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Abstract

The Integrated Clinical and Environmental Exposures Service (ICEES) provides regulatory-

compliant open access to sensitive patient data that have been integrated with public exposures 

data. ICEES was designed initially to support dynamic cohort creation and bivariate contingency 

tests. The objective of the present study was to develop an open approach to support multivariate 

analyses using existing ICEES functionalities and abiding by all regulatory constraints. We first 

developed an open approach for generating a multivariate table that maintains contingencies 

between clinical and environmental variables using programmatic calls to the open ICEES 

application programming interface. We then applied the approach to data on a large cohort (N 

= 22,365) of patients with asthma or related conditions and generated an eight-feature table. Due 

to regulatory constraints, data loss was incurred with the incorporation of each successive feature 

variable, from a starting sample size of N = 22,365 to a final sample size of N = 4,556 (20.4%), 

but data loss was < 10% until the addition of the final two feature variables. We then applied 

a generalized linear model to the subsequent dataset and focused on the impact of seven select 

feature variables on asthma exacerbations, defined as annual emergency department or inpatient 

visits for respiratory issues. We identified five feature variables—sex, race, obesity, prednisone, 

and airborne particulate exposure—as significant predictors of asthma exacerbations. We discuss 

the advantages and disadvantages of ICEES open multivariate analysis and conclude that, despite 

limitations, ICEES can provide a valuable resource for open multivariate analysis and can serve as 
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an exemplar for regulatory-compliant informatic solutions to open patient data, with capabilities to 

explore the impact of environmental exposures on health outcomes.
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Open science; Open clinical data; Generalized linear model; Asthma; Environmental exposures; 
Environmental health

1. Introduction

Interest in open access to and sharing of electronic health record (EHR) data has been 

growing in recent years, both among the medical research community and patient advocacy 

groups. The benefits of such an effort are perhaps best highlighted by the current 

coronavirus pandemic and the need to rapidly initiate research into the virus and its 

impacts on health, as well as share data and findings and develop a global response to 

this unprecedented health crisis. Large-scale Initiatives such as the Columbia Open Health 

Data (COHD) [1] and the Medical Information Mart for Intensive Care (MIMIC) [2] are 

advancing efforts to reduce regulatory and institutional barriers surrounding access to EHR 

data, with the common goal of promoting research, while preserving patient privacy and 

maintaining institutional assurances. However, further efforts are required to truly leverage 

EHR data and apply the data to promote global human health and well-being.

As part of the Biomedical Data Translator (‘Translator’) program [3, 4], funded by 

the National Center for Advancing Translational Sciences, we have developed a novel, 

regulatory-compliant, disease-agnostic framework and approach for openly exposing and 

exploring EHR data that have been integrated at the patient level with a variety of public 

exposures data: the Integrated Clinical and Environmental Exposures Service (ICEES). 

ICEES is accessible to anyone on the internet via an application programming interface 

(API). We have validated ICEES by replicating published research on asthma and related 

common pulmonary diseases [5-8]. We have extended ICEES to expose multi-institutional 

data on patients within UNC Health who are also participants within the Environmental 

Polymorphisms Registry at the National Institute of Environmental Health Sciences [7]. 

Moreover, as part of the Translator program, we have used ICEES to conduct a multi-

institutional study, free of regulatory constraints, over the course of a five-day ‘hackathon’ 

[10]. We also have developed a tool for visualizing and exploring ICEES as a ‘knowledge 

graph’ of interconnected nodes [11].

While ICEES has demonstrated technical validity and scientific application, the service 

remains subject to federal and institutional constraints that, while necessary, limit the 

available functionalities. ICEES currently supports the ability to dynamically define cohorts 

and explore bivariate relationships between feature variables such as diagnoses, medications, 

and airborne pollutant exposures. Herein, we describe the development of a novel open 

approach that supports multivariate analysis using existing regulatory-compliant ICEES 

functionalities, while maintaining all federal and institutional regulations and preserving 

patient privacy. We apply the open multivariate approach to a driving use case on asthma, 
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using a generalized linear model (GLM) to predict asthma exacerbations. Finally, we discuss 

the advantages and disadvantages of using ICEES for multivariate analysis.

2. Materials and methods

All study procedures were approved by the Institutional Review Board at the University of 

North Carolina at Chapel Hill (protocol #16-2978).

