive, accurate, and quantitative than untargeted ones.
Yet, they focus on particular lipid classes or species and are poorly suitable for descriptive
studies aiming to generate hypotheses due to this detection bias. Thus, untargeted LC-MS
analysis is the technology of the first choice for biomarker discovery studies because of
the unbiased sample preparation and lipid detection, not favoring any particular lipid
class [72].

The main limitation of untargeted LC-MS measurements is their semi-quantitative
nature. Absolute quantification is challenging to achieve in LC-MS experiments as it
requires extensive use of internal standards. The ion response within the lipid class
can depend on the fatty acid composition, creating an additional complicating factor for
absolute quantification [7]. However, for most experimental designs, the relative differences
in lipid abundances are sufficient. For example, studies searching for biomarkers, i.e.,
changes in the lipidome composition between patients and controls or between knockout
and wild-type samples, would result in a list of lipids showing statistically significant
differences in concentrations between two sample groups of interest.

Absolute quantification of the lipid concentration is not needed to compose such lists.
It is enough to accurately measure differences between sample groups, which is a feasible
and suitable task for untargeted LC-MS. Standard statistical approaches, e.g., the Wilcoxon
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test with multiple testing correction, can be applied to the LC-MS data to find significant
lipid abundance differences and detect potential biomarkers. To cautiously apply statistical
methods and avoid possible mistakes in interpreting results, it is highly recommended to
involve a biostatistician, especially at the study design stage, and for the final validation
of applied statistical procedures. In addition, detected candidate biomarkers and lipid
composition changes can be (and should be) further validated using targeted LC-MS or
MS/MS approaches.

Another limitation of untargeted LC-MS approaches is the possible suppression of
ionization caused by the complexity of lipid mixtures [7]. Thorough chromatographic
separation prior to MS analysis helps to overcome this issue; however, this might not
be practical for large-scale studies measuring the lipidome composition in thousands of
samples because of the incredibly long time required to run the measurements.

4.3. Future Challenges

Thus, achieving high-quality chromatographic separation in a short run time is among
the critical future challenges of LC-MS technology because this affects the scalability of
lipidomics studies, which tend to analyze a large number of samples. Similar to Genome-
Wide Association Studies (GWAS), increasing the number of analyzed samples is necessary
to achieve the power to detect significant biomarkers in lipidomics studies where the
expected effect size is relatively small. To keep such studies within reasonable time
frames, either the chromatographic separation time should be reduced, or the number
of MS machines should be increased to enable parallel runs. However, the last option
dramatically increases experimental costs and introduces unwanted technical confounding
factors and batch effects.

Even without parallel runs, batch effects constitute another future challenge of LC-
MS technology. Small batch sizes are poorly suitable for large-scale lipidomics studies
comprising thousands of samples because an accurate balancing of multiple confounding
factors is difficult to achieve within a typical batch of 48–96 samples.

Apart from technological challenges, large-scale lipidomics studies introduce novel
challenges at the data analysis level because they generate an extraordinary amount of data
that must be stored, processed, and analyzed efficiently. The increased resolution of novel
MS systems addresses to this problem as well as the need to measure the lipid composition
in many technical or biological replicates to overcome technical or biological variability.

Limited databases and tools for the annotation of lipid species constitute another
problem. Currently, most of them support only matching by m/z characteristic, without RT
contribution, which depends on many technical factors and can only be used in in-house
solutions for systems running with fixed parameters and stable environmental conditions.

The final and potentially most challenging problem resides in the lack of comprehensive
curated lipid pathway databases linking lipids with proteins or genes. Multi-omics studies are
in high demand but the few existing tools that are suitable for integrating different omics data
types, i.e., lipidomics and transcriptomics, are mostly data-driven. Using correlations or more
advanced metrics, they extract interrelationships of biomolecules from multi-omics data [73].
While such predicted links are of use for biomarker discovery, their biological interpretation
is very limited, and curated biochemistry-based resources are essential for validation.

