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Abstract

Background: The genus Leishmania includes protozoan parasites that are able to infect an array of phlebotomine
and vertebrate species. Proteases are related to the capacity of these parasites to infect and survive in their hosts
and are therefore classified as virulence factors.

Findings: By analyzing protease genes annotated in the genomes of four Leishmania spp [Leishmania (Leishmania)
infantum, L. (L.) major, L. (L.) mexicana and L. (Viannia) braziliensis], these genes were found on every chromosome of
these protozoa. Four protease classes were studied: metallo-, serine, cysteine and aspartic proteases. Metalloprotease
genes predominate in the L. (V.) braziliensis genome, while in the other three species studied, cysteine protease genes
prevail. Notably, cysteine and serine protease genes were found to be very abundant, as they were found on all
chromosomes of the four studied species. In contrast, only three aspartic protease genes could be detected in these
four species. Regarding gene conservation, a higher number of conserved alleles was observed for cysteine proteases
(42 alleles), followed by metalloproteases (35 alleles) and serine proteases (15 alleles).

Conclusions: The present study highlights substantial differences in the organization of protease genes among

L. (L) infantum, L. (L.) major, L. (L) mexicana and L. (V) braziliensis. We observed significant distinctions in many protease
features, such as occurrence, quantity and conservation. These data indicate a great diversity of protease genes among
Leishmania species, an aspect that may be related to their adaptations to the peculiarities of each microenvironment
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they inhabit, such as the gut of phlebotomines and the immune cells of vertebrate hosts.
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Background

The World Health Organization classifies the leishmania-
ses, infections caused by parasites of the genus Leishmania,
among emerging diseases that lack effective control. Annu-
ally, an estimated 1.3 million new cases occur and 20,000
to 30,000 deaths are attributed to these diseases [1]. The
clinical forms range in severity and are classified as follows:
punctuate skin lesions to oronasal disfigurement are clas-
sified as cutaneous leishmaniasis (CL), whereas fatal sys-
temic infections are classified as visceral leishmaniasis
(VL). Leishmania spp are distributed worldwide and are
organized into subgenera and species complexes. Their
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transmission to mammalian hosts occurs during the blood
meal of infected sandflies, which in turn acquire the para-
sites when feeding on an infected host, thus maintaining
the cycle of the disease. The species grouped into the
Leishmania (Leishmania) donovani complex, including
L. (L.) infantum, are the agents of VL. As for the species
commonly associated with CL, L. (L.) major is reported in
the Old World, whereas L. (L.) mexicana and L. (Viannia)
braziliensis are the main species reported in the New
World. This latter species is also associated with the muco-
cutaneous form of the disease.

In a recent review study, we have highlighted the pivotal
roles of proteases as virulence factors for Leishmania spp
[2]. Such enzymes have been implicated in many parasitic
activities, such as tissue invasion, survival in macrophages
and host immune response modulation.
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Proteases are classified according to their physicoche-
mical features as: optimal pH for activity, kind of catalytic
activity, nature of catalytic site and homology with refe-
rence structure [3]. According to the enzymatic nomen-
clature committee, the Joint Commission on Biochemical
Nomenclature (JCBN), peptidases are allocated into the
Enzyme Class (EC) 3 (hydrolases) and subclass 3.4 (pepti-
dases). They can be subdivided into exopeptidases (EC
4.11 - EC.4.19) and endopeptidases (EC 3.4.21 - 3.4.25),
and the latter are organized according to the amino acids
related to catalysis and the nature of catalytic site [4]. In
addition, endopeptidases are further divided into classes
according to the main catalytic mechanism involved in
their hydrolytic activities, e.g., serine, threonine, aspartate,
metallo- and cysteine proteases [4].

The aim of the present study is to analyse the genomic
organization of proteases in four Leishmania species
known to cause disease in humans: L. (V.) braziliensis,
L. (L.) major, L. (L.) mexicana and L. (L.) infantum, and,
concomitantly, to evaluate their diversity among these
species. Due to the importance of these enzymes in the life
cycle of these parasites, the genomic data gathered here
would be very useful as a basis for further studies correla-
ting infection characteristics of each of the studied species
with their protease richness. Understanding how these
enzymes are organized and conserved (or diverged) in the
different Leishmania subgenera and species is very useful
in helping to identify new targets with the most potential
for chemotherapy or vaccination strategies.