2.1. Technical overview

2.1.1. Open multivariate approach—ICEES is equipped with regulatory-compliant 

analytic capabilities that allow users to dynamically create cohorts and generate bivariate 

contingency tables with corresponding Chi Square statistics, probabilities, and frequencies. 

Motivated by our desire to develop more sophisticated multivariate analytic capabilities, here 

we describe the development and application of an open approach to conduct multivariate 

analysis using the functionalities that are currently available in ICEES. The approach 

leverages the dynamic cohort creation capability in such a way as to maintain feature 

contingencies and generate a multivariate table, while remaining compliant with all federal 

and institutional regulations.

2.1.2. ICEES integrated feature tables—Key to the design of ICEES is what we’ve 

termed ‘ICEES integrated feature tables’. The tables are designed as one-year ‘study 

periods’, in which each row represents an individual patient and each column header 

represents a feature variable. The tables contain integrated data on clinical data elements 

derived from patient EHRs and exposures data derived from a variety of public sources 

(e.g., United States Environmental Protection Agency airborne particulate exposures, US 

Department of Transportation roadway exposures, US Census Bureau American Community 

Survey socioeconomic exposures, North Carolina Department of Environmental Quality 

concentrated animal farming operations exposures and landfill exposures). The integration 

step is achieved using a complex custom software pipeline [8] and requires protected health 

information (PHI; i.e., geocodes and dates). As such, this step is conducted under a protocol 

that must be approved by an Institutional Review Board. After integration, however, all 

PHI elements are removed from the data according to §164.514(b) of the Health Insurance 

Portability and Accountability Act [12]. The data are then exposed via an open ICEES API 

[13] that adheres to the Translator Application Programming Interface (TRAPI) standards 

[14].

2.1.3. Generation of multivariate ICEES integrated feature tables—We 

developed the multivariate approach in the context of a driving application use case, in 

which we asked if there is a relationship between asthma exacerbations and the following 

demographic features, clinical characteristics, and environmental exposures: sex, race, 

prescription for prednisone, diagnosis of obesity, residential proximity to a major roadway 

or highway, residential density, and exposure to airborne particulates. These variables were 

selected on the basis of published studies, including our prior work [6,8,9], which identified 

these variables as known or suspected to be related to asthma exacerbations. We focused 

on an existing ICEES cohort of UNC Health patients with asthma or related conditions (see 
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Ref. [6] for details), and we considered the number of annual emergency department (ED) 

or inpatient visits for respiratory issues as the primary outcome measure and indicator of 

asthma exacerbations. We examined asthma exacerbations in year 2010, as this was the first 

year of data available for the cohort.

The seven features or independent variables and the primary outcome metric or dependent 

variable are defined and enumerated in Table 1.

While ICEES supports functionalities to examine the bivariate relationship between ED/

inpatient visits for respiratory issues and each of the feature variables of interest, it 

does not directly support the application of multivariate statistical or machine learning 

models to examine relationships and interactions across multiple feature variables. To apply 

multivariate models, an eight-feature table was required, with each row representing an 

individual patient and each column header representing a distinct feature variable, with 

contingencies maintained across feature variables. To achieve this, we applied the ICEES 

dynamic cohort creation functionality and used nested bivariate contingencies to generate 

the requisite multivariate feature table. A visual overview of the approach is provided in Fig. 

1.

Specifically, we first selected the asthma cohort, table type (patient or visit), table version, 

and calendar year of interest as the input parameters. We then created separate cohorts for 

each level of the dependent variable (i.e., ED/inpatient visits for respiratory issues):

COHORT:0 = patients in asthma cohort with 0 annual ED/inpatient visits for 

respiratory issues

COHORT:1 = patients in asthma cohort with 1 annual ED/inpatient visit for 

respiratory issues

COHORT:2 = patients in asthma cohort with 2 annual ED/inpatient visits for 

respiratory issues

COHORT:N = patients in asthma cohort with N annual ED/inpatient visits for 

respiratory issues

The boundary of COHORT:N is determined by both the underlying data (i.e., the maximum 

number of annual ED/inpatient visits reported for a patient in any given year) and the 

regulatory constraints imposed on the ICEES service, namely, that cohorts with ≤10 patients 

cannot be created, in which case, the service returns an error message indicating that the data 

do not exist or that the selected cohort consists of ≤10 patients. The practical implication of 

this regulatory constraint for the efforts described here was that a certain amount of data loss 

was incurred with each step in the process of generating a multivariate table. We quantified 

the data loss by comparing the size of the sum of each cohort, or the number of rows for 

each intermediary table, with the size of the overall sample.