However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) [74–76], REAC-
TOME [77], and other widely used curated biochemical pathway databases cover only a
limited set of lipid pathways, and mainly at the level of lipid classes but not individual lipid
species. A detailed curated pathway database covering reactions of lipid species among
all lipid classes would be an invaluable resource for the lipidomics community and future
multi-omics studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-198
9/11/11/713/s1.

https://www.mdpi.com/2218-1989/11/11/713/s1
https://www.mdpi.com/2218-1989/11/11/713/s1


Metabolites 2021, 11, 713 11 of 14

Author Contributions: D.S., P.M., M.O. and E.K. developed the computational approach. E.S.
developed the experimental approach. D.S., P.M. and E.K. wrote the code. D.S. and E.K. prepared the
figures. All authors contributed to writing the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: The reported study was funded by RFBR, project number 20-34-70077.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The R code performing the main steps of untargeted LC-MS data
analysis described in this paper and a testing lipidome dataset is freely available at GitHub:
https://github.com/Khrameeva-Lab/lipidomics_analysis_2021 (accessed on 11 October 2021).

Acknowledgments: We are grateful to the Skoltech HPC team and personally to Yury Korostelev for
the computational support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Simons, K.; Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 2000, 1, 31–39. [CrossRef]
2. Han, X.; MHoltzman, D.; McKeel, D.W.; Kelley, J.; Morris, J.C. Substantial sulfatide deficiency and ceramide elevation in very

early Alzheimer’s disease: Potential role in disease pathogenesis. J. Neurochem. 2002, 82, 809–818. [CrossRef] [PubMed]
3. Adibhatla, R.M.; Hatcher, J.F.; Dempsey, R.J. Lipids and lipidomics in brain injury and diseases. AAPS J. 2006, 8, 314–321.

[CrossRef] [PubMed]
4. Colsch, B.; Afonso, C.; Turpin, J.C.; Portoukalian, J.; Tabet, J.C.; Baumann, N. Sulfogalactosylceramides in motor and psycho-

cognitive adult metachromatic leukodystrophy: Relations between clinical, biochemical analysis and molecular aspects. Biochim.
Biophys. Acta 2008, 1780, 434–440. [CrossRef] [PubMed]

5. Ariga, T.; McDonald, M.P.; Yu, R.K. Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—A review. J.
Lipid Res. 2008, 49, 1157–1175. [CrossRef]

6. Haughey, N.J.; Bandaru, V.V.R.; Bae, M.; Mattson, M.P. Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease
neuropathogenesis. Biochim. Biophys. Acta 2010, 1801, 878–886. [CrossRef]

7. Wenk, M.R. The emerging field of lipidomics. Nat. Rev. Drug Discov. 2005, 4, 594–610. [CrossRef] [PubMed]
8. Lamari, F.; Mochel, F.; Sedel, F.; Saudubray, J.M. Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: Toward a

new category of inherited metabolic diseases. J. Inherit. Metab. Dis. 2013, 36, 411–425. [CrossRef] [PubMed]
9. Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson,

J.K. Global metabolic profiling of animal and human tissues via uplc-ms. Nat. Protoc. 2013, 8, 17–32. [CrossRef]
10. Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling

using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [CrossRef]
11. Tautenhahn, R.; Böttcher, C.; Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinform. 2008 9,

504. [CrossRef]
12. Benton, H.P.; Want, E.J.; Ebbels, T.M.D. Correction of mass calibration gaps in liquid chromatography-mass spectrometry

metabolomics data. Bioinformatics 2010, 26, 2488–2489. [CrossRef]
13. Fahy, E.; Subramaniam, S.; Murphy, R.; Nishijima, M.; Raetz, C.; Shimizu, T.; Spener, F.; van Meer, G.; Wakelam, M.; Dennis, E.A.

Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 2009, 50, 9–14. [CrossRef]
14. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al.