Findings and discussion

We performed a comparative genomic analysis on the
organization of protease genes in four species, a method-
ology we applied to identify species-specific features that
may account for phenotypic or virulence differences
among the studied species. Gene divergence, acquisition,
loss, and rearrangement within and between syntenic re-
gions have shaped the genomes of the trypanosomatids
[5] and can explain the organization and diversity of the
degradome (the complete set of protease genes encoded
by the genome of a certain organism) of Leishmania spp
[6]. Initially, we performed a survey of the predicted prote-
ase sequences present in the annotated genomes of L. (V.)
braziliensis, L. (L.) major, L. (L.) mexicana and L. (L.)
infantum in the GeneDB genome database [7]. This sur-
vey was conducted using the following keywords: protease,
peptidase, proteinase, aspartic protease, cysteine protease,
serine protease and metalloprotease.

In an initial analysis of the data retrieved by the me-
thodology above, the abundance of protease genes in the
genomes of each of the studied species was defined.
While protease genes account for 2.18% of the total
genes in L. (V.) braziliensis, these genes account for
smaller percentages in the other species: 1.61% in L. (L.)
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infantum, 1.52% in L. (L.) mexicana and 1.41% in L. (L.)
major.

Metalloprotease genes predominate in L. (V.) braziliensis,
while in the other species the cysteine protease genes pre-
vail. Our analysis showed that 52% of the protease genes in
L. (V.) braziliensis are metalloproteases and this same class
accounts for 40% of protease genes in L. (L.) infantum and
35% in L. (L.) major and L. (L.) mexicana. The percentages
of cysteine and serine protease gene are close among the
studied species: cysteine protease genes represent 36 to
47% of the total protease genes, whereas serine protease
genes represent 10 to 16%. Very few aspartic protease
genes were identified, amounting to only three in each of
the four species (Figure 1).

A very interesting finding we observed is that protease
genes are present in every chromosome of the studied
Leishmania spp, but occur in different frequencies
(Figure 1). This discovery is consistent with the previously
reported importance of proteases for these parasitic
organisms, as it reveals that genes encoding these enzymes
are abundantly scattered among the Leishmania spp
genomes, and is, complementarily, an indication of the
distinct pattern evolution has impinged over the different
species.

Other studies regarding gene organization in Leishmania
spp have been conducted before and related the structural
configuration of the genes with important functional fea-
tures. The organization of genes in tandem repeats allows
parasites to quickly generate a high number of transcripts
that may be needed in large amounts [8]. Other authors
hypothesise that Leishmania spp. might have a strategy to
increase mRNA levels by duplicating genes on disomic
chromosomes or by forming supernumerary chromo-
somes [9].

Of the chromosomes that we identified as containing
metalloprotease genes, 18 are common for all studied spe-
cies. Notably, the presence of metalloprotease genes on
chromosomes 8 and 30 is exclusive to L. (L.) mexicana.
Similar exclusiveness for the presence of metalloprotease
genes was observed for chromosome 22 in L. (L.) infan-
tum and chromosome 20 in L. (V.) braziliensis. Cysteine
protease genes are present in 22 chromosomes common
to all four species studied. Cysteine protease genes are also
present on chromosome 7 exclusively in L. (L.) mexicana,
on chromosome 28 in L. (V.) braziliensis and on chromo-
some 35 in L. (L.) infantum and L. (L.) major. Serine pro-
tease genes are present in 9 chromosomes common to all
four species studied and the number of these genes does
not exceed three per chromosome. The presence of genes
for this protease class on chromosome 29 is exclusive to
L. (L.) major and on chromosome 20 to L. (V.) braziliensis.
The protease class found to have the fewest coding genes
was aspartic proteases: only three genes for this class were
observed, but the chromosomes on which they are present
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are common to all studied species. These genes are lo-
cated on chromosomes 1, 15 and 29 (Figure 1).

Regarding genes for different protease classes that
occur on the same chromosome, most of the studied
chromosomes were found to contain genes for multiple
protease classes. The exceptions were chromosomes 3
and 6, which were found to contain only serine protease
genes and chromosomes 5, 11 and 22, which were found
to contain only metalloprotease genes.