The next step in the process for creating a multivariate table was to create a bivariate 

contingency table for each of the cohorts generated in the first step. In our example use case, 

we used Sex2 x Race. Because the contingencies between feature variables were maintained, 
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we were then able to create a tri-variate table, with rows transformed to represent N = 1 
patient (Fig. 2).

The next step was to create cohorts for each combination of the three feature variables.

COHORT:100 = patients in asthma cohort with 0 annual ED/inpatient visits for 

respiratory issues + male sex + African American

COHORT:101 = patients in asthma cohort with 1 annual ED/inpatient visit for 

respiratory issues + male sex + African American

COHORT:102 = patients in asthma cohort with 2 annual ED/inpatient visits for 

respiratory issues + male sex + African American

COHORT:N = patients in asthma cohort with N annual ED/inpatient visits for 

respiratory issues + X sex + X race

For each of the new cohorts, a second bivariate contingency table was generated. In our 

example, the association was for Prednisone x ObesityDx. The cohort creation and bivariate 

contingency table steps were then repeated for MaxDailyPM2.5Exposure_StudyMax x 
RoadwayDistanceExposure2. As we were interested in an odd number of independent 

variables, the final step that we applied to the data was to invoke the ICEES univariate 

functionality (also called feature-rich cohort discovery) to examine frequencies for 

EstResidentialDensity. Upon completion of this step, we then were able to generate an eight-

feature multivariate table, with each row representing an individual patient (see Results). For 

interpretation purposes, and to minimize data loss, we categorized the dependent variable, 

TotalEDInpatientVisits, as 0, 1, … 9+.

2.1.4. Application of multivariate GLM—We developed a GLM algorithm using 

R to predict TotalEDInpatientVisits (i.e., the outcome or dependent variable) using the 

seven independent feature variables extracted in the ICEES multivariate table. The variable 

TotalEDInpatientVisits represents counts of visits over a one-year study period, and the 

distribution of counts was over-dispersed, or skewed to the right, as expected (i.e., few 

patients have frequent ED visits or hospital admissions for respiratory issues in any given 

year). To account for overdispersion, we fit a negative binomial model to the data [15]. The 

theoretical equation for the negative binomial distribution expressed as a mass probability 

function was

P(X = x ∣ r, p) = Γ(x + r)
x!Γ(r) pr(1 − p)x,

where the negative binomial is arising as a distribution of the number of failures X before 

the rth success in independent trials, with success probability p in each trial (consequently, r 
≥ 0 and 0 ≤ p ≤ 1).

To ensure that the negative binomial model accurately fit the data and accounted for 

overdispersion, we formally tested for overdispersion and its significance using the 

DHARMa package in R for Residual Diagnostics for Hierarchical (Multi-Level/Mixed) 

Regression Models [16]. This package applies a simulation-based approach to create readily-
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interpretable scaled (quantile) residuals for generalized linear mixed models, including 

negative binomial GLM. The DHARMa model revealed that the true value of the ratio 

of the deviance to the degrees of freedom was 0.89 (dispersion parameter), with a P value 

of < 2.2e−16, indicating that the negative binomial model would sufficiently address the 

overdispersion issue.

Because the frequencies for certain variables (e.g., RoadwayDistanceExposure2) were not 

evenly distributed across bins, we applied the Synthetic Minority Oversampling Technique 

(SMOTE) [17] to account for imbalances in the data. The SMOTE approach augments the 

minority class in order to balance the data such that model performance accounts for cells 

with otherwise low frequencies. Prior to adopting the SMOTE approach, we considered 

several other estimation techniques to address data imbalance, including random sampling. 

There are two main approaches to perform random sampling, both of which we considered: 

(i) oversampling, or replication of samples from the minority class; and (ii) undersampling, 

or elimination of samples from the majority class. Because random sampling introduces bias 

and is considered naïve, with no assumptions regarding the data [18], we chose the SMOTE 

approach instead.

Satisfied with our approach, we applied GLM to examine both main effects and two- and 

three-way interactions. We then applied an analysis of variance (ANOVA) to the obtained 

GLM results. We set α at 0.05.