HMDB 4.0—The Human Metabolome Database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [CrossRef]
15. Fahy, E.; Alvarez-Jarreta, J.; Brasher, C.J.; Nguyen, A.; Hawksworth, J.I.; Rodrigues, P.; Meckelmann, S.; Allen, S.M.; O’Donnell,

V.B. LipidFinder on LIPID MAPS: Peak filtering, MS searching and statistical analysis for lipidomics. Bioinformatics 2019, 35,
685–687. [CrossRef] [PubMed]

16. Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing
mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [CrossRef] [PubMed]

17. Pang, Z.; Chong, J.; Zhou, G.; Morais, D.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.E.; Li, S.; Xia, J. MetaboAnalyst 5.0:
Narrowing the gap between raw spectra and functional insights. Nucl. Acids Res. 2021, 49, W388–W396. [CrossRef]

18. Davidson, R.L.; Weber, R.J.; Liu, H.; Sharma-Oates, A.; Viant, M.R. Galaxy-M: A Galaxy workflow for processing and analyzing
direct infusion and liquid chromatography mass spectrometry-based metabolomics data. Gigascience 2016, 5, 10. [CrossRef]

19. Herzog, R.; Schuhmann, K.; Schwudke, D.; Sampaio, J.L.; Bornstein, S.R.; Schroeder, M.; Shevchenko, A. LipidXplorer: A software
for consensual cross-platform lipidomics. PLoS ONE 2012, 7, e29851. [CrossRef] [PubMed]

20. Röst, H.L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; Ehrlich, H.; Gutenbrunner, P.; Kenar,
E.; et al. OpenMS: A flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 2016, 13, 741–748.
[CrossRef]

https://github.com/Khrameeva-Lab/lipidomics_analysis_2021
https://github.com/Khrameeva-Lab/lipidomics_analysis_2021
http://doi.org/10.1038/35036052
http://dx.doi.org/10.1046/j.1471-4159.2002.00997.x
http://www.ncbi.nlm.nih.gov/pubmed/12358786
http://dx.doi.org/10.1007/BF02854902
http://www.ncbi.nlm.nih.gov/pubmed/16796382
http://dx.doi.org/10.1016/j.bbagen.2007.10.004
http://www.ncbi.nlm.nih.gov/pubmed/17980709
http://dx.doi.org/10.1194/jlr.R800007-JLR200
http://dx.doi.org/10.1016/j.bbalip.2010.05.003
http://dx.doi.org/10.1038/nrd1776
http://www.ncbi.nlm.nih.gov/pubmed/16052242
http://dx.doi.org/10.1007/s10545-012-9509-7
http://www.ncbi.nlm.nih.gov/pubmed/22814679
http://dx.doi.org/10.1038/nprot.2012.135
http://dx.doi.org/10.1021/ac051437y
http://dx.doi.org/10.1186/1471-2105-9-504
http://dx.doi.org/10.1093/bioinformatics/btq441
http://dx.doi.org/10.1194/jlr.R800095-JLR200
http://dx.doi.org/10.1093/nar/gkx1089
http://dx.doi.org/10.1093/bioinformatics/bty679
http://www.ncbi.nlm.nih.gov/pubmed/30101336
http://dx.doi.org/10.1186/1471-2105-11-395
http://www.ncbi.nlm.nih.gov/pubmed/20650010
http://dx.doi.org/10.1093/nar/gkab382
http://dx.doi.org/10.1186/s13742-016-0115-8
http://dx.doi.org/10.1371/journal.pone.0029851
http://www.ncbi.nlm.nih.gov/pubmed/22272252
http://dx.doi.org/10.1038/nmeth.3959


Metabolites 2021, 11, 713 12 of 14

21. Hartler, J.; Trötzmüller, M.; Chitraju, C.; Spener, F.; Köfeler, H.C.; Thallinger, G.G. Lipid Data Analyzer: Unattended identification
and quantitation of lipids in LC-MS data. Bioinformatics 2011, 27, 572–577. [CrossRef] [PubMed]

22. Ni, Z.; Angelidou, G.; Lange, M.; Hoffmann, R.; Fedorova, M. LipidHunter Identifies Phospholipids by High-Throughput
Processing of LC-MS and Shotgun Lipidomics Datasets. Anal. Chem. 2017, 89, 8800–8807. [CrossRef] [PubMed]

23. Lommen, A.; Kools, H.J. MetAlign 3.0: Performance enhancement by efficient use of advances in computer hardware. Metabolomics
2012, 8, 719–726. [CrossRef]

24. Koelmel, J.P.; Kroeger, N.M.; Ulmer, C.Z.; Bowden, J.A.; Patterson, R.E.; Cochran, J.A.; Beecher, C.W.W.; Garrett, T.J.; Yost,
R.A. LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass
spectrometry data. BMC Bioinform. 2017, 18, 331. [CrossRef]