Due to fusion events that occurred in Leishmania
chromosomes, we observed an interesting pattern of
organization of protease genes where the same arrange-
ment of alleles is maintained across different species but
is located on different chromosomes. Graphical repre-
sentations of such fusion events were developed using
the Artemis and ACT software [10] (Additional file 1:
Figure S1 to S8).

Nevertheless, there is a trend of conservation of some
alleles in the same chromosomes across the studied
Leishmania species. We observed 42 conserved alleles of
cysteine proteases, 35 of metalloproteases and 15 of
serine proteases (Figure 2). The conserved alleles are
predominantly grouped on chromosome 10 for cysteine
proteases, chromosome 30 for metalloproteases and
chromosome 28 for serine proteases.

Among all the analysed protease genes, only two al-
leles were found to be conserved on the same chromo-
some for all four species: alleles of cysteine protease
genes coding for ubiquitin carboxyl-terminal hydrolases
(Clan CA, family C12) located on chromosomes 24 and
25 (alleles 0420 and 0190, respectively) of all species.

Notably, L. (L.) major and L. (L.) mexicana were found
to show more synteny than the other species, containing
23, 15 and 13 conserved alleles for cysteine, metallo-
and serine proteases, respectively. Conversely, L. (V.)
braziliensis was not found to show synteny for serine
protease genes of any other species. Although this ab-
sence of synteny was observed in the only species in our
analysis classified into a different subgenus, it has been
proposed by Peacock et al. [11] that such absence would
not necessarily indicate a lineage-specific diversity in
Leishmania spp.

One of the first comparative genomic studies of Leish-
mania showed that despite phenotypic variations among
species, only a few genes are truly species-specific [11].
In agreement with such reports, we also observed few
genes that do not show similarity to any others. They
show sequence identities lower than 80% to other genes
(Additional file 2: Table S1). This is an important fin-
ding, as these exclusive genes can help explain why these
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Figure 2 Analysis of conserved alleles in the genome of Leishmania spp. Radar charts indicate the conserved alleles on the periphery and
the chromosome number on the y axis, while in the Venn diagrams the number of conserved alleles in Leishmania spp is informed. LbrM - L. (V.)
braziliensis, LinJ - L. (L.) infantum, LmjF - L. (L) major, LmxM - L. (L.) mexicana.

species cause different forms of diseases and are present
in specific vectors and hosts. Previously, it was reported
that more than 99% of genes are conserved between
L. (V.) braziliensis, L. (L.) infantum and L. (L.) major, re-
vealing a high degree of synteny for genomes of different
Leishmania species [11]. Our data indicates that, when
analysing strictly protease genes, this same scenario
holds up, as we also observed high synteny between the
studied species.

When contemplating the usefulness of parasite pro-
teases as new targets for chemotherapies, it is very
important to consider the hypothesis that these
enzymes are unique to the Leishmania species and
quite different from corresponding enzymes in their
mammalian hosts, such as humans and dogs. Thus,
to verify this hypothesis, we conducted a BLAST
(Basic Local Alignment Search Tool) analysis to com-
pare the genes that show synteny among the greater
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number of the four species (represented in the inter-
section of the Venn diagram — Figure 2) with mam-
malian protease genes (taxid:40674). The genes
05.0960 and 11.0630 of L. (L.) major, L. (L.) mexicana, L.
(L.) major show the highest degree of relational similar-
ity with mammalian genes, with approximately 69%
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sequence identity and a query coverage of up to 39%.
However, in general, the query coverage was very low,
with a mean value of 2%. In addition, to perform a simi-
lar study with other proteases that did not show synteny
among all the studied species, we used a different
approach.
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Initially, a multiple alignment analysis was carried out
on the sequences of protease genes of the four species
(software CD-HIT [12]), using a cutoff of 80% sequence
identity to cluster them. As result, we were able to es-
tablish 28 clusters of metalloprotease genes, 27 of cys-
teine protease genes, 11 of serine protease genes and 1
of aspartic protease genes.