3. Results

3.1. Eight-feature multivariate table and estimated data loss

We applied the ICEES open multivariate approach to generate an eight-feature multivariate 

table designed to support our driving application use case on the effects of select 

demographic variables, socioeconomic exposures, and airborne pollutant exposures on 

asthma exacerbations (Fig. 3).

We then quantified the data loss that occurs with each step in the process by comparing 

the size of each recreated cohort with that of the initial cohort (Table 2). Data loss was 

incurred after the fourth independent variable was incorporated and increased to 57.1% with 

the incorporation of the seventh and final independent variable.

3.2. Application use case results

We applied a GLM algorithm to the resultant multivariate table and asked the following 

specific use-case question: are sex, race, prescription for prednisone, diagnosis of obesity, 

residential proximity to a major roadway or highway, residential density, and/or exposure 

to airborne particulates predictive, either independently or by interaction, of asthma 

exacerbations?

We found significant main effects of Race, Prednisone, ObesityDx, 
MaxDailyPM2.5Exposure_StudyMax, and Sex2 (Table 3). Several two- and three-way 

interactions also were significant. Among two-way interactions, Prednisone showed 

significant interactions with Sex2, ObesityDx, MaxDailyPM2.5Exposure_StudyMax, and 
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RoadwayDistance Exposure2. A significant Sex2 x ObesityDx effect also was apparent. 

Among three-way interactions (data not shown), ObesityDx x Sex2 x Race, ObesityDx 
x Sex2 x Prednisone, and ObesityDx x Race x Prednisone were significant. Higher-level 

interactions were not significant.

4. Discussion

We demonstrated the ability to programmatically use existing regulatory-compliant ICEES 

functionalities (i.e., dynamic cohort creation and bivariate contingencies) to generate 

a multivariate integrated feature table. Importantly, we developed and applied a GLM 

model to the resultant multivariate table and identified five feature variables—Prednisone, 
Race, ObesityDx, Sex2, MaxDailyPM2.5Exposure_StudyMax—as significant predictors of 

TotalEDInpatientVisits.

Importantly, our application findings are in agreement with the published literature. For 

instance, prednisone is commonly prescribed for the treatment of acute asthma exacerbations 

in patients who are non-responsive to first-line treatments such as inhaled albuterol 

[19]. Female sex, obesity, and African American race have previously been identified as 

variables that contribute to asthma exacerbations. For example, Greenblatt et al. [20] found 

that female sex and obesity (among other variables) significantly increased the odds of 

asthma exacerbations. Our prior work [8] and that of others [21] have found a significant 

association between African American race and increased risk of asthma exacerbations. 

Finally, exposure to airborne particulate matter is a well-established risk factor for asthma 

and asthma exacerbations. For example, a study by Requia et al. [22] found a significant 

association between a two-year increase of 10 μg/m3 PM2.5 in 117 regions in Canada and 

increased risk in the incidence of asthma. Mirabelli et al. [23] likewise found a significant 

association between exposure to PM2.5 and risk of asthma. We also have demonstrated 

an association between exposure to high levels of PM2.5 and asthma exacerbations [6]. 

Exposure to major roadways or highways is often used as a proxy for airborne particulate 

exposure. Indeed, several groups have demonstrated an increase in asthma exacerbations 

among patients residing in close proximity to a major roadway or highway [24,25]. We 

did not identify major roadway/highway exposure as a significant predictor of asthma 

exacerbations. As our patient population is largely rural (unpublished observation), we 

speculate that exposure to major roadways or highways may not be of primary relevance to 

asthma exacerbations.

While we have validated the ICEES open multivariate approach described here, several 

considerations are worthy of discussion. First, ICEES multivariate tables must be created in 

the context of a driving use case question, with a dependent variable identified and defined 

as the starting point for the overall approach. While this is not a limitation per se, it is a 

consideration that users should take into account.