25. Alcoriza-Balaguer, M.I.; García-Cañaveras, J.C.; López, A.; Conde, I.; Oscar, J.; Carretero, J.; Lahoz, A. LipidMS: An R Package for
Lipid Annotation in Untargeted Liquid Chromatography-Data Independent Acquisition-Mass Spectrometry Lipidomics. Anal.
Chem. 2019, 91, 836–845. [CrossRef]

26. Yamada, T.; Uchikata, T.; Sakamoto, S.; Yokoi, Y.; Fukusaki, E.; Bamba, T. Development of a lipid profiling system using reverse-
phase liquid chromatography coupled to high-resolution mass spectrometry with rapid polarity switching and an automated
lipid identification software. J. Chromatogr. A 2013, 1292, 211–218. [CrossRef]

27. Tikunov, Y.M.; Laptenok, S.; Hall, R.D.; Bovy, A.; de Vos, R.C. MSClust: A tool for unsupervised mass spectra extraction of
chromatography-mass spectrometry ion-wise aligned data. Metabolomics Off. J. Metabolomic Soc. 2012, 8, 714–718. [CrossRef]

28. Kind, T.; Liu, K.H.; Lee, D.Y.; DeFelice, B.; Meissen, J.K.; Fiehn, O. LipidBlast in silico tandem mass spectrometry database for
lipid identification. Nat. Methods 2013, 10, 755–758. [CrossRef] [PubMed]

29. Tsugawa, H.; Ikeda, K.; Takahashi, M.; Satoh, A.; Mori, Y.; Uchino, H.; Okahashi, N.; Yamada, Y.; Tada, I.; Bonini, P.; et al. A
lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020, 38, 1159–1163. [CrossRef]

30. Kyle, J.E.; Crowell, K.L.; Casey, C.P.; Fujimoto, G.M.; Kim, S.; Dautel, S.E.; Smith, R.D.; Payne, S.H.; Metz, T.O. LIQUID: An-open
source software for identifying lipids in LC-MS/MS-based lipidomics data. Bioinformatics 2017, 33, 1744–1746. [CrossRef]
[PubMed]

31. Mohamed, A.; Molendijk, J.; Hill, M.M. lipidr: A Software Tool for Data Mining and Analysis of Lipidomics Datasets. J. Proteom.
Res. 2020, 19, 2890–2897. [CrossRef] [PubMed]

32. lipyd: A Python Module for Lipidomics LC MS/MS Data Analysis. Available online: https://saezlab.github.io/lipyd/ (accessed
on 11 October 2021).

33. Hutchins, P.D.; Russell, J.D.; Coon, J.J. LipiDex: An Integrated Software Package for High-Confidence Lipid Identification. Cell
Syst. 2018, 6, 621–625. [CrossRef] [PubMed]

34. Molenaar, M.R.; Jeucken, A.; Wassenaar, T.A.; van de Lest, C.H.A.; Brouwers, J.F.; Helms, J.B. LION/web: A web-based ontology
enrichment tool for lipidomic data analysis. Gigascience 2019, 8, giz061. [CrossRef]

35. Wong, G.; Chan, J.; Kingwell, B.A.; Leckie, C.; Meikle, P.J. LICRE: Unsupervised feature correlation reduction for lipidomics.
Bioinformatics 2014, 30, 2832–2833. [CrossRef]

36. Lin, W.J.; Shen, P.; Liu, H.; Cho, Y.; Hsu, M.; Lin, I.; Chen, F.; Yang, J.; Ma, W.; Cheng, W. LipidSig: A web-based tool for lipidomic
data analysis. Nucleic Acids Res. 2021, 49, W336–W345. [CrossRef]

37. Ni, Z.; Fedorova, M. LipidLynxX: A data transfer hub to support integration of large scale lipidomics datasets. bioRxiv 2020, 4,
033894.