The consensus sequences (Additional file 2: Table S2)
of each cluster were then used in the BLAST analysis to
find similarity with mammalian genes. We identified
sequences of O-sialoglycoprotein endopeptidase genes of
hamster, dog, wolf and mice with 69% sequence identity
to a consensus sequence of Leishmania metalloprotease
genes LbrM.31.0100, LinJ.31.0110, LmjF.31.0100 and
LmxM.31.0100. Sequences of 26S subunit ATPase genes
of a lagomorph Ochotona princeps and of mice showed
65% sequence identity to a consensus sequence of serine
protease genes LbrM.03.0450, Lin].03.0520, LmjF.03.0540
and LmxM.03.0540. Additionally, we could not find any
similarity among sequences of cysteine and aspartic pro-
tease genes of mammals and Leishmania spp.

As proteases can be grouped into different families
and clans depending on intrinsic evolutionary relation-
ships, we classified and organized the protease genes
surveyed in this study applying criteria from MEROPS
[13] (up to December 2013) (Figure 3). This classifica-
tion is based on structural and functional similarities be-
tween these proteolytic enzymes. Clans contain enzymes
with related structures and families contain enzymes
with related sequences [4]. This classification is highly
relevant to understanding the organization of these para-
sites” degradomes.

Cysteine proteases and metalloproteases are the major
representative classes of proteases in this study, corre-
sponding to 43% and 42%, respectively of the protease
genes in the studied Leishmania spp. In this survey,
three clans of cysteine proteases were observed in the
studied species: clan CA, CD and CF. These cysteine
proteases are distributed among 11 families from which
C1, C2 and C19 have more members. The MPs observed
in the study belong to the clans MA, MC, ME, ME, MG,
MH and MP and are further distributed among 14 fam-
ilies (Figure 3). The diversity of protease genes observed
in the analysis reinforces the idea that this class of en-
zyme is crucial to the parasite lifecycle, although until
now the role of most of these proteases can only be
predicted based on current knowledge of homologous
enzymes, therefore pointing to the necessity of more
studies characterising proteases [14].

The high number of metalloprotease genes in L. (V.)
braziliensis relates to the 36 distinct genes of the zinc
metalloprotease gp63. This metalloprotease is a very well-
characterised virulence factor for L. (L.) braziliensis and
has several reported functions in the interactions of this
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parasite with its hosts [15]. In L. (L.) major;, L. (L.) mexi-
cana and L. (L.) infantum, the diversity of gp63 genes is
much lower: only 6, 7 and 8 genes, respectively, of this
protease could be found (Figure 3). The organization of
metalloprotease genes in species of the subgenus Viannia
is rather different than that of species of the subgenus
Leishmania [16). The predominance of metalloprotease
genes in L. (V.) braziliensis, a peculiarity also observed in
L. (V.) guyanensis [17], has a biological significance not
completely understood [8,18]. Amplification of genes is a
common phenomenon in Leishmania [19-21] and is a
likely source of the differences between the two subgenera.
Such interesting variation might have fundamental impli-
cations for the way each species interacts with its hosts.

Our study highlights the informative potential of ana-
lysing genome databases for understanding the gene
organization of parasites. However, one should be aware
that not all annotated proteases have described roles in
the Leishmania life cycle. Thus, the picture observed
here is not yet complete.

It is still unclear how the current organization of
Leishmania spp genomes evolved, but the set of results
gathered here emphasises the capacity of Leishmania
species to use the plasticity of their genomes to modu-
late their phenotypes and increase their odds of survival
within hosts, among other biological processes. The di-
versity of protease genes described by our present study
points to their potential importance as survival and
adaptation tools and, consequently, as important targets
in vaccination and therapy strategies.
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respectively. Figure S4. Representation of allelic transpositions between
chromosomes 32 and 31 of L. (L) major (LmjF) and L. (L.) mexicana (LmxM),
respectively. Figure S5. Representation of allelic transpositions between
chromosomes 33 and 32 of L. (L.) major (LmjF) and L. (L) mexicana (LmxM),
respectively. Figure S6. Representation of allelic transpositions between
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Additional file 2: Table S1. Protease genes exclusive to each

Leishmania sp. amongst the four studied species. Table S2. Cluster
of genes.
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