Second, while the ICEES multivariate analytic approach is openly available, the ICEES 

service itself is subject to regulatory constraints that limit the amount of data that can be 

accessed and the types of analyses that can be performed. Specifically, cohorts ≤10 patients 

cannot be created. The impact of this constraint is that a certain amount of data loss will 
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be incurred whenever a cohort is created that has less than or equal to 10 patients. We 

are developing a theoretical framework to estimate data loss with different combinations of 

variables. For instance, suppose the most favorable case, namely, that each feature has only 

two values and that patients are divided equally among the possible values. Let there be k 
features in the query. Then, the ultimate cohort, say C(k−1), must have at least 10 subjects 

to be included in the query output. The penultimate cohort, say C(k−2), must have >=4*10 

patients as a minimum. Therefore, the root cohort, say C(1), must have >= (4^(k−2))*10 

patients as a minimum. If there are eight features, then ∣C(1)∣ >= (4^6) *10 = 4096*10 

= 40,960 patients are required at minimum to ensure that there is no data loss under the 

simplest, most favorable assumptions above. We plan to develop a technical approach for 

presenting this information to users so that they can apply the multivariate approach in an 

informed manner.

Third, and related to the above consideration, the choice and order of variables influence the 

open multivariate approach and the final sample size. For instance, a variable that has many 

missing values or multiple levels will by definition decrease the final sample size. In some 

cases, the impact of this limitation can be quite large. For example, ICEES currently exposes 

data on genomic variants, but the data are available for only a minor subset of patients, and 

so incorporating genomic features from ICEES into a multivariate analysis is not realistic.

Fourth, the data loss that is inherent in the ICEES open multivariate approach may impact 

model quality. Consider that the final table has one row for every combination of the 

selected features. The frequency returned for any row in the table for which any previous 

cohort in the query was less than or equal to 10 will be returned as zero, regardless of the 

true value, but we know that the true value cannot be greater than 10. If low-frequency rows 

are randomly distributed across the selected features, then we could assume that the query 

process may reduce the precision of the model results, but it would not introduce bias. In 

contrast, if low-frequency rows are not randomly distributed across the selected features, 

then we may introduce bias into our models, which will systematically affect the accuracy 

of model results and may lead to spurious conclusions. We are exploring approaches to 

anticipate and minimize bias.

Regardless of the limitations, we believe that the ICEES open multivariate approach 

provides a unique, regulatory-compliant service, with broad application. We are now 

comparing GLM model robustness and results with the API output versus the underlying 

data. We are also developing additional multivariate models such as random forest and 

causal inference. Finally, we are expanding the service to support additional use cases, 

including primarily ciliary dyskinesia and other rare respiratory disorders, drug-induced liver 

injury, coronavirus infection, and rare disease phenotypes.
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Fig. 1. 
High-level overview of process for generating an ICEES multivariate table by application of 

dynamic cohort creation and nested bivariate contingencies. Levels or bins for each variable 

are defined in source documentation available from the OpenAPI and also accessible as an 

ICEES OpenAPI endpoint. See Table 1 for the feature variable definitions and enumeration 

used in this study.
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Fig. 2. 
Example ICEES tri-variate table, with rows in aggregate form representing the number of 

patients sharing the characteristics defined in each column. Each row can thus be duplicated 

to represent N = 1 patient.
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Fig. 3. 
Excerpt from ICEES eight-feature multivariate table. The frequency column allows users 

to generate patient-level rows by, for instance, creating six separate rows for the features 

defined in row two and assigning a pseudo-identifier to each row.
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Table 1

Feature variables used to generate multivariate table.

Feature Variable Variable Definition and Enumeration

TotalEDInpatientVisits Total number ED or inpatient visits for respiratory issue(s) over the ‘study’ period (0, 1, 2, 3, …)

Sex2 Male (M, 0), Female (F, 1)

Race Caucasian, African American, Asian, Native Hawaiian/Pacific Islander, American/Alaskan Native, 
Other

Prednisone One or more prescriptions for prednisone over ‘study’ period (1 = Yes, 0 = No)

ObesityDx One or more diagnostic codes for obesity over ‘study’ period (1 = Yes, 0 = No)

MaxDailyPM2.5Exposure_StudyMax US Environmental Protection Agency estimated maximum daily exposure to airborne particulate 
matter ≤2.5-μm in diameter (PM2.5) over ‘study’ period, binned using pandas.cut (1, 2, 3, 4, 5)

RoadwayDistanceE.xposure2 US Department of Transportation distance in meters from household to nearest roadway (1 = 0-49, 2 = 
50-99, 3 = 100-149, 4 = 150-199, 5 = 200-249, 6 = ≥ 250 m)