38. Ni, Z.; Angelidou, G.; Hoffmann, R.; Fedorova, M. LPPtiger software for lipidome-specific prediction and identification of
oxidized phospholipids from LC-MS datasets. Sci. Rep. 2017, 7, 15138. [CrossRef]

39. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]

40. Acevedo, A.; Durán, C.; Ciucci, S.; Gerl, M.J.; Cannistraci, C.V. LIPEA: Lipid Pathway Enrichment Analysis. bioRxiv 2018, 274969.
[CrossRef]

41. Misra, B.B.; Fahrmann, J.F.; Grapov, D. Review of emerging metabolomic tools and resources: 2015–2016. Electrophoresis 2017, 38,
2257–2274. [CrossRef] [PubMed]

42. Klåvus, A.; Kokla, M.; Noerman, S.; Koistinen, V.M.; Tuomainen, M.; Zarei, I.; Meuronen, T.; Häkkinen, M.R.; Rummukainen, S.;
Farizah Babu, A.; et al. “Notame”: Workflow for Non-Targeted LC–MS Metabolic Profiling. Metabolites 2020, 10, 135. [CrossRef]
[PubMed]

43. Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: Open source software for rapid proteomics tools
development. Bioinformatics 2008, 24, 2534–2536. [CrossRef]

44. Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson,
J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [CrossRef] [PubMed]

45. Libiseller, G.; Dvorzak, M.; Kleb, U.; Gander E.; Eisenberg, T.; Madeo, F.; Neumann, S.; Trausinger, G.; Sinner, F.; Pieber, T.; et al.
IPO: A tool for automated optimization of XCMS parameters. BMC Bioinform. 2015, 16, 118. [CrossRef]

46. Albóniga, O.E.; González, O.; Alonso, R.M.; Xu, Y.; Goodacre, R. Optimization of XCMS parameters for LC–MS metabolomics: An
assessment of automated versus manual tuning and its effect on the final results. Metabolomics 2020, 16, 14. [CrossRef] [PubMed]

47. Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.-A. mixOmics: An R package for ‘omics feature selection and multiple data integration.
PLoS Comput. Biol. 2017, 13, e1005752. [CrossRef]

http://dx.doi.org/10.1093/bioinformatics/btq699
http://www.ncbi.nlm.nih.gov/pubmed/21169379
http://dx.doi.org/10.1021/acs.analchem.7b01126
http://www.ncbi.nlm.nih.gov/pubmed/28753264
http://dx.doi.org/10.1007/s11306-011-0369-1
http://dx.doi.org/10.1186/s12859-017-1744-3
http://dx.doi.org/10.1021/acs.analchem.8b03409
http://dx.doi.org/10.1016/j.chroma.2013.01.078
http://dx.doi.org/10.1007/s11306-011-0368-2
http://dx.doi.org/10.1038/nmeth.2551
http://www.ncbi.nlm.nih.gov/pubmed/23817071
http://dx.doi.org/10.1038/s41587-020-0531-2
http://dx.doi.org/10.1093/bioinformatics/btx046
http://www.ncbi.nlm.nih.gov/pubmed/28158427
http://dx.doi.org/10.1021/acs.jproteome.0c00082
http://www.ncbi.nlm.nih.gov/pubmed/32168452
https://saezlab.github.io/lipyd/
http://dx.doi.org/10.1016/j.cels.2018.03.011
http://www.ncbi.nlm.nih.gov/pubmed/29705063
http://dx.doi.org/10.1093/gigascience/giz061
http://dx.doi.org/10.1093/bioinformatics/btu381
http://dx.doi.org/10.1093/nar/gkab419
http://dx.doi.org/10.1038/s41598-017-15363-z
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1101/274969
http://dx.doi.org/10.1002/elps.201700110
http://www.ncbi.nlm.nih.gov/pubmed/28621886
http://dx.doi.org/10.3390/metabo10040135
http://www.ncbi.nlm.nih.gov/pubmed/32244411
http://dx.doi.org/10.1093/bioinformatics/btn323
http://dx.doi.org/10.1038/nbt.2377
http://www.ncbi.nlm.nih.gov/pubmed/23051804
http://dx.doi.org/10.1186/s12859-015-0562-8
http://dx.doi.org/10.1007/s11306-020-1636-9
http://www.ncbi.nlm.nih.gov/pubmed/31925557
http://dx.doi.org/10.1371/journal.pcbi.1005752


Metabolites 2021, 11, 713 13 of 14
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