EstResidentialDensity US Census Bureau American Community Survey 2007–2011 estimated total population [block group], 
binned according to US Census Bureau definitions (1 = rural [0,2500), 2 = urban cluster [2500,50000), 
3 = urbanized area [50000,inf))

Abbreviations: PM2.5 = particulate matter ≤2.5-μm in diameter.
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Table 2

Quantification of data loss with ICEES open multivariate approach.
a

Feature Variable Added
b Total ICEES Rows 

(N)
Maximum Possible 
Rows (N)

Missing Rows (N) Missing Rows/Maximum 
Possible Rows (%)

Starting sample size 22365 N/A N/A N/A

Sex2 22365 22365 0 0

Race 22365 22365 0 0

Prednisone 22365 22365 0 0

ObesityDx 22208 22361 153 0.68

MaxDailyPM2.5Exposure_StudyMax 15861 17390 1529 8.79

RoadwayDistanceExposure2 5022 8262 3240 39.2

EstResidentialDensity 4556 10615 6059 57.1

a
Starting sample size before filtering for patients who were active in the ‘study’ period (calendar year 2010): N = 163302.

b
Feature variables were added in the order listed, following the schema shown in Fig. 1.
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Table 3

ANOVA results for GLM model with main effects and 2-way interactions.
a

Main Effect or Interaction df Deviance Residual df Residual Deviance P value Sig

NULL 14936 8796.1

Sex2 1 16.701 14935 8779.4 4.376e-05 ***

Race 5 141.052 14930 8638.3 < 2.2e-16 ***

Prednisone 1 153.832 14929 8484.5 < 2.2e-16 ***

ObesityDx 1 28.412 14928 8456.1 9.806e-08 ***

MaxDailyPM2_5Exposure_StudyMax 2 36.204 14926 8419.9 1.375e-08 ***

RoadwayDistanceExposure2 5 9.601 14921 8410.3 0.087363

EstResidentialDensity 1 0.274 14920 8410 0.600541

Sex2:Race 5 9.395 14915 8400.6 0.094305

Sex2:Prednisone 1 0.871 14914 8399.7 0.35066

Sex2:ObesityDx 1 6.249 14919 8403.4 0.012426 *

Sex2:MaxDailyPM2_5Exposure_StudyMax 2 0.428 14906 8363 0.80749

Sex2:RoadwayDistanceExposure2 5 2.997 14896 8347.6 0.700431

Sex2:EstResidentialDensity 1 2.814 14855 8314.8 0.093454

Race:Prednisone 2 18.555 14912 8381.2 9.351e-05 ***

Race:ObesityDx 2 1.35 14909 8373.5 0.509129

Race:MaxDailyPM2_5Exposure_StudyMax 3 1.589 14903 8361.4 0.661954

Race:RoadwayDistanceExposure2 25 9.65 14871 8338 0.997493

Race:EstResidentialDensity 5 1.129 14850 8313.7 0.951543

Prednisone:ObesityDx 1 10.07 14908 8363.5 0.001507 **

Prednisone:MaxDailyPM2_5Exposure_StudyMax 1 9.507 14902 8351.9 0.002047

Prednisone:RoadwayDistanceExposure2 5 14.696 14866 8323.3 0.011744

Prednisone:EstResidentialDensity 1 0.175 14849 8313.5 0.676105

ObesityDx:MaxDailyPM2_5Exposure_StudyMax 1 1.313 14901 8350.6 0.251903

ObesityDx:RoadwayDistanceExposure2 5 2 14861 8321.3 0.849104

ObesityDx:EstResidentialDensity 1 0.658 14848 8312.8 0.417263

MaxDailyPM2_5Exposure_StudyMax: 
RoadwayDistanceExposure2

5 3.681 14856 8317.6 0.596173

MaxDailyPM2_5Exposure_StudyMax: EstResidentialDensity 1 0.115 14847 8312.7 0.734287

RoadwayDistanceExposure2 EstResidentialDensity 5 0.862 14842 8311.8 0.972891

Abbreviations: ANOVA = analysis of variance; df = degrees of freedom; GLM = generalized linear model; Sig = significance level (*:0.05, **: 
0.01, ***0.001).

a
Negative binomial model, link: log, dependent variable: TotalEDInpatientVisits. Three-way and higher interactions are not included in the table 

for readability.